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Description of concentration fluctuations in liquid binary mixtures
with nonadditive potentials
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The segregation or phase separation in a binary mixture is investigated within a quasilattice
model and the hard-sphere-like model. The hard-sphere results are improved by incorporating a
nonadditive attractive tail interaction. An analytic expression for the concentration Huctuation
S, (0) is obtained for the Lennard-Jones system and its equivalence to the lattice-based model is
established. The results suggest that the segregation or phase separation, with either model, is an
outcome of the energetic effect.

PACS number(s): 44.60.+k, 44.90.+c, 05.70.—a, 65.50.+rn

I. INTRODUCTION

The atomic correlations in a binary mixture leading
to homocoordination (preference for like atoms to pair
as nearest neighbors) and heterocoordination (preference
for unlike atoms to pair as nearest neighbors) strongly
inQuence the phase stability of the system. It helps to
analyze the phase separation and the compound forming
tendencies in binary liquid mixtures. In recent years, a
considerable effort has been made (for example, see Refs.
[1—4] to identify the physical reasons responsible for phase
separation either in terms of interatomic forces or in the
light of entropic and enthalpic contributions to the &ee
energy.

Here we intend to address it by considering the con-
centration fiuctuations S„(0) [5] in the long wavelength
limit and by using the simplest possible models for mix-
ture, namely, the quasilattice model and the hard-sphere
model. The phase separation is signaled by a strong en-
hancement of S„(0)which diverges as the spinodal is ap-
proached. In the approach of quasilattice theory, it has
become possible to investigate the role of entropic and
enthalpic effects on phase separation in binary mixture.
The results suggest that the segregation in a binary mix-
ture is an outcome of the enthalpic contribution where
the system is dominated by repulsive interactions, i.e. ,
a positive value for the interchange energy. The inter-
change energy (w) is so defined that if we start with two
pure species 1 and 2, and exchange an interior 1 atom
with an interior 2 atom, the change in energy of the sys-
tem is 2u. With a view to obtaining greater physical in-
sight, we have also considered the problem of segregation
within the &amework of an entirely different approach
based on the hard-sphere model. The latter is improved
upon with nonadditive tail interactions for unlike pairs
and hence an analytic expression for S„(0) is obtained.
Such a correction for finite tail interactions is largely re-
sponsible for the divergence in the S„(0). The results
that are obtained via these two different approaches are
quite complementary to each other.

The approximations and the observations that are
made for the quasilattice model are presented in Sec. II.

In Sec. III, the usual hard. -sphere model of a binary mix-
ture is modified for nonadditive tail interactions, and an
analytic expression for S„(0)is obtained. The impact of
potentials on mixing behavior is critically examined. We
follow with a small Sec. IV dealing with the concluding
remarks.

II. QUASILATTICE APPROACH
FOR ENTROPIC AND ENTHALPIC

CONTRIBUTIONS TO PHASE SEPARATION
IN BINARY LIQUID MIXTURE

Let one mole of the mixture be made isothermally &om
the pure components; then the Gibbs &ee energy of mix-
ing is expressed as

AG = —TLS+ AH, (2.1)

LS
NkggT

Cg—Ci ln
Ci + pC2

1
l

C1+ ~C2——zqgCg ln
2 C +qC
1 C2+ Ci/p

pC2
Cg + pC2

(2 2)

where the first term on the right-hand side (rhs) repre-
sents the entropic contribution while the second term is
due to enthalpic effects. All energetic effects of mixing
are contained in LH. With a view to investigating the ef-
fect of the two contributions separately to S„(0),we first
propose to make use of the quasilattice theory (QLT) of
liquid mixtures, which is based on the ideas underlying
Guggenheim's [6] theory of mixtures of polymers. QLT
allows one to write an explicit expression for AS and LH
as follows.

Let the constituent atoms (1 and 2) of the binary mix-
ture differ &om one another in size and shape, with Nq
the number of atoms of species 1, i.e., N~ occupy a group
of pz lattice sites and N2 occupy p2 lattice sites. If there
is no energetic effect (i.e. , AH = 0), then the entropy of
mixing can be expressed [6] as
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where k~ denotes the Boltzmann constant, N (= g,. K;)
is the total number of atoms, C;(= K;/N) are atomic
concentrations, and p = p2/pi. q is related to z (the
coordination number) and p as

LG = C~ » 0 + Ci » (1 —0) + Cil
~

Wi k T l

NkgT kgT)
(2.11)

—,«(V' —q*) = V; —1, i=1 2. (2.3)

LG
NkgT

S = C2 ln @ + Ci ln (1 —g),Nk J3T
(2.4)

pC2
Cg + pC2

(2.5)

Equation (2.2) simplifies considerably for z ~ oo, i.e. ,
one finds for AG(z ~ oo),

where iU ( = z[mi2 —(zvii + t022)/2]) is the interchange
energy. ~~2, ~~~, and ~22 are the energies for 1-2,
1-1, and 2-2 pairs of atoms, respectively. Obviously, if
m ( 0, there is a tendency to form unlike atom pairs, and
if m ) 0, the like atoms tend to pair together. m = 0,
however, ind. icates that atoms in the mixture do not show
preferential bonding of any type.

The first two terms on the rhs of Eq. (2.11) are due
to entropic contributions and the last term arises from
enthalpic effects. On substituting (2.11) into (2.6), one
has

One can readily identify Eq. (2.4) as Flory's formula.
Thus the concentration Buctuations in the long wave-
length limit, S„(0),due to entropic efFects becomes

(2.6)

with

CgC2
1 —CCf( W)'

2p'W —(p —1)'(Ci + pC2)
(Ci + &C2)'

(2.12)

(2.13)

CgC2

1+CgC2
(2.7) ( m

k Tk&T)
' (2.14)

For practical purposes, p = p2/pi = 02/Oi (0 is the
atomic volume) can be regarded as the mismatch volume
efFect terxn,

For W + 0, Eq. (2.12) reduces to Eq. (2.7). On the
other hand, for p —+ 1 (i.e. , Oi ——A2), one gets

S 0)=
(Qg —By)

ld

(2.8)
S..(o) = CgC2

1 —C~C2
(2.15)

where

0;g ——CgOg + C202 . (2.9)

S„(0)= S,', (0) = CiC2 . (2.1o)

For Oi g 02, S,(0) deviates &om the ideal value. Any
deviation of S„(0)&om the ideal value S,'~(0) is of great
interest to anyone trying to visualize the degree of in-
teraction in the mixture. If, at a given composition,
S„(0))) S,', (0), then there is a tendency for segregation
(preference for like atoms to pair as nearest neighbors);
S„(0) (( S„(0) is an indication of heterocoordination
(preference for unlike atoms to pair as nearest neigh-
bors). The former is often interpreted as a signature of
phase separation while the latter suggests the existence
of chemical short-range order.

It is evident &om Eq. (2.8) that S, (0) is not symmet-
rical at C = 0.5: the position of asymxnetry depends on
02/Oi. But in no case is S (0) greater than S' (0), i.e.,
any positive deviation of S,(0) &om the ideal mixture is
not determined by entropic efFects.

On the other hand, if one considers the energetic efFect
of the binary mixture (i.e. , b H g 0) then QLT provides
[6] an explicit expression for AH. Taking this efFect into
account, and in the limit z —+ oo, the expression for AG
becomes

i.e. , S„(0) is always symmetrical at C = 0.5. But unlike

Eq. (2.8), it is now possible that S„(0) is either greater
than S,', (0) or less than that. The positive and the neg-
ative deviations kom the ideal mixture d.epend on the
positive and negative values of the interchange energy
(W). The general behavior of S„(0) [i.e., Eq. (2.12)],
after considering both the entropic and the enthalpic ef-

fect, is shown in Fig. 1, where S,*,(0) [= S„(0)/S,', (0)]
has been plotted for difFerent values of p and R', for an
equiatomic biiiary mixture (Ci ——C2 ——0.5). It is clear
that for W = 0 (no enthalpic effects), S,*,(0) ~ 1 (ideal
mixture) for p 1.0. With increasing values of the size
ratio p, S„(0) ( 1, thereby indicating ordering in the
mixture. Similarly, if R' & 0, there is an order for all
possible values of p.

One obtains, however, S*,(0) ) 1, i.e. , segregation for
TV & 0. It is interesting to observe that even for positive
interchange energy, Eq. (2.12) suggests a crossover &om
the segregation to order if the mismatch volume term (p)
is large enough, indicating that the segregation in a bi-
nary mixture is an outcome of the enthalpic contribution.

III. ROLE OF INTERACTIVE POTENTIALS
IN THE HARD-SPHERE-LIKE APPROACH TO

PHASE STABILITY OF LIQUID MIXTURES

Since the early work by Lebowitz and Rowlinson [1]
on hard-sphere mixtures of additive nature [cri2 ——(0 ii +
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2.5

molecules are interacting via a pair potential V~ (r) which
can be divided into a short-range repulsive (normally the
hard-sphere potential) and long-range attractive contri-
butions, i.e. ,

V~(r) = V;",'(r) . + V,, (r) (i,j = 1,2). (3.1)

2.0 The Helmholtz free energy F and the pressure P for
the mixture can be easily expressed within the random-
phase-approximation (RPA) scheme [10, 11]: the Gibbs
free energy G becomes

1.5

1.0

PG=F+ —= Gh, +GT,
P

where

Gh. = +h. + Pa. /p,

Gz = p) C;C~v,, (0).

(3.2)

(3.3)

(3.4)
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Eh, and Ph, refer to the Helmholtz &ee energy and pres-
sure of the hard-sphere mixture, respectively, and

V,, (O) = 4~ drr'V, , (r).
~ij

Finally, S,(0) can be calculated via the standard re-
lation [see Eq. (2.6)]. This leads to

FIG. 1. Reduced S;(0) [= S, (0)/S', (0)] against size
ratio p at difFerent exchange energies W = —4.0, —2.0,
—1.0, 0.0, 1.0, 2.0, and 3.0 as calculated from Eq. (2.12).

o'z2)/2, o;~ are hard-sphere diameters], it is well known
that at least within the Percus- Yevick (PY) approxi-
mation, hard spheres of arbitrary size ratio will mix
in all proportions in the Quid phase. But recently the
phase separation has been observed in soft-sphere mix-
tures [7, 8] in which the underlying effective hard-sphere
mixture is characterized by nonadditive diameters, i.e. ,
o'q2 ) (o'qq + ozz)/2. In this case the phase separation is
noticed even at quite small size ratio p = azz/crqq, (where
~22 ) 011)~

In a quite recent letter, Biben and Hansen [9] used a
numerical solution of the, so called, generalized PY ap-
proximation to obtain S„(0) for dense hard-sphere mix-
tures. It predicts phase separation in a binary hard-
sphere mixture if the size ratio p & 4.76. This result
is clearly of considerable interest. However, one may
wonder to what extent phase separation in a hard-sphere
mixture depends on the approximation that one used to
compute the equation of state of such a mixture.

We present a simple but representative analytical ex-
pression for S„(0) for binary Lennard-Jones (LJ) liquid
mixtures, with additive hard-sphere diameter but non-
additive attractive tail interactions for unlike pairs. We
begin by considering a binary Inixture of N molecules in
volume 0 of which Nq molecules are of hard-sphere di-
ameter oqq and Kz molecules of diameter ozz(o2z ) oqq).
This gives a partial density p,. = &' and packing fraction

s p;o;, (i = 1, 2). The total density of the mix-
ture is p = P, p;. Also, we assume that the constituent

s..(o)-' = s.":(o)-'+s..(o)-'. (3.5)

Equation (3.5) is the RPA result for S„(0) which is
general and easy to use once reliable expressions for the
hard-sphere reference system are available and an accu-
rate prescription is used to divide V~ (r) as in Eq. (3.1).
For simplicity, we have selected a L3 potential,

(3.6)

where e,j represent the attractive potential depths,
and we used the well known Weeks-Chandler-Anderson
(WCA) [12—14] perturbation scheme to enable us to make
such a dlvzsion,

ij %P~ 0 & y &minij )

& & &min
(3.8)

with

Here V;.(r), the reference potential, can be approximated
to be V,"'(r) if 0;~. are shown such that the blip function
[13, 14] vanishes. This method provides o;~, which de-
pend on both density and temperature. The detailed ex-
pressions for the hard-sphere reference mixture are avail-
able within the analytical solution of the PY approxima-
tion given by Lebowitz and Rowlinson [1].

By making use of Eqs. (3.2) and (3.3) and the I"h, and
Ph, expressions given in Ref. [1] in Eq. (2.6), we obtain
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Shs(0)
—i 1 vrP 9x d3 18' d2d3+ 4xydq+ +

CiC2 2 (1 —g)4 (1 —ii) s

9xd2 + 4ydid2 + 4xdids + ( is ) ds+
(1 —n)'

hard-sphere mixture to be ideal.
Case 2. In order to see the effect of the mismatch of the

sizes of hard spheres on mixing, we assume that there is
no change of energetics, i.e. , P = n = 1.0 and p P 1.0.

(3.9)

2 2~2 —O11 —022 ~
m3—where d1 ——o.11 —o.22,

3 3
11 22 ~ 6~M

s p Es C'~ss.
Similarly, by making use of Eqs. (3.2) and (3.4) in Eq.

(2.6), we obtain for S„(0)

s.'.(o)
' = „ T I

(2 —s) Ti + &2)

7t Pd3
3

(CiDi —C2D2), (3.10)

3 U ~ 3where D1 = 611o11 &].2o12 and D2 = &22o22 —&12o12.
K is a constant to be obtained from an integral over the
reduced interatomic separation r* = r/oii,

A = 4vr dr*ad* V~i(r*).
O

(3.ii)

o 11 o 22 o ].2 and ~11 ~22 &12 ) (3.i2)

i.e. , p = 1.0, P = 1.0, and n = 1.0. Then one readily
sees that d1 ——d2 ——d3 ——0 and D1 ——D2 ——0. Equations
(3.9) and (3.10) reduce, respectively, to

Shs (0)
—i

1 2

s..(o)-' = o.

Therefore, Eq. (3.5) implies

S,(0) = S' (0) = CiC2.

(3.13)

(3.14)

(3.15)

Thus, Eq. (3.12) sets the sufficient conditions for a binary

Equation (3.5), together with Eqs. (3.9) and (3.10),
forms the required analytical expression for S„(0)for our
model. One of the prime objectives in expressing S„(0)
in the present form is that it can be used to investigate
the role of hard-sphere diameters o.;~ and the potential
well depths e,~ separately.

In what follows we discuss some of the useful conditions
supported by numerical results. For actual calculations
we found it convenient to work in reduced units, for ex-
ample, density p* = pcrii, temperature T* = k~T/eii,
pressure P* = Pcrii/eii, and S,*,(0) = S„(0)/S,', (0). We
carried out our calculations for given values of P* = 3.0
and T* = 2.0, which typically correspond to normal pres-
sure and temperature that are suited to the range of
density of liquid metals. We investigate the effects of
size ratio p(= @22/O. ii), the energy ratio P(= E22/Eli),
and the interactive energy parameter n(= ei2/i/eiie22)
on the phase separation or in the process of compound
formation.

Case 2. Consider a binary mixture of hard spheres
whose diameters and interaction energies are such that

611 622 612 and 0'ii g 0'22. (3.16)

1
&12 n (3.i7)

The nonadditive parameter n plays an important role
in the mixing behavior of a binary mixture. The im-
pact of n for a particular case (p = 1.0, P = 1.0) is
shown in Fig. 3. n = 1.0 corresponds to ideal value.
S*,(0) is always symmetrical at C = 0.5. The segrega-
tion occurs [S,* (0) & 1.0] for n ( 1.0. With decreasing
n, the range of compositions, in which the segregation is
expected, widens considerably. A good degree of order
is found to prevail over a wide range of concentrations
for comparatively large n (n & 1.0). It is not only the
nonadditive parameter n which controls the segregation.
The latter depends very much on the values of the well
depth (eii or e22) of the constituent species. In order
to demonstrate this, we take p = 1.0, n = 1.0, and
P = 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 to calculate S;,(0).
The results are depicted in Fig. 4(b). S' (0) is always
greater than the ideal value, i.e. , 1.0. For large differ-
ences of well depths (P » 1.0) segregation results quite
easily even with n = 1.0. Any deviation of the value of n
&om n = 1.0 affects the mixing characteristic consider-
ably. The results obtained for n = 0.8 are demonstrated
in Fig. 4(a). Again for all values of well depth ratio
P = 1.0, 1.5, 2.5, and 5.0, S;,(0) & 1.0. This result is
qualitatively similar in nature to that with n = 1.0. It
should be noted, however, that by lowering the value of
n & 1.0, the segregation effect is enhanced to a great
extent for larger mismatch well depths, and the mixture
undergoes phase separation.

The results for n & 1.0 (e.g. , n = 1.2) are depicted in
Fig. 4(c). S,*,(0) in this case is both greater and smaller
than the ideal values. That is to say, the segregation or

S„(0)is calculated from Eq. (3.9) for different values of
size ratio p = 1.0, 1.25, 1.5, 2.0, and 3.0. The results
are shown in Figs. 2(a) and 2(b), where p = 1.0 corre-
sponds to ideal values. With the increase of size ratio,
the values of S,*,(0) decrease rapidly from the ideal value
1 exhibiting an ordered state. The larger the values of p,
the more ordered a state is achieved in the mixture. For
p ) 2.0 a flat minimum is observed over a wide range of
concentrations. This suggests that the degree of order is
quite similar for all possible compositions of the binary
mixture.

It is interesting to see that S,*,(0) cannot be greater
than 1 for any size effect. Thus, in the absence of ener-
getic effects, any mismatch size ratio cannot bring segre-
gation in a binary mixture. This is consistent with what
we observed for quasichemical theory in Sec. I.

Case 8. Finally, we investigated the role of interac-
tive potential on mixing which appears in our formation
through the Gibbs function GT. In that case, both S,";(0)
and S„(0) contribute to total S,(0). Let the attractive
tail for unlike atoms be nonadditive, i.e. ,
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@ =
2 A'gy T + &P (&) + 2 (Cl Wl l + 2ClC2&l2 + C2 &22),

(4 3)

with

34;~ = p~;~ and V j(r)gV(r)dr. (4.4)

It is the combination of W;s, which acts as an interchange
energy "34" in the quasilattice theory of Sec. I, i.e.,

~ = ~11 —2~12 + ~22
P(u)ll 2u)12 + u)22) P~ ~ (4 5)

By taking w;s independent of C and the volume, 0 (=
ClOl + C202) linear in C, Young [18] obtained an equa-
tion of S„(0) similar to equation (2.12) (pl ——Bl, p2 ——

02).
(b) Both approaches, i.e., QLT and hard sphere, clearly

demonstrate that the segregation or phase separation in
a binary mixture is an outcome of the energetic effect.

with

E= rkrrT+E (O)+ —r,P) CiC, f Vqr(r)E;, (r)dr.

(4.2)

E (0) is the volume dependent term, p(= 0 l) the num-
ber density, and S the entropy. Equation (4.2) can read-
ily be expressed as

(c) Size effect alone does not yield S„(0)& S,', (0). In
the absence of energetic effects, any mismatch size ratio
is insufficient to bring segregation in a binary mixture.

(d) The present observation seems to contradict the
conclusion that is arrived at with the hard-sphere model
in Ref. [9]. We may recall that the divergence in S„(0)
[S„(0))) S,', (0)] in the latter work is achieved by op-
timizing the radial distribution function g;s (r) through
a parameter 8 to the exact virial expansion results. It
may be that such an optimation, say, their parameter 8,
infuses energetic effects into the hard-sphere-like model
and, hence, the phase separation results.

More recently, Dijkstra and Frenkel [19] have per-
formed computer simulation studies of a mixture con-
sisting of large and small cubes where the independent
variables were the figacities of the cubes. They ob-
served a demixing transition in an additive hard-core
lattice mixture. The implications of such results on the
usual hard-sphere model remain to be analyzed. How-
ever, quite falling in line, the observation of Lekkerkerker
and Stroobants [20] regarding the binodal instability in
a mixture of hard spheres is interesting. These authors
conclude that the origin of the instability is the attractive
depletion interaction between the large spheres.
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