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Morphology and line tension of liquid Alms adsorbed on chemically structured substrates
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On the basis of a microscopic density-functional theory for inhomogeneous fluids we investigate the
structure of liquidlike films adsorbed on laterally inhomogeneous, Hat substrates that consist of two adja-
cent halves occupied by di6'erent chemical species. All atomic interactions are taken to be long ranged.
The corresponding integral equations for the equilibrium density profile are solved numerically. The
mean position of the interface between the liquidlike adsorbed film and the bulk vapor phase displays
van der Waals tails; their amplitudes are calculated analytically for complete and critical wetting. As an
approximation we recover the standard phenomenological approach for the profile of the mean interface
position whose quantitative behavior turns out to fail drastically as compared with that obtained from
the appropriate nonlocal theory. The shape of the interface profile gives rise to a line tension that
diverges logarithmically for complete wetting transitions and exhibits a cusplike singularity close to crit-
ical wetting transitions.

PACS number(s): 68.45.Cxd, 68.10.—m, 82.65.0p

I. INTRODUCTION

Two phases o. and y of one-component condensed
matter can coexist in thermal equilibrium over a certain
range of temperature T and for specific values po(T) of
the chemical potential p. Under these conditions and in
the presence of appropriate boundary conditions an a-y
interface can form. If upon a change of the thermo-
dynamical parameters a third phase /3 becomes stable, it
may wet the o;-y interface leading to two separated inter-
faces a-p and p-y. The particular case in which the
phase e happens to be a flat, structureless, and inert wall
wetted by a liquid p in coexistence with its vapor y has
been studied extensively (for reviews see, e.g., Refs.
[1—3]). The wetting transition is characterized by the
growth of the thickness of the liquidlike layer. If this
growth is induced upon approaching the liquid-vapor
coexistence line from the gas side, this transition is called
complete wetting. If the thermodynamic state is changed
along the liquid-vapor coexistence line of the fluid, the
continuous growth of the film thickness is called second-
order or critical wetting, whereas a discontinuous jump
from a microscopic to a macroscopic value of the film
thickness is called first-order wetting. The value of the
temperature at which the film thickness diverges defines
the wetting temperature T . The different kinds of wet-
ting behavior can be transparently understood by intro-
ducing the concept of the effective interface potential,
which is defined as the value of the wall-gas surface ten-
sion under the constraint of a prescribed thickness of the
liquidlike layer [4,5].

However, real substrate surfaces exhibit various
geometrical or chemical imperfections that destroy the
translationaI invariance in the lateral directions. On the
basis of both phenomenological and microscopic theories

the geometrical effects of such heterogeneities on the
morphology of liquidlike adsorbed films have been stud-
ied intensively, e.g., for fractal [6—9], rough [10], corru-
gated [11—14], or wedgelike substrates [15—20]. On the
other hand, chemica/ inhomogeneities have been investi-
gated to a much lesser extent.

To our knowledge the only study of that sort is con-
tained in Ref. [21] in which —within a phenomenological
approach —the authors considered the adsorption of thin
liquid films on a flat substrate that consists of two halves
occupied by different species. This analysis dates back to
1976, before the theory of wetting transitions was formu-
lated and before modern density-functional theories for
the microscopic description of inhomogeneous fluids
were fully developed. The additional knowledge that has
been accumulated since then allows us to shed light on
this problem and to obtain a refined picture.

In the meantime chemically structured substrates have
not only attracted recent academic interest, but they also
have attained technological importance. Molecular sur-
factants render oil and water miscible by stabilizing inter-
faces between them and thus giving rise to micell forma-
tion. Normally surfactants are so densely packed at these
interfaces that they prohibit, e.g., ion diffusion through it.
This blocking can be avoided by using instead artificial
amphiphilic particles called Janus beads, which are glass
spheres with a diameter ranging between 50 and 100 pm
whose surfaces are treated chemically in such a way that
one hemisphere is rendered hydrophobic whereas the
other is hydrophilic. Janus beads exhibit the specific
behavior of anchoring at a fluid interface along their
equator. Inspired by de Gennes [22], several investiga-
tions of the static [23—26] and dynamic [27—29] wetting
properties of these objects have been carried out. Our
present study is supposed to provide some microscopic
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insight into the behavior of Janus beads insofar as one is
concerned with the morphology of thin liquids films ex-
posed to a substrate with spatially varying and competing
wetting properties. However, as a caveat one should
keep in mind that the system we are considering differs
from that of the Janus beads in two aspects: First, our
surface is Aat and second, the chemical composition of
the two substrate halves differs even deep in the bulk of
the substrate and not only on its surface. In view of the
large diameter of the Janus beads compared with typical
wetting thicknesses of about several hundred angstroms,
the curvature effects on wetting (see Sec. XB in Ref. [2])
will be only minor. The second difference seems to be
more important.

Finally, we would like to mention that there is a rich
variety of even more complicated chemical patterns of
substrate surfaces that are of current interest. They in-
clude adsorption on columnar structures [30], hole for-
mation in coated films induced by the presence of
nonwetting defects [31], monolayer adsorption on ener-
getically heterogeneous surfaces [32], and selective
vapor-phase deposition on patterned substrates [33]. If
the Quid is confined by two parallel plates, a liquidlike
phase will form for values of the pressure below that of
saturation. This capillary condensation will also be
infiuenced by lateral chemical (or geometrical) hetero-
geneities of the confining substrates [34,35].

Figure 1 describes the system we are considering. The
substrate fills the half space A =A+ UA whereby the
quarter spaces A+ = [r= (x,y, z) ER ~x w~O, z (0] are oc-
cupied by two chemically different species. With this
choice the system is translationally invariant along the y
direction, which is parallel to the plane of contact x =0
between the different substrate species. In Sec. II we in-
troduce and specify the grand-canonical density function-
al and the interaction potentials that we use throughout
this work. The systematic decomposition of the free-
energy functional into bulk, surface, and line contribu-
tions leads us to an explicit microscopic expression for
the line tension ~ that is associated with the variation of
the Quid density in the lateral direction x. The minimiza-
tion of the line contribution with respect to the number
density distribution renders an integral equation for the
equilibrium density configuration p(x, z) that is solved nu-
merically. Since this requires a substantial numerical
effort and in practice puts a limit on the thickness of wet-
ting films one can study, in Sec. III we restrict our
analysis to low temperatures and thus to density
configurations that vary steplike in the vertical direction
at z =l(x) between the bulk vapor density pg(T, p, ) and
the liquid density p&( T,p =po( T) ). The resulting equation
for the profile I (x) of the interface position exhibits also a
nonlocal character. Whereas the full profile l(x) has
again to be computed numerically (requiring now a re-
duced numerical effort), we have been able to determine
the asymptotic behavior of l (x) for large ~x~ analytically.
In Sec. IV we compare our results with those obtained
from the standard phenomenological and local effective
Hamiltonian that follows from the aforementioned nonlo-
cal expression by applying a systematic gradient expan-
sion. It turns out that the asymptotic features of I (x ) for

large ~x~ are the same; however, the local approximation
exaggerates drastically the variation of l (x) close to the
transition region at x =0. The local form of the effective
interface Hamiltonian allows us to determine the singular
behavior of line tension of the system analytically for the
particularly interesting case that the more attractive sub-
strate is wetted whereas the other is not. Section V sum-
marizes our results and contains a discussion including a
comparison of our findings with recent results for the
behavior of line tensions close to wetting transitions [36].
Details of the explicit forms of bulk, surface, and line
contributions to the grand-canonical free-energy func-
tional within the various approximation schemes are
given in Appendixes A and B.

II. DENSITY-FUNCTIONAL APPROACH

Our analysis is based on a simple local version of a
mean field, grand-canonical density functional for inho-
mogeneous fiuids [37] (for its application to standard wet-
ting phenomena and its limitations see, e.g. , Refs. [1—3]):

vapor

liqmdhke
W W

z =0

x=0
FIG. l. Qualitative description of the system under con-

sideration. The vapor phase is exposed to a substrate filling the
half space z ~0. z =0 denotes the position of the nuclei of the
top substrate layer. The lattice structure of the substrate in the
lateral directions x and y is ignored. The substrate consists of
the two quarter spaces A and A+ with z &0, and x &0 and
x &0, respectively, occupied by different species indicated by
the different hatching. The system is translationally invariant in
the y direction. A liquidlike film, in thermal equilibrium with
the vapor phase, is adsorbed on the substrate. z =l(x) denotes
the position of the liquid-vapor interface. If p(x, z) denotes the
number density of the Quid, we adopt as the definition of the in-
terface position p(x, z = l(x) }=(pI+pg )/2, where p~ and pg are
the liquid and vapor bulk number densities at two-phase coex-
istence. The substrate w is less attractive than the substrate
w+ so that l+ &l, where lg = l(x —+k ao ) denotes the thick-
ness of the wetting film if the vapor phase is exposed to a half
space filled with the substrate m~ under the same thermo-
dynamic conditions. d and d+ denote excluded volumes due
to the repulsive parts of the substrate potentials [2]. In most
cases the less attractive substrate will have the larger d .
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Q[[p(r)] T p [~(r)] [V(r)]]
d'» fHs(p(r), T)

Af

+ —,
' d r r'S r —r' prpr'

Af Af

+I d r p(r)[V(r) —p] . (2.1)
Af

The integrations in Eq. (2.1) are taken over the space A&
occupied by the fluid. The interaction between the fluid
particles is assumed to be given by a spherically sym-
metric pair potential w(r), which is separated into a
long-range attractive part and a short-range repulsive
part. $(r) represents the attractive part that, at large
distances, decays like r and at short distances is con-
sistent with the Weeks-Chandler-And ersen (WCA)
prescription [38]. The repulsive part of the potential m is
mapped onto an eII'ective hard sphere interaction poten-
tial. The first term in Eq. (2.1) is the contribution to the
free-energy functional from the repulsive part of the po-
tential treated within the local density approximation;
fHs(p, T) denotes the Helmholtz free-energy density of a
homogeneous system of hard spheres with a number den-
sity p. p is the chemical potential and V(r) is the sub-
strate potential, which at large distances is attractive and
decays -z, where z is the distance from the substrate
surface. Explicit forms of the interaction potentials Co

and Vare given below [cf. Eqs. (2.13) and (2.17)—(2.19)].
Since the substrate potential V(r)= V(x, z) does not

depend on y and because the translational invariance in
that direction is not broken by boundary conditions, one
has p(r)=p(x, z) (see Fig. 2). Starting from a finite sys-
tem size Lx XL~ XL, for the fluid volume A& a systemat-
ic analysis of the size dependences leads to the following
decomposition of the grand-canonical density-functional
given by Eq. (2.1) into its bulk (Qb), surface (Q, ), and

I 1+Qi[ jp(x, z)];pt, pg, T,p]+0
X Z

(2.2)

Those contributions to 0 that scale as L„L„are propor-
tional to Q,I, whereas those that scale as L L, are propor-
tional to Q, . One should note that Eq. (2.2) includes
artificial surface and line contributions due to interfaces
with the vacuum generated by the cutoffs at x =+L /2,
y=+L /2, and z =L, . The artificial surface and line
contributions introduced by the cutoff at y =+L~/2 are
proportional to L„L„L„,and L„respectively, and there-
fore they vanish in the thermodynamic limit L ~~ con-
sidered in Eq. (2.2). Qb(p, T,p) is the bulk free-energy
density [see Eq. (Al)], which is minimized by the vapor
densitypg(T, p) or the liquid density P&(T,p). In the fol-
lowing we always take these equilibrium values and
therefore we omit the overbars.

The parallel surface contribution Q,"[p+(z),p (z)] has
the transparent form

Q~'[p+(z), p (z)]=—,'[Q,+[p+(z)]+Q, [p (z)]], (2.3)

where Q, [p] is the surface free-energy density of a
liquidlike adsorbed 61m on a semi-infinite homogeneous
flat substrate with a substrate potential V+, respectively

line (Q&) contributions, which is valid for all trial func-
tions p(x, z) that approach their asymptotic values rapid-
ly enough:

lim Q[[p(x,z) J;T,p]
1

'-"Lv
=L L,Qb(pg, T,p)+L, Q, (pg, T,p)

+L Q'[[p+(z»p (z)]-'pl pg T»]

vapor

p (z)

I

I I

CL

liquidlike

p (z)

FIG. 2. Schematic density distribution of the fluid exposed to the chemically structured substrate. At large lateral distances ~x~

from the position x =0 of the inhomogeneity the density profile p(x, z) reduces to the density profiles p+{z) of the corresponding
homogeneous cases. The profile l(x) of the interface position is defined by p{x,z =l{x))=(pI+p~)/2. The fluid is enclosed in the
box A =L„XL XL, surrounded by vacuum. The repulsive part of the substrate potential leads to the vanishing of p(x, z) for z~0,f x y z

+which can be approximately described by excluded volumes d and d . Within our simple choice of a local expression for the refer-
ence free energy of the hard-sphere contribution, density oscillations close to the wall are suppressed. Thus our considerations are
only reliable if I (x) is large compared to the atomic diameter of the fluid particles.
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[see Ref. [4] and Eqs. (A2) —(A9)]. p+(z) minimizes the
surface free energy Q,*[p(z)]. Thus solving separately
the two homogeneous surface problems renders the
asymptotic (i.e., x =hap ) equilibrium density profiles
p+(z) and determines the wetting characteristics for the
two difFerent homogeneous substrate types; note that due
to the chemical inhomogeneity of the actual substrate we
are concerned with two wetting temperatures T*. The
normal surface contribution Q, is purely artificial [see
Eq. (A10)]; it results from cutting off the system at
x = kL /2 and thus introducing the fiuid-vacuum inter-
faces.

The equilibrium density configuration p(x, z) minimizes
the line contribution Q&[[p( xz)];p&,p~;T, p] under the
constraint that the quantities pi, p, and p+(z) are taken
to be those that minimize Qb and Q„respectively. The
expression for Qi consists of an artificial (5Qi[p+]) and a
physical [ Q&P""'[p(x,z) ]] part:

Qi [p(x,z) ]=5Qi [p~(z) ]+QIP"y'[p(x, z) ] . (2.4)

The artificial term, which is induced by the system cutofF,
depends only on the asymptotic equilibrium profiles p+(z)
and is constant with respect to the aforementioned con-
strained minimization of Qi since p+(z) is taken to be
P+(z). Therefore the full shape of the density
configuration p(x, z) is determined only by the physical
part of the line contribution. Thus the wetting problem
under consideration is associated with the line tension ~
of the system, which is given by

2

fHs(p, T)=kiiTp ln(pA, ) —1+
1 —i}

(2.9)

with the thermal de Broglie wavelength A, and the dimen-
sionless packing fraction

'g = pd (2.10)

The hard-sphere diameter d has to be chosen appropri-
ately; see below. For the interparticle pair potential w(r )

we take the form

r
w(r ) =au (2.11)

To solve Eq. (2.7) numerically we truncate w(x +z )

at b, =+x +z = 10o, where o. is the diameter of the
fiuid particles (see below). As an initial guess for the
iterative procedure we use an interpolation between equi-
librium profiles p(x', z) obtained for laterally homogene-
ous substrate potentials V(x', z ) where the fixed values x'
are chosen at equal distances over the full lateral range

L„'—/2&x &L„'/2. The combined error in the profiles
due to b, ' and L„' ' being nonzero is less than 8%. In
order to obtain a numerical solution we have to specify
the fiuid-fiuid [w(r)] and the substrate-fiuid [ V(x,z)] in-
teraction potentials as well as the Helmholtz free-energy
density fHs(p, T) of the hard-sphere reference system.
For the latter we use the expression due to Carnahan and
Starling [41]

'r min(Qi ""'—[p])=Qi y' [P(x,z)] (2.5) where

The explicit expression of the various contributions in
Eq. (2.2) are discussed in Appendix A.

The condition for the equilibrium density configuration
p(x, z)

~P p =P(x, z)

fiQ(Phys)
I

5p p=p(x, z)

=0 (2.6)

leads to the integral equation

0=pHs(P(x, z), T ) p+ V(x,z)—
+ J" dx' I dz'w(lx —x'I, Iz —z'I}P(x',z'), (2.7)

which has to be solved subject to the boundary conditions
p(x~+ao, z)=p+(z). The potential w is defined as

w(x, z)= J dy w((x +y +z )' )=w(x +z )

and pHs(p(x, z ), T}=OfHs(p(x, z), T)/'dp denotes the
chemical potential of the hard-sphere system. With the
bulk quantities and the asymptotic profiles p+(z) fixed,
the full solution p(x, z) of Eq. (2.7) can only be obtained
numerically. For that purpose we implement an extend-
ed version of the well-established iteration scheme intro-
duced by Tarazona and Evans [39]. The extension com-
pared to Hat homogeneous geometries involves the addi-
tional lateral coordinate x. The convergence criteria of
the iteration procedure follow from similar arguments
used in the simpler case outlined in Ref. [40].

'4[x "—x '], x&x,
u(x)= '

zuo(x +1), x &xo

with xo-—1.2334 and uo= —13.037. u(x) is continuous
and has a continuous derivative at xo. The motivation
for this particular choice for the interparticle potential
w(r), which closely resembles the standard Lennard-
Jones (LJ) potential for all r, will become apparent below.
In the spirit of the WCA procedure [38], we separate
w (r) into an attractive part

EO 6

w(r)=uo
6 2 3(cr +r )

(2.13)

2

w, = J d'r N(IrI )=uoeo'3 7T

R
(2.15)

enters into Eq. (2.1), while the repulsive part leads to the
reference free energy as described above [Eqs. (2.9) and
(2.10)] with the choice d =xoo. The advantage of this
particular choice is that certain integrals involving w(r)
can be performed analytically. This analytical advantage
outweighs the disadvantage that there is a small

for all ~ and into a repulsive part

w„p(r) = [wL, (r)+ I
w(r ) I ]e(xoo —r ) (2.14)

so that (wr ) = (wr) w+„(rp); wLi(r) =4@[(o/r )'
—( o/r ) ]. The attractive . part with the integrated
strength
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difference between our choice of w (r) and the commonly
used Lennard-Jones potential and that we slightly modify
the standard WCA procedure, which would require
to(r ~o )=w(r =o ). The bulk phase diagram that fol-
lows from this model is shown in Fig. 3. With this choice
one has

Q3 Q3

X
1

x

3
R 3 1

xz 2 Rxz

Q3 +Q3
V„,(x,z) =-

z'

Q4 +Q4
4

m(x, z)=too (oz+x'+zz)30' 2~
(2.16)

+
Q4 Q4

2
x 1 x

z4R 2z R

+
4,x 4,x

The substrate potential V(x, z) consists of a short-range
repulsive part V«~(x, z) and a long-range attractive part
V„,(x,z):

1 z
X

x4 x4R
1 z R =+x +z
2 x2R3

V(x, z) = V«~(x, z)+ V«, (x,z) . (2.17) (2.19)

For the repulsive part of the potential we take the simple
form

+
Q9 Q9

V«~(x, z) =e( —x ) 9 +e(x)z' z' (2.18)

The steplike variation of V«~(x, z) at x =0 in an accept-
able approximation because the repulsive part of the pair
potentials between the substrate and the Quid particles
decays rapidly and because we assume that the transition
region between the two substrate halves is sharp. For the
attractive part we take

I* 4I

C

1.4

~ . I
~

' I

1.2

0.8 --,
~ ~

I ' I

0.1p,
* 0.2 0.3 04

-52

p,
*

-54

-56

0.8 1.2 1.4 *

FIG. 3. Bulk phase diagram for the model described in the
main text. The liquid-vapor coexistence (a) as function of tem-
perature T= T e/kz and density p=p*o. and (b) as a func-
tion of temperature and chemical potential p=p*e. The poten-
tial parameters e and cr are de6ned in Eqs. (2.13) and (2.14).

which follows from summing pair potentials between the
Quid particles and the substrate particles located on lat-
tice sites by using the Euler-MacLaurin summation for-
mula [42]. The coefficients u 3, u 4, and u4, can be re-
lated to the parameters of these pair potentials including
different lateral (x) and orthogonal (z) lattice spacings
within both substrates w+ and w . We refrain from
presenting these explicit formulas and treat them as free
parameters of the substrate potential. The first two terms
of V,«(x, z) in Eq. (2.19) are identical to those appearing
in Ref. [21]. For large distances z from the substrate and
x fixed, V(x, z) vanishes proportional to z . For
x ~+~, V(x,z) reduces to the substrate potential V+(z)
of the corresponding semi-infinite, horn. ogeneous, and flat
substrate. For ~x~ &&z these limiting forms are attained
proportional to x, so that V(x, z) exhibits the long-
range van der Waals character both normal and parallel
to the substrate surface. The power law decay of w(r)
and V(x, z) induces also various power laws for the shape
of the density distribution p(x, z), which are traditionally
called van der Waals tails [4,5]. These aspects will be dis-
cussed in Sec. III B.

By carrying out the numerical procedure outlined
above we have obtained the equilibrium density distribu-
tion P(x, z) shown in Fig. 4. The thermodynamic state of
the system is given by To/T, =0.712 and
b,p =po( To )

—p = 1 X 10 e so that the bulk of the fluid is
in the gas phase with p o. =0.0106. The substrate po-
tential parameters Q3 are chosen in such a way that
T„+ & To & T, where T+/T, =0.648 and T„ /T,
=0.842 with T,*= l. 544 (see Fig. 3). (This corresponds
to the following values of the parameters of the interac-
tion potentials: u3+ lt3 =0.390,u 3 It3 =0.289, and

u4~ =u4, =20.0eo .) For critical wetting transitions of
the homogeneous semi-infinite substrates w+ at T = T
we use the condition u3 =t p 3(Ti=T*) (see Ref. [4]),
where pi ( T,po( T) ) is taken to be the liquid density at
coexistence, i.e., for b p =0. The Quid potential
coefficient t3 is given by Eq. (3.5) (see Sec. IIIA). For
this particular temperature To the bulk liquid density is
p&o. =0.3583. For these choices within the sharp-kink
approximation (cf. Sec. III) the equilibrium film
thicknesses l + for x —++ (x) are l =28.44o. and
l+ =41.27o. , respectively. These sharp-kink values are
estimates for the positions of the actual liquid-vapor in-
terfaces of the asymptotic density distributions p+(z).
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p[II(x)I;x,z;d*]=[6(—x)6(z —d )+8 x 6 z —d+

X [8(l(x)—z }pi+6(z—l(x))z x pg

(3.1)

p*(x,z)
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FIG. 4. Equilibrium density distribution 'x z) =
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for the bulk, surface, and line contributions, which are
the analogs of those obtained for the general density dis-
tribution p(x, z) discussed in Appendix A and in Eq. (2.2).
The characteristics of the liquid film enter into the sur-
face (Q,') and line (Ql ) contributions. The latter takes
into account the shape of the interface position 1(x),
whereas the surface free energy depends only on the
asymptotic film thicknesses 1+ =l(x ~+~ ) (see Appen-
dix 8 for the explicit expressions and their interpreta-
tion). Analogously to the case of the full density theory
outlined in Sec. II, the determination of the equilibrium
asymptotic boundary values 1~ requires the independent
minimization of the two surface free energies Q,*(l) cor-
responding to the semi-infinite homogeneous substrates
w+ and w, respectively. The determination of the equi-
librium film thickness I within the sharp-kink approxima-
tion for homogeneous substrates is discussed in detail in
Ref. [2].

A. Equation for the profile of the interface position

The minimization of Qt [ I 1(x)] ], whose explicit form is
given in Eqs. (88) and (813), with respect to 1 (x) leads to
the following integral equation for the equilibrium profile
l(x) of the interface position:

KQ =b p[pi t(1(x ) ) V(x, 1(x) )—]
(bp—) f dx'w "(x'—x, l(x') —l(x)), (3 2)

where

zw'(x, z) =
3(x +cr )(x +z +o' )'

1 2

x +z +o. x +cr
(3.7)

B. Asymptotic behavior of the pro6le of the interface position

As already pointed out the separate solutions of the
two homogeneous surface problems define the laterally
asymptotic structure of the system under consideration.
For the following discussion we assume that the potential
parameters are chosen in such a way that critical wetting
transitions occur at T„+ and T„on the substrate w+ and
w, respectively. In this case, the wetting temperatures
T„are given by the implicit equations (see Ref. [2])

For thermodynamic paths along the liquid-vapor coex-
istence curve EQ is zero so that in this case the tempera-
ture dependence enters only implicitly via the bulk densi-
ties pi( T,po( T) ) and ps( T,po( T) ).

Due to the chemical inhomogeneity the translational
symmetry is broken in one lateral direction and gives rise
to the explicit dependence of the substrate potential
V(x, z) on the coordinate x. The substrate potential
enters the equilibrium equation (3.2) only via the
difference pI t (z) V(—x,z).

The full solution of Eq. (3.2) can be obtained only nu-
merically, which will be presented in Sec. III C. In the
following subsection we discuss analytically the asymp-
totic behavior of 1(x) for ~x ~

~ Oo.

w'(x, z)= I dz'w(x, z') .
0

(3.3) u3 =pi(T=T~ )t (3.8)

wo m, zt(z) = ——arctan(z)—
1+z

(3.4)

with wo defined by Eq. (2.15). For large distances z the
asymptotic behavior of t (z) is given by

t(z)= — — +O(z ') .3 4 (3.5)

The minimization leading to Eq. (3.2) is carried out under
the constraint that the quantities p&,pg, l+, and I take
on their equilibrium values. Therefore Eq. (3.2) is supple-
mented by the boundary conditions 1(x~6 oo )=1+.
Close to two-phase coexistence one has
b Q=Qb(pt, Tp) —Qb(p, T,p) =hpbp+O((bp) ) with
b,p =po( T)—p ~ 0 and hp =pi —

pg
~ 0. The function

t (z) corresponds to the interaction energy of a fiuid parti-
cle located at a distance z from a half space filled by the
fiuid itself. For the interaction potential io(r) defined in
Eq. (2.13) one has

1 (x)=e( —x )1 +e(x)1+ . (3.9)

where the potential coefBcients u3 and t3 are defined
through Eqs. (2.19) and (3.5), respectively. In the follow-
ing we assume that T & T+. Since we are concerned
with two di6'erent substrate types, we focus our attention
on the following two situations. First, both substrate
types are covered with liquid films of finite thicknesses.
Such a situation prevails for any p & po( T) with T & T+
and off coexistence, i.e., p & po(T), for any T. Second, we
consider the situation in which one part of the substrate
is completely wetted, whereas the thickness of the liquid
layer on the other part of the substrate remains finite.
For the latter case two possible thermodynamic paths are
indicated in the (p, T)-phase diagram shown in Fig. 6.

In order to examine the first case we consider the bulk
system to be at coexistence for T & T+ and p, =@0(T) or
oQcoexistence for p&po(T) and T) T* so that critical
wetting occurs for T~T* or comp/etc wetting for
popo(T), respectively.

For convenience we define the steplike interface profile
1„(x)as

wog 3

t3= ——
3 m

&0.

The kernel in Eq. (3.2) takes on the form

For t (z) given by Eq. (3.4) one has t~ =0 and

(3.6)

Inserting l(x) =1 (x ) —sgn(x)51(x) with 51( ~x~ ~~ ) =0
into Eq. (3.2) yields at coexistence, i.e., b,Q=0, the
asymptotic behavior of 1(x) for large values ofx:

(+)
l(x~+~ )=1++ '3 +O(x ) (3.10)
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large compared with d (see Fig. 6). Otherwise Eq.
(3.10) holds only for x~+~.] In the case of critical
wetting one has u4*, —(t 4+3d*t 3)pi( T) )0 so that the
denominator in Eq. (3.11) is positive. From Eq. (3.13) it
follows that the inequality I + ) I implies

~
a 2+

~

&
~
a z ~

provided u~+ —u4 (3(d„+—d )t3pi If. this is the case
one has Ag,';, &0 (sine az (0) so that I(x~+ Do ) ap-
proaches I+ from below and 1(x~—~ ) approaches I
from above, as depicted in Fig. 5. However, for
u~ —u4 )3(d+ —d )t3pi the profile I(x~+ oo) ap-
proaches I+ from above and l(x~ —~) approaches I
from below.

According to Eq. (3.10), 1(x) approaches its asymptotic
values I+ as a power law x . This behavior is induced
by the long-range van der Waals interactions -r be-
tween the Quid particles and between the Quid and sub-
strate particles. Therefore we refer to this part of 1(x) as
the van der Waals tails of the profile of the interface posi-
tion. [One should recall that there are, in addition, van
der Waals details in the density distribution p(x, z) as a
function of z [4,5].]

In the case of complete wetting, the asymptotic
behavior of 1(x) is given by a formula similar to Eq.
(3.10):

liquid

(a) p.

vapor

lE

liquid

T~ To T~ T
(b) p,, I ~ I

I I

I I 1

vapor

FIG. 6. Various thermodynamic paths in the (p, T) phase di-
agram leading to incomplete wetting of the substrate w but
complete wetting of the substrate w+ illustrated by the corre-
sponding schematic behavior of the equilibrium. film thicknesses
ly. The potential parameters are chosen such that T„+ & T
For simplicity the liquid-vapor coexistence curve pp( T) is
straightened out (compare Fig. 3). (a) If one approaches pp(T)
along an isotherm with T+ & Tp & T, the substrate w+ is com-
pletely wetted, i.e., l+ ~+ 00, whereas the film thickness l on
the substrate w remains finite. (b) Upon an increase of the
temperature along the liquid-vapor coexistence line the thick-
ness l+ of the liquidlike layer on the substrate w+ diverges at
T+ and remains macroscopic for T„+ & T & T, ; because the tem-
perature Tp is smaller than T, the substrate w is only incom-
pletely wetted. Both thermodynamic paths lead to the same
final state of the system at (pp(Tp) Tp) and thus to the same
profile l(x;pp(Tp), Tp). This holds also if the wetting transition
at T is first order, so that in (b) l+ would jump to infinity at
T=T+.

g(+)
I(x~+oo )=lg+ ' +O(x )

X
(3.14)

4 — +I+ az —a2
3,comp

a2
(3.15)

As before, Eqs. (3.14) and (3.15) are valid for Jx~ /l+ )&1
and I+ ))d„*. The latter is fulfilled if T) T„&T+ and
b p~O+ so that I+ with

with the amplitude 1/3
2a,*

hphp
5 +l~ a2 —a2

("4 t4pl )~p

(3.16)+I(by~0 +, T) T )=
(3.11)

is sufficiently large. For T )T& T+, Eqs (3.14) and
(3.15) hold only for x~+ oo. Contrary to the case of
critical wetting, the signs of az —a2 and I —I+ are
definitely linked [see Eq. (3.16)]. (Note that for complete
wetting a2 is positive, but for critical wetting it is nega-
tive. ) This implies that 1(x) always approaches its larger
asymptotic value from below and its smaller asymptotic
value from above. Thus, for complete wetting the profile
1(x) is monotonic (such as in Fig. 5), whereas in the case
of critical wetting a nonmonotonic profile can occur de-
pending on the subdominant terms in the substrate po-
tential. In the limit of a homogeneous substrate one has
I =I+ = I and a z

=a 2 so that 1(x) reduces to I.
In order to examine the second case mentioned above,

i.e., the substrate w+ is completely wet but w is not, we
decompose 1(x) as

where we have used the Hamaker constant a& for the
substrates w+ and w

(3.12)

Equation (3.11) applies for a substrate potential of the
form given by Eq. (2.19) where we have used the special
case u ~ „=u 4, =—u 4~. Equation (3.10) holds for
sufficiently thick wetting films, i.e., I+ »d~, and far
away from the inhomogeneity, i.e., ~x~ /I~ )) l. At coex-
istence the former requirement is fulfilled if the substrates
w~ undergo a continuous wetting transition at T* so
that for T +T* one has a& —( T~ T+)~0—,which im-
plies [2]

1(x) for x & gl(x)= '

1(x) for x )g, (3.17)(3.13)

u 4 ( t4+ 3d*t3 )pi( T )—
I~(b,p=O, T~T )= —+ 00

t,pi( T) u,*—
[In this case we assume that T+ and T are close so that
even for T & T+ & T also I ( T) is already sufficiently

where x =g)) o. denotes the lateral position at which the
asymptotic behavior of 1(x) for large values of x sets in .
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For the present purposes we do not have to specify T(x)
further.

By inserting Eq. (3.17) into the Euler-Lamrange equa-
tion (3.2) we find that for critical wetting l(x) behaves
like a power law

l ( )
—crit 2/( i +K)

K (3.18)

comp 2/( i+ n )
CT (3.20)

where o characterizes the asymptotic decay -r '"+ ' of
the interaction potential between the fiuid particles. For
van der Waals forces with o. =3 the pro61e diverges as the
square root (see Refs. [43,44]). For short-range forces,
i.e., o.~ oo, this growth law turns into a logarithm. The
amplitude a3™in Eq. (3.20) is given by

1/4
a2~comp 83
~tg

(3.21)

The amplitude a3' depends on temperature via the
Hamaker constant a&+ and the gas-liquid surface tension
o(s. Within the sharp-kink approximation for cr(s [see
Eq. (B5)] and by using Eq. (3.12) for the Hamaker con-
stant az (which is valid beyond the sharp-kink approxi-
mation [4,5]) a3' can be expressed analytically in terms
of the microscopic interaction potentials; a3' p depends
on both the substrate potential and the Quid-Quid interac-
tion potential. Since one has a2+ &0 for T& T+ and
cr I )0 for T & T„n3' is well defined within the
relevant temperature range T+ & T & T, where the power
law in Eq. (3.20) holds. If Eq. (3.21) remains valid close
to T„ the amplitude o,3' " will diverge -t '" ~' " for
t =(T,—T)/T, —&0, where P and p denote the standard
bulk critical exponents of the order parameter and the
surface tension o I, respectively. In the same limit in Eqs.
(3.11) and (3.15) I+ must be replaced by the bulk correla-
tion length g [4,5] so that A, 3*„';,—t +

' for
t~ = ( T, —T*)/T, ~0 and A, (3 „) - t for t ~0, where
v is the bulk critical exponent for the correlation length

All three divergences indicate that close to T„ the
power laws in Eqs. (3.10), (3.14), and (3.20) are replaced
by different laws induced by the phenomena of critical
adsorption near T, [5,45 —47]. The investigation of criti-
cal adsorption on heterogeneous substrates is deferred to
future studies.

C. Numerical solution for the pro6le of the interface position

In the previous two subsections we analyzed the
asymptotic properties of the solution corresponding to
the nonlocal Euler-Lagrange equation (3.2). However,

where a is defined via Eq. (B3). For the typical case a =4
the pro6le diverges as x . The corresponding amplitude
is given by

' 1/5
crit 25 a3+
4 (3.19)

2 cT )g

whereas as+ is defined according to Eq. (B3).
In the case of complete wetting the asymptotic

behavior of l(x) is again given by a power law

the whole curve l(x) is accessible only numerically. Ac-
cordingly we have indeed solved Eq. (3.2) numerically by
using standard iteration procedures. A typical example
of such a solution is shown as the dotted line in Fig. 7. It
corresponds to the same thermodynamic state and the
same parameters of the interaction potentials as those
used in Fig. 4 in which we have displayed the numerical
solution of the full integral equation (2.7). This allows us
to gauge the quality of the predictions obtained from the
effective nonlocal interface Hamiltonian as compared
with the full theory. To this end we have extracted from
the full density distribution p(x, z) the interface position
corresponding to the definition p(x, z =T(x))= ,'(p&+—p ).
It is shown as the full line in Fig. 7. The comparison be-
tween these two curves shows that the nonlocal effective
interface Hamiltonian approximation yields a good ac-
count of what one obtains by using the more complicated
full theory. The predictions for the interface positions
from these two approaches diff'er by less than 10%%uo. Thus
we conclude that the effective interface Hamiltonian pro-
vides quantitatively reliable predictions for spatially vary-
ing interfaces. As will be shown later this is not true for
the local version of the effective interface Hamiltonian
(cf. Sec. IV).

IV. LOCAL INTERFACE HAMILTONIAN

The analysis in the preceding section is based on the
nonlocal integral equation (3.2). By applying a gradient
expansion for the nonlocal term (see Refs. [49—51]) Eq.
(3.2) can be approximated by a local, nonlinear

40 full theory

nonlocal approximation

35

30

I ' ' I

-1.5x10 -10 -5x10 0
I

5x10
I. . . I
I ' ' ' ' I

10 1.5x10

FIG. 7. Profiles of the interface position l(x) for the same
system obtained by three di6'erent methods. The full curve fol-
lows from the density distribution p(x, z) according to the
definition p(x, z) =(pl+p~)/2 by solving Eq. (2.7) numerically.
The dotted curve corresponds to the nonlocal interface Hamil-
tonian [Eq. (3.2)], whereas the dashed curve is obtained from the
local interface Hamiltonian [Eq. (4.1)]. The thermodynamic
state of the Quid and the potential parameters that have been
used are described in the main text. Whereas the nonlocal inter-
face Hamiltonian describes the actual profile rather well, the lo-
cal Hamiltonian exaggerates the variation near the inhorno-
geneity drastically. Since the scale of the ordinate is about 10
times larger than that of the abscissa, the profile is very broad.
Thus close to liquid-vapor coexistence the sharp chemical inho-
mogeneity of the substrate does not succeed in maintaining a
sharp variation of the density of the adsorbed liquidlike film.
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with

+(higher-order terms) (4.1)

U(x, z) =p, t (z) —V(x, z) . (4.2)

Starting from Eq. (3.2) it turns out that in Eq. (4.1), o ig is
given by the sharp-kink approximation for the surface
tension of the flat liquid-vapor interface [see Eq. (85)].
The higher-order terms in Eq. (4.1) contain at least the
square of d l(x)/dx or third-order derivatives of l(x).
The leading term on the right-hand side of Eq. (4.1) re-
calls the construction scheme of phenomenological ap-
proaches [52]. There the cost dV in free energy due to
the distortion F(R=(x,y)) of a flat interface is taken to
be the surface tension o.

I of this Hat interface times the
corresponding increase of interfacial area with respect to
a flat reference plane A defined by F(R)=const:

dV=o&g I d 8 {'}/1+[VF(R)]—1 j . (4.3)

The functional derivative of Eq. (4.3) with respect to
F(R) yields the right-hand side of Eq. (4.1} for a mean
profile that is independent of y. Although Eq. (4.3) is fre-
quently used for a variety of problems, one has to keep in
mind that this expression is justified microscopically only
for such, rather artificia, interaction potentials between
the Quid particles that are exactly zero outside a certain
range. For exponentially decaying forces the sum of the
higher-order terms in Eq. (4.1) diverges and for realistic
van der Waals potentials the coefBcients of the individual
higher-order terms are infinite (see Refs. [49—51]).
Therefore, at best, Eq. (4.1) can be viewed as correspond-
ing to an effective theory that, however, may fail both
qualitatively and quantitatively. It is the purpose of this
section to check the reliability of the local interface Ham-
iltonian. This is desirable because the local version is
significantly easier to handle both analytically and nu-
merically so that one would like to know for which as-
pects the more difticult nonlocal version is indispensable.

First, we considered the van der Waals tails of l(x) for
Lx~ —& ~ in the case of complete and critical wetting if
I+ & ~ and the power law of l(x ~+ ~ ) if 1+ = ~. It
turns out that the corresponding results obtained for the
nonloeal theory in Sec. IIIB [Eqs. (3.10), (3.11), (3.14},
(3.15), (3.20), and (3.21)] remain valid even for the local
theory in Eq. (4.1). This means that the local theory pre-
dicts both the power laws of these particular van der
Waals tails and the analytical expressions for their ampli-
tudes correctly. To a certain extent this result is surpris-
ing and could not be anticipated because in a similar situ-
ation of a liquid film adsorbed on a wedgelike substrate
the amplitudes of the van der Waals tails appearing there
are predicted incorrectly by the local theory [19]. A close
examination of the nonlocal interface Hamiltonian shows
that this difference with respect to the local approxima-
tion can be traced back to the fact that in the wedge

differential equation for the equilibrium profile l(x) of the
interface position:

' 2 —3/2

dQ dp—U(x, l(x })=crI 1+d l(x) ' dl(x)
dx dx

l(x) =1+f(x/g'j ) (4.4)

with gi-(1+ )' +"~, which are valid for x and 1+
sufficiently large [54]. The scaling function f(y) must
have the analytic properties f ( ~ ) = 1 and
f(y —+0)-y ~' +". Equation (4.4) has a structure simi-
lar to the order parameter profile for critical adsorption
at a plane wall. There it has been shown that the corre-
sponding scaling function is universal in the sense of the
renormalization group theory [45—47]. Whether this is

geometry l(x) is forced to diverge linearly for ~x~~ oo,
whereas in the present case of a chemically structured
substrate l(x) diverges weakly [see Eq. (3.20)].

Second, we analyze the behavior of 1(x) around x =0
where it varies most. To this end Eq. (4.1) must be solved
numerically for given bulk and surface parameters and
for the boundary conditions l(x ~+~ ) =1+. In order to
solve this boundary value problem, we have used a self-
adjusting algorithm that implements a shooting and
matching scheme in order to overcome numerical and
conceptional insufficiencies of library routines. The solu-
tion of Eq. (4.1) is obtained by guessing an initial slope of
l(x) at x = L, /2, —say, 1' . Using a standard fourth-
order Runge K.utta routine with initial values
l(x = —L„/2)=l and 1'(x = L /—2)=1', the solu-
tion at x =L /2 is compared with the desired value
1(x =L„/2) =1+. An appropriate readjustment of
1'(x = L /2)—is performed automatically until
~l(x =L /2) —1+ ~

& d+ where d+ is a prescribed accu-
racy. In the particular case that the substrate m+ is com-
pletely wet but m remains nonwet, the boundary condi-
tion at x =L„/2 with L /o ))1 is replaced by
l(x = L„ /2)=a Q3L/2. Thus the knowledge of the
analytical result in Eqs. (3.20) and (3.21) is indispensable
for the numerical solution of Eq. (4.1) [53].

Figure 8(a) displays the numerical solutions l(x) along
the isotherm To/T, =0.712 for dp —&0. (The tempera-
ture and the parameters of the interaction potentials are
again those used in Fig. 4.) This isotherm leads to com-
plete wetting of the substrate w+ but incomplete wetting
of the substrate w in the limit dp*=[po(T) p]/@-
—+0+; it corresponds to pIo. =0.3583. The transition
region around x =0 can be described by the position of
the turning point xTP and the locations xo+ and xo at
which l(x) deviates by 20% from the asymptotic values
l on the left-hand side and l+ on the right-hand side,
respectively. Whereas xTP and xo remain finite in the
limit dp~0, xo+ diverges like (dp) ~ . This broaden-
ing of the lateral structure is clearly visible in Fig. 8(b).
The power law divergence of xo, which follows from the
numerical solution of Eq. (4.1) for the interparticle poten-
tial $(r) given by Eq. (2.13), can be also checked analyti-
cally by approximating 1(x) according to the prescription
given in Eqs. (3.16), (5.5), and (5.6).

It has been proposed [48] that the singular behavior of
the line tension at, T is similar to the corresponding
behavior of the surface tension at critical end points. If
this analogy is extended also to local properties one is
lead to the following scaling prediction for the profile
l(x):
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also true for the scaling function in Eq. (4.4) remains to
be seen. Equation (4.4) is expected to hold also for criti-
cal wetting with cr replaced by x [see Eq. (3.18)] and with
1+ replaced by Eq. (3.13) with I+ -(T„+—T) ' so that in

this case xo diverges like (T+ —T) . The scaling func-
tion f (y) will be difFerent for critical and complete wet-
ting, but both have the same analytic properties for y —+0
and+~ tx).

After having discussed the analytic properties of the
local approximation of I(x) we now analyze the quantita
tive reliability of this approximation. To this end we
compare the interface position predicted by the local ap-
proximation with those obtained from the nonlocal ap-
proximation and from the full theory, respectively. As
the dashed line in Fig. 7 shows, the local approximation
for l(x) fails quantitatively, although all three curves
have the same asymptotic behavior for ~x~ ~ ~. The lo-
cal approximation underestimates the width of the inter-
facial structure around x =0 and exaggerates its varia-
tion at x =0 drastically. Therefore we conclude that the
nonlocal effective interface Hamiltonian yields reliable
predictions whereas the local approximation fails
significantly; under favorable circumstances the local ap-
proximation allows one to extract the correct asymptotic
behavior of interface profiles (see the second paragraph in
this section), but it is not reliable qualitatively.

200 4

V. LINK TENSION
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FICx. 8. (a) Profile l(x) of the interface position as predicted
by Eq. (4.1) for an isotherm at To/T, =0.712 and complete wet-
ting hp*=Ap/e —+0+. The substrate w+ at x &0 is wetted
completely whereas the substrate w remains only partially
wet. The parameters of the interaction potentials are given in
the main text. At coexistence, hp=O+, the profile diverges as
(x3 x as predicted analytically (thick dashed curve). (b) Po-
sitions of the turning point xTp and the locations xo+ and xo at
which I(x) deviates by 20% from the asymptotic values I on
the left-hand side and I+ on the right-hand side, respectively,
for hp~O. xo+ diverges as hp and leads to a clearly visible

XTp an xpbroadening of the profile around x =0 for hp~O. x and x
attain finite values for Ap~O. Note that the scale of the ordi-
nate in (a) is 2700 times larger than the scale of abscissa.

According to Eq. (2.5) the equilibrium density distribu-
tion p(x, z) minimizes the line contribution Q'&""' to theI
grand-canonical free-energy functional and yields the line
tension ~ of the Quid associated with the lateral inhomo-
geneity. Since the full expression for Q&i'""' [see Eqs.
(A19)—(A25)] contains a quadrupole integral and there-
fore is rather dificult to analyze either analytically or nu-
merically, we resort to the effective description in terms
of the profile l(x) for the interface position. Within this
description QI~""' is replaced by b co[1 (x) ] [see Eq.
(Bl 1)], which is now reduced to a double integral [see Eq.
(B12)] and can be analyzed numerically (cf. Sec. V C). In
view of the minor discrepancy between the predictions of
the full density distribution P(x, z) and the nonlocal inter-
face Hamiltonian (see Fig. 8) the values of r obtained
from this approach are expected to be quantitatively use-
ful. In Sec. IV we showed how the nonlocal effective in-
terface Hamiltonian can be further approximated by a lo-
cal expression. Although this leads to a significant
deterioration of the quantitative reliability, it turned out
that this local approximation nonetheless captures all
asymptotic features of the profile 1(x) correctly. There-
fore we expect that the leading singular behavior of ~
close to the wetting transition can be inferred reliabl
from the expression for the line contribution within the
local approximation. This analysis is facilitated by the
fact that in the local approximation ~ is reduced to a sin-
gle integral.

By applying the systematic gradient expansion, which
is described in Refs. [49—51] and leads from Eq. (3.2) to
(4.1), one obtains, from the nonlocal expressions in Ap-
pendix 8, the following functional for the physical line
contribution corresponding to the local effective interface
Hamiltonian:
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' 2 1/2
dl

dx oI ~ 1+
QO dX

+kg(x, I (x )) +cot(1+, I ), (5.1)

where the constant cot(I+, I ) is given by Eq. (812) in
Appendix B. The function hP is defined as

b P(x, 1(x)) =P(x, l(x) )—P(x, I„(x)),
where l„(x)=e(—x)l +e(x)l+ and

(5.2)

QP Q3 +Q3
P(x, z) =b,Qz — t3pt—

1

[z —d„"(x)]

Q3 Q3 z d„"(x—) r—
X

+
4x [z —d "(x)]z (5.3)

with r =1/x +[z —d„(x)] and d (x) given by Eq.
(818). For wetting transitions along the liquid-vapor
coexistence line, one has ED=0; in this case the whole
temperature dependence enters implicitly via the bulk
densities pi and pg. The functional derivative of ~&„
renders Eq. (4.1), whose solution T(x) yields the line ten-
sion ri„=ri„[j l(x) =l(x)],I+ = I+ ]. One should realize
that Eq. (5.1) is free from any arbitrariness that comes
into play if one starts from a phenomenological ansatz for
r. In the limit l(x)~ oo, ri„reduces to the line tension of
a semi-infinite liquid exposed to an inhomogeneous sub-
strate:

r„,[ I I(x)~ oo ],I+, I ]=r,„ (5.4)

with rt t given by Eq. (820).
Finally, we want to emphasize that the above line ten-

sion ~ is defined for all values of p and T. Previous calcu-
lations of other line tensions are tied either to liquid-
vapor coexistence p =po( T) for the line tension associat-
ed with the contact line of liquid, vapor, and a substrate
[48] or to the prewetting line, which allows one to study
the coexistence of thin and thick 6lms on a homogeneous
substrate [36]. (For a review see Ref. [54].) In both cases
the translational invariance in the lateral direction is bro-
ken by boundary conditions at x =+ao, whereas in our
case it is broken by the inhomogeneity of the substrate.
[Technically the treatment of a chemically inhomogene-
ous substrate is more difticult because the lateral varia-
tion of the substrate potential acts like a time-dependent
external potential in the mechanical analog of a one-
dimensional motion of a particle with coordinate I and
time variable x described by Eq. (4.1). This precludes
the exploitation of the energy conservation law, which is
possible in other cases. ]

Since the asymptotic behavior of the profile of the in-
terface position is predicted correctly by the local inter-
face Hamiltonian (see Sec. IV), we assume that it yields
reliably the leading singular behavior of the line tension w

in the limit bp —+0 for T & T & T, in which case the
substrate w+ is wetted and w not, and in the limit
T—+T+ at coexistence hp=O+ corresponding to critical
wetting. To this end we introduce the trial function

I (x) for x &X
x)= '

T+(x) for x)X .
(5.5)

I+(x)=
I +( Ccomp )l++ x for x —+co, l+ ( ao .

comp )6
3

(5.7)

The comparison with Eqs. (3.11), (3.15), and (3.21) yields
the constant q„

1
qcomp

= 1+
6

a21—
a+

2

' 3/2
a2

org
(5.8)

Thus the expression in Eq. (5.6) takes into account both
the van der %'aals tails of the profile and its square root
divergence at coexistence. Since we chose T & T, the
film thickness I remains finite; therefore I (x) is a
bounded function for x &X.

According to the discussion given above, the leading
singular behavior of the line tension ~ follows upon in-
serting Eq. (5.5) into Eq. (5.1). Since the singularity of r
is induced by the unlimited growth of l+ one finds

dl+
rs,„s=I dx cJtg

' 1+
dX

2 1/2

+bg(x, I+ (x) ) (5.9)

The contributions due to T (x) and cot(1+, I ) remain
finite for I+ ~ oo . Since

~ dl+ /dx
~

&& 1, the gradient term
in Eq. (5.9) can be expanded and leads to a contribution
—,'o t~(a3' p) 1n(I+ /a) up to terms constant in I+. The
second term in Eq. (5.9) yields a2+ (a3' p) 2ln(l+/o )

+(a2+ —az )I+ (a3' p) ln(1+/o. ) up to terms constant
in I+. It turns out that all three contributions are in-
dependent of the parameter q„p entering Eq. (5.6),
which describes the lateral van der %'aals tails. By using

Here x =X ))o denotes the position where the two trial
functions I (x) and T+(x) intersect. For temperatures T
above the wetting temperature T+ the crossover from a
finite to an in6nite 61m thickness I+ is induced by
hp~O, whereas below T+ it is induced at coexistence
for T~T+. In the case of complete wetting and for
large positive values of x )X the corresponding behavior
of the interfacial profile I+ (x) is taken as

6

I+(x)=l+ .
6 (5.6)

comp +y 1 +y

with y =a&' i/x /I+. The above formula interpolates
smoothly between the previously derived asymptotic
behaviors of T+ (x):

a3' pi/x for I+ = oo, x & oo
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the expression for a3 i' [Eq. (3.21)] we finally arrive at

—COIllp Q +3&2
smg 4 2 1g

a2+(a2+ —a2 ) 1 I++8 ln +const .
o-( I ' o-

(5.10)

Note that, as it should, ~„„ is independent of the
unspecified intersection point X introduced in Eq. (5.5).
For complete wetting Eq. (5.10) leads to [see Eq. (3.16)]

~„'„s~(b,P~0)=— 2 +

4 b,p( a 2+ —a 2 )

3 0(

b,p
2az+ /(o b,p)

Xhp ln - +const .hp
2a2+/(o Ap)

(5.11)

In leading order 7
g

is proportional to the square root
of the Hamaker constant a2+ of the completely wetted
substrate and the surface tension o.

Ig of the liquid-vapor
interface. The same type of divergence of the line tension
is found when approaching a first-order wetting transi-
tion along the prewetting line [36].

In the case of critical wetting the same analysis can be
applied. For large positive values of x &X the interfacial
profile l+ (x) is taken as

/a,-(T+)I 3+(T+)/s/1
2(x

(5.15)+const,

where a3+(T+) is positive. This shows that, as in the
case of complete wetting, the line tension reaches a max-
imum at the wetting transition. However, in contrast to
complete wetting, in the case of critical wetting the line
tension remains finite and reaches its maximum via a
cusplike singularity.

The above analytic expressions for the line tension are
valid asymptotically in the limit I+ ~ ~ and capture
only its leading singular behavior. The determination of
the full line tension r requires one to evaluate Eq. (5.1)
numerically. For the same set of parameters that have
been used for Fig. 7, the result for complete wetting is
shown in Fig. 9. As illustrated by the inset the leading
asymptotic behavior 7- ~in' p*~ is confined only to the
narrow region Ap' &1X10 ' . Thus we conclude that
for experimentally accessible values for the undersatura-
tion the full expression in Eq. (5.1) must be used.

Figure 9 shows that the typical order of magnitude of
the line tension associated with the chemical inhomo-
geneity considered here is T=e/o . Takin. g interaction
potential parameters for argon (E=122k~E, cr =3.4 A)
or for n-heptane (@=573k~X, cr =6.25 A) [55], this leads
to an estimate of ~=10 "N. Compared with the experi-
mental values 10 —10 N [56—58] for the line tension
of three Quid phase contact lines, the line tension due to
the chemical inhomogeneity is drastically smaller. Fu-
ture studies, which should also take into account the
gravitational field, have to reveal whether this large
di6'erence is caused by either the particular type of spatial

15/2
I(x) I . y ++ + + 15/2

1 + 11 (5.12)
0.9

with y=a4"'x /I+. Analogously to the case of com-
plete wetting [see Eq. (5.7)], the asymptotic behavior of
the interfacial profile l(x) in the case of critical wetting is
captured correctly by Eq. (5.12) for both finite and
infinite I+ [see Eqs. (3.10) and (3.19), respectively]. Us-
ing Eqs. (3.10), (3.11), and (3.19) the constant q„;, is given
by

00

07

0.6

1 a2+ —a2
&crit

=
2 oI I +

1/2
Q4 Ap

o.
I I +

3
(5.13)

05

0.4

08

Upon inserting Eqs. (5.5), (5.12), and (5.13) into Eq. (5.1)
one obtains the following expression for the leading
singularity of the line tension:

~„'„"(T~T+)=—34a2 ( T)[1 (ln+/o)]/1++c. onst,

0.3
I

2x10 4x10 6x10 Sx10 10

(5.14)

where I+ is given by Eq. (3.13) and a2 (T+) &0. Ex-
pressed in terms of the reduced temperature
8 =(T T)/T+ & 0 one has—[see Eq (3.12)].
a2+(T)=a6+ . , a) 0,

FIG. 9. Line tension F~, =F&„o./e in the local approximation
[Eq. (5.1)] diverges logarithmically for complete wetting hp, ~O.
As illustrated in the inset, the leading singular behavior for
Ap~O [first term in Eq. (5.11)] is confined to under-saturations
Ap ~ 1 X 10 ' . The parameters used here are the same as for
Fig. 7.
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inhomogeneity considered here or the use of the local ap-
proximation, or both.

The nonlocal expression for the line tension ~ in the
system is given by [see Eqs. (88) and (811)]

r=bco[l(x)] . (5.16)

In view of Fig. 9 we expect that w„,„&„yields a quantita-
tively reliable estimate for the actual line tension ~ based
on the full distribution p(x, z) [see Eqs. (A18)—(A25)].
The calculation of the actual line tension ~ is a demand-
ing numerical task involving quadruple integrals, which
we leave to future studies.

VI. SUMMARY

We have obtained the following results.
(i} We have formulated a microscopic description of a

simple Lid with long-range forces exposed to a chemi-
cally inhomogeneous substrate (Sec. II}. A systematic
decomposition of the grand-canonical density-functional
yields explicit expressions for bulk, surface, and line con-
tributions [Eqs. (2.2), (Al), (A2), (A10), and (Al 1)].

(ii) The equilibrium number density distribution p(x, z)
minimizes the line contribution to the free energy. It is
determined by a nonlinear integral equation [Eq. (2.7)],
which is solved numerally (Fig. 4}.

(iii) The lateral variation of the density distribution is
approximated reasonably well by a nonlocal efFective in-
terface Hamiltonian [Eqs. (3.2) and (88)]. The corre-
sponding numerical results are shown in Fig. 7.

(iv) If the substrate is not wet, the film thickness attains
its asymptotic values in lateral directions via van der
Waals details whose power laws and prefactors have been
determined analytically both for complete and critical
wetting [Eqs. (3.10), (3.11), (3.14), and (3.15)].

(v) If one of the substrates is wet the film thickness
diverges as function of the lateral coordinate x as a power
law whose amplitude is also known analytically [Eqs.
(3.20) and (3.21)]. For T) T+ and at T„+ of first-order
wetting this thickness diverges as x' for nonretarded
dispersion forces, whereas at T„+ of a second-order wet-
ting transition it diverges as x

(vi) Close to wetting transitions the interface profile
broadens and exhibits a scaling behavior [Eq. (4.4) and
Fig. 8].

(vii) The frequently used local efFective interface Ham-
iltonian exaggerates the variation of the interface profile
drastically. Although in this particular case it predicts
the asymptotic behavior correctly, it fails quantitatively
(Fig. 7).

(viii) For van der Waals forces the line tension of the
system diverges logarithmically for complete wetting [Eq.
(5.11) and Fig. 9]. For critical wetting the line tension at-
tains a finite maximum via a cusplike singularity [Eqs.
(5.14) and (5.15)].
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APPENDIX A: DEPENDENCE
OF THE DENSITY FUNCTIONAL

ON THE SYSTEM SIZE

Q,"[p+(z),p (z)]=—,
' [Q,+[p+(z)]+Q, [p (z)]]

with (see Ref. [4]}

(A2)

In order to separate the grand-canonical functional in
Eq. (2.1) into its bulk, surface, and line contributions [see
Eq. (2.2)] we consider a fiuid that is confined to a finite
volume A&= [rCIR

~
L /2&x—&L„/2, L /2&y-

&L /2, 0&z &L, ]. The planes x =+L„/2, y =+L /2,
and z=L, define artificial fiuid-vacuum interfaces (see
Fig. 2}.

The bulk contribution Qb is given by the bulk free-
energy density of the vapor phase,

Q'b"(p, T p)=&Hs(p, T}+,'wop,' pp, -—
for the definition of wo see Eq. (2.15). The surface contri-
bution Q~'[[p] ] consists of two terms, each describing the
surface free-energy density of a Quid in the presence of a
homogeneous semi-infinite substrate:

Q,*[[p~( )]z;p p iTg, p]= f d4zf H( s+p( ),z)Tp f "dz 5p—+(z)+ f dz V+(z)p+(z)
0 0 0

—
—,'p,' f dz t(z)+-,' f « f dz'5p~(z)5p~(z')w( ~z

—z' )

+pg f dz[wo —t(z)]5p+(z)+o. „,
0

(A3)

where we have used the following notation: w(z)= d r w((r +z )'~ ) .
R

(A8)

5p*(z}=p~(z) —p,
V~(z) = V(x ~+~,z),

(A5)

(A6)

&fHs(p+(z), T )=fHs(p+(z), T) fHs(pg, T), (A4)

o „=—
—,'ps f dz t(z) . (A9)

o. „ is the artificial gas-vacuum surface tension due to the
cutoff at z =L, :

and

t(z)= f dz'w(z'),
z

(A7) If the two parts of the substrate are identical, one has
Q,+(p+(z))=Q, (p (z)) so that Q,"[p+(z),p (z)] reduces
to the expression for the surface free-energy density
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Q, [p(z)] in the presence of a single homogeneous sub-
strate [4]. The third term on the right-hand side of Eq.
(2.2) takes the simple form

(A 10)

with

~(z)= f dx f dx'w(x', z)
0 X

(A14)

with os, given by Eq. (A9). This contribution is induced
artificially by the lateral cutoF at x =+L„/2.

The line contribution Ql can also be separated into an
artificial (5Q& ) and into a physical (O'P""') part

Q, [p(x,z)]=5Q, [p (z),p (z)]+Q', ""'[p(x,z)] .

(A 1 1)

and the artificial line tension

—I
+gUUU 2,Pg ~+ (A15)

is associated with a quarter space filled with gas in con-
tact with three-quarter spaces of vacuum (see Appendix
A in Ref. [19]);

5Q&[p+(z),p (z)] depends only on the asymptotic
profiles p~(z) and can be cast into the form

5Qi [p+(z),p (z) ]= —,
'

{EQi [p+(z)]+6,QI [p (z) ]},
(A12)

b,r= f dx f dz t(x,z),
0 0

where

t(x, z) =f dx' f dz'w(x', z') .
X Z

(A16)

(A17)

where hQ& [p(z) ] is defined as

5Q, [ {p(z)];T,p; {w(r)] ]

=2rs„„„—2ps f dz 5p(z) f dz't(z')
0 0

+2ps f dx f dz p(z)t(x, z)
0 0

—f dz f dz'%'( ~z
—z' )5p(z)5p(z')

0 0

The physically relevant contribution QI ""'[p(x,z)] con-
sist of two terms

QIi'"~'[p(x, z) ] =Q, [p(x, z) ]+bco, [p(x,z) ] . (A18)

The first term has a form similar to the surface contribu-
tion Q, (p(z)) in Eq. (A3), but it depends, in addition, on
the lateral variation ofp:

Q&[p(x z)]=f dx f dz[fHs(p(x, z), T) —fHs(p„(x, z), T)] p f—" dx f "dz5p(x, z)

+ f dx f dz V(x, z)5p(x, z)+ps f dx f dz[wo —t(z)]5p(x, z)

+,' f" dx f" dx' f "dz f dz'w( x —x'~, z —z'~)5p(x, z)5p(x', z'),

where the asymptotic profiles p+(z) enter via

5p(x, z) =p(x, z) —p (x,z)

(A19)

(A20)

p„(x,z) =8( —x)p (z)+8(x)p (z) .

The second contribution b, co& [p(x,z)] is given by

b,co&[p(x,z)]=f dx f dz 5V(x,z)p„(x,z)

,' f d—z f—dz'[5p+(z)—5p (z)][5p+(z') —5p (z')]%'( ~z
—z'~ )

0 0

+f dx f dx' f dz f dz'W( x —x'~, ~z
—z'~ )5p(x, z)5p„(x',z') .

(A21)

(A22)

Here we have used the notation

5p (x,z) =p„(x,z) —ps

and

5V(x, z) = V(x, z) —V„(x,z),
with

V (x,z)=8( —x)V (z)+8(x)V (z) .

(A23)

(A24)

(A25)

In the limit of a homogeneous substrate one has
5V(x,z)=0, 5p(x, z)=0 and 5p+(z)=5p (z) so that the
total line contribution QI [p(x,z) ] in Eq. (Al 1) reduces, as
it should, to the artificial part b,QI[p(z)] given by Eq.
(A 13).

At this point we want to remark that all the above
artificial contributions have been also calculated indepen-
dently for a finite fluid volume L„XL XL, in contact
with a semi-infinite homogeneous substrate. In this case
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the physical part is given by the bulk (nb ) and the sur-
face contribution (n,"[p(z)] —cr, ); the artificial terms

[og, +n, + b,n& [p(z)]] are due to the cutofF of the system
at x =+L /2 and z =L, . Even for such a comparably
simple situation, the systematic identification and subse-
quent subtraction of artificial terms requires a careful
analysis in order to be able to construct the correct ex-
pression for the surface free energy.

and the wall-liquid surface tension o.„ I has, dependingWy

on the substrate, the form (see 1~ in Fig. 5)

o I=pi f dx V+(x) d~—nb" ,'p——if dz t(z) . (86)
d 0

In Eq. (82) the first term is determined by [compare Eq.
(Al)]

an=n'" —n'", n' =n„(p, , T,l. ) . (87)

APPENDIX 8: SURFACE AND LINE TENSIONS
WITHIN THE SHARP-KINK APPROXIMATION

The bulk, surface, and line contributions within the
sharp-kink approximation can be obtained as a special
case by inserting the sharp-kink par ametrization
p(x, z) =p(x, z = l(x) ) [see Eq. (3.1)] into the correspond-
ing expressions, which have been systematically derived
in Appendix A as a functional for the full density distri-
bution p(x, z). The expressions for the surface and line
tensions that are obtained by this specialization pro-
cedure are equal to those stemming from a straightfor-
ward calculation that starts directly from the grand-
canonical density functional n given by Eq. (2.1) with
p(x, z) being replaced by p(x, z). This agreement forms a
nontrivial cross-check for the results presented below.

Within the sharp-kink approximation [Eq. (3.1)] the
decomposition of the grand-canonical free-energy func-
tional Q[p(x, z)] given by Eq. (2.1) leads to explicit ex-
pressions for the surface (n,'~ and n, ) and line (QI ) con-
tributions with the bulk contribution Qb given by Eq.
(Al). n, has the form

ni'(l+, I;pl, p, T p)= —,'[n, (1 )+n, (1+)}, (81)

nt [1(x) ]= 5co( 1+,1 )+b co[1 (x ) ] . (8&)

The first term 5co(l+, 1 ) contains all artificial contribu-
tions (o &„ is defined analogously to crg, [Eq. (A9)] ):

5co(l+, 1 ) = [(1+—d„+ )+(1 —d ) ]o i,

—(1++1 )og, +2r „„
+5r+(l+ )+5r (1 )

++Iw w v + Iw w u + lgvv (89)

—1 2A
+Iw w v 2 PI (810a)

2A
+gvuv 2Pg (8 lob)

(see II in Fig. 5),

The surface free-energy density n, is given by Eq. (A10).
As in the case of the general density distribution, the line
contribution QI [l(x)] consists of two parts

Q, (l)=lbn+co~(l)+o I+crig+og„ (82)

with

where Q, (l+ ) corresponds to the effective interface po-
tential of a homogeneous substrate m+ and m, respec-
tively (see Ref. [2])

5&+(1+)=—bppi f dx T(x, l+ —d ),
0

and (see III in Fig. 5)

rrguu
=

p (~p)

(810c)

(8 lod)

co+(l)=bp f" dz pit(z) f dz V—+(z)
I

0'+1+ +I K+1+. . . j ))d+—Q2 Q3 W (83)

Within the sharp-kink approximation the liquid-vapor
surface tension cr

&g
is given by [4] (see 2 in Fig. 5)

crag = —
—,'(b.p) f dz t(z) (85)

Q2 denotes the Hamaker constant in the presence of the
substrate ~+. For nonretarded dispersion forces decay-
ing -r '"+ ' one typically has cr =3 and x.=4. crg„[see
Eq. (A9) and the contribution 3 in Fig. 5] is the artificial
gas-vacuum surface tension and b p =pi

—p . [The con-
tributions 5 in Fig. 5 are contained in Q, and are given by
Eq. (A10).] The equilibrium wall-gas surface tension of a
Quid exposed to semi-infinite homogeneous substrate m+
and w is the minimum of n, (1)—o.g„..

cr g =min[Q,*(l)—o g„]=n, (l~ ) crg„. —(84)
Wgg

b [clo( )x]
= c(ol+, 1 ) +co[1(x)] . (811)

The first term coi(l+, 1 ) depends only on the asymptotic
values 1+, whereas the second one co[1(x)] depends on
the full shape of the profile of the liquid-vapor interface
position 1(x):

co((1+,I ) =rig(l+, 1 )+ri„ (812)

and

[see Eqs. (A16) and (A17)] where T(x,z) is given by Eq.
(815). The first four terms in Eq. (89) correspond to the
contributions 4 in Fig. 5 where 5r(1) denotes the interac-
tion between the line contributions III and IV in Fig. 5 if
1 is finite. 5r(l) vanishes for 1~ ~ [see Eq. (810c)].

„„and ~ I„correspond to the con-

tributions IV+, IV, II, and III, respectively, in Fig. 5.
The physically relevant part of the line contribution it-

self consists of two parts
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ro[I(x)]=bQI,„,„+bpp, f dx[T(l(x) d—+)—T(l„(x)—d+)] —hp f dx[U(x, l(x))—U(x, l„(x))]
—

happ, f dx[T(x, l(x) —d+) —T(x, l(x) d—) —T(x, l„(x)—d+)+T(x, l„(x)—d )]
—,'(—bp) f dx f dx'w(lx x lil(x )

—l(x') },
(813)

where

T(z) = f dz't(z'),
Z

T(x,z)= f dz't(x, z'),

U(x, z)= f dz'V(x, z'),
Z

(814)

(815)

(816) I „,h= d I —l (822)

I

5.) its contains all those physical contributions to the
line tension co&(l+, I ) that do depend on I+ and I . In
Eq. (813) the difference in bulk-free energies is propor-
tional to the quantity

d "(x)=6(—x)d +6(x)d+ . (818)

In Eq. (812) we used the notations

rt (I+, I )= Ap —f dx 5U(x, l„(x))—Appt

X f dx[T(x, l —d„)—T(x, l —d+)
0

+ T(x, l+ —d+) —T(x, I+ —d )] (819)

and

&tur+g) t ld d ltrt, pt f dx T(x, ld —d l)

+ 'pttiz + rUU&t pi f dx 5 U(x, d~ (x ) }

(820)

where

5U(x, z) = f dz'5V(x, z')
Z

(821)

with 5V(x, z) given by Eq. (A24). rt t is the line ten-

sion associated with the contact line between a semi-
infinite liquid and the two adjacent substrate quarter
spaces m+ and m and therefore it is independent of I+
and I . (This corresponds to the contribution V in Fig.

and

w(x, y)= f dz f dz'w(x, lz —z'l) . (817)
0 0

I „(x) is defined via Eq. (3.9). For later purposes we in-
troduce the analogous function

[see Eqs. (A16), (A17), and (85)]. In Eq. (823) the first
two terms correspond to the line tensions I and I + in-
dicated in Fig. 5. For finite distances l+ —l the interac-
tion between these two line contributions is described by
the third term in Eq. (823). The last term in Eq. (823) is
proportional to u& and contributes to the surface tension
of that part of the liquid-vapor interface that arises due
to the steplike variation of l(x) (see 2 in Fig. 5).

The line tension w of the system is given by the physical
part of the line contribution pro[I(x)] [see Eq. (Bl1)],
evaluated at the equilibrium values of I+ and l(x):

r =cot(I ~, I )+co[I(x)] . (825)

For the attractive part w(r) of the pair potential w(r)
[see Eq. (2.13)] the various auxiliary functions defined
above can be computed analytically.

which measures the exchange coverage, i.e., the
difference in the area contained between the full profile
I (x) and the steplike profile I„(x)(see Fig. 5).

One can gain some insight into Eq. (813) by consider-
ing the special case l(x) =I„(x), i.e., a steplike variation
of the interfacial profile in the lateral direction (see Fig.
5). In this case co[I], given by Eq. (813), reduces to

co[I„(x))=rttt +rssgt —(hp) dx dz t(x, z)
il+ —i

(823)

[1]D. E. Sullivan and M. M. Telo da Crama, in Fluid Interfa
cial Phenomena, edited by C. A. Croxton (Wiley, New
York, 1986), p. 45.

[2] S. Dietrich, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, Lon-
don, 1988), Vol. 12, p. 1.

[3] M. Schick, in Liquids at Interfaces, Proceedings of the Les
Houches Summer of School of Theoretical Physics, Ses-
sion XLVIII, edited by J. Chavrolin, J. F. Joanny, and J.

Zinn-Justin (Elsevier, Amsterdam, 1990), p. 41S.
[4] S. Dietrich and M. Napiorkowski, Phys. Rev. A 43, 1861

(1991).
[5] S. Dietrich, in Phase Transitions in Surface Films 2, Vol.

267 of XA TO Aduanced Study Institute Series B: Physics,
edited by H. Taub, G. Torzo, H. J. Lauter, and S. C. Fain
(Plenum, New York, 1991),p. 391.

[6] E. Cheng, M. W. Cole, and A. L. Stella, Europhys. Lett. 8,
S27 (1989).



51 MORPHOLOGY AND LINE TENSION OF LIQUID FILMS. . . 3317

[7] P. Pfeifer, Y. J. Wu, M. W. Cole, and J. Krim, Phys. Rev.
Lett. 62, 1997 (1989).

[8] M. Kardar and J. O. Indekeu, Europhys. Lett. 12, 161
(1990).

[9] G. Guigliarelli and A. L. Stella, Phys. Scr. T35, 34 (1991).
[10]D. Andelman, J. F. Joanny, and M. O. Robbins, Euro-

phys. Lett. 7, 731 (1988).
[11]E. V. Albano, K. Binder, D. W. Heermann, and W. Paul,

Surf. Sci. 223, 151 (1989).
[12]E. V. Albano, K. Binder, D. W. Heerman, and W. Paul, Z.

Phys. 8 47, 445 (1989).
[13]A. C. Levi and E. Tosatti, Surf. Sci. 178, 425 (1986).
[14] G. Bilalbegovic, V. Privman, and N. M. Svrakic, J. Phys.

A 22, L833 (1989).
[15]B. V. Derjaguin and N. V. Churaev, J. Colloid Interface

Sci. 54, 157 (1976).
[16]Y. Pomeau, J. Colloid Interface Sci. 113, 5 (1985).
[17]E. Cheng and M. W. Cole, Phys. Rev. B 41, 9650 (1990).
[18]P. M. Duxbury and A. C. Orrick, Phys. Rev. B 39, 2944

(1989).
[19]M. Napi6rkowski, W. Koch, and S. Dietrich, Phys. Rev.

A 45, 5760 {1992).
[20] E. H. Hauge, Phys. Rev. A 46, 4994 (1992).
[21] M. W. Cole and E. Vittorators, J. Low Temp. Phys. 22,

223 (1976).
[22] P. G. de Gennes, Rev. Mod. Phys. 64, 645 (1992).
[23] C. Casagrande and M. Veyssie, C. R. Acad. Sci. (Paris)

II-306, 1423 (1988).
[24] E. Raphael, C. R. Acad. Sci. France II-307, 9 (1988).
[25] C. Casagrande, P. Fabre, E. Raphael, and M. Veyssie, Eu-

rophys. Lett. 9, 251 (1989).
[26] T. Ondar9uhu, P. Fabre, E. Raphael, and M. Veyssie, J.

Phys. (Paris) 51, 1527 (1990).
[27] E. Raphael, C. R. Acad. Sci. (Paris) II-306, 751 (1988).
[28] T. Ondarquhu and M. Veyssie, J. Phys. II 1, 75 (1991).
[29] T. Ondar9uhu and E. Raphael, C. R. Acad. Sci. (Paris)

II-314, 453 (1992).
[30] M. O. Robbins, D. Andelman, and J. F. Joanny, Phys.

Rev. A 43, 4344 (1991).
[31]C. Sykes, C. R. Acad. Sci. (Paris) II-313, 607 (1991).
[32] L. Kajtar and S. Sokofowski, J. Chem. Soc. Faraday Trans.

88, 2545 (1992).
[33]J.-O. Carlson, Crit. Rev. Solid State Mater. Sci. 16, 161

(1990).
[34] C. Chmiel, K. Karykowski, A. Patrykiejew, W. Rzysko,

and S. SokoJowski, Mol. Phys. 81, 691 (1994).

[35] W. Gaz. A. Patrykiejew, and S. SokoJowksi, Surf. Sci. 306,
434 (1994).

[36]J. O. Indekeu, Physica A 183, 439 (1992).
[37] R. Evans, Adv. Phys. 28, 143 (1979).
[38]J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.

Phys. 54, 5237 (1971).
[39] P. Tarazona and R. Evans, Mol. Phys. 48, 799 (1983).
[40] T. Aukrust and E. H. Hauge, Physica A 141, 427 (1987).
[41] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635

(1969).
[42] Handbook of Mathematica/ Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1972).
[43] J. F. Joanny and P. G. de Gennes, J. Chem. Phys. 81, 552

(1984).
[44] Y. Pomeau and J. Vannimenus, J. Colloid Interface Sci.

104, 477 (1985).
[45] H. W. Diehl, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz (Academic, Lon-
don, 1986), Vol. 10, p. 217.

[46] H. W. Diehl and M. Smock, Phys. Rev. B 47, 5841 (1993);
48, 6740(E) (1993).

[47] M. Smock, H. W. Diehl, and D. P. Landau, Ber. Bunseng.
Phys. Chem. 98, 486 (1994).

[48] A. Robledo and J. O. Indekeu, Europhys. Lett. 25, 17
(1994).

[49] S. Dietrich and M. Napiorkowski, Physica A 177, 437
(1991).

[50] M. Napiorkowski and S. Dietrich, Z. Phys. B 89, 263
(1992).

[51]M. Napiorkowski and S. Dietrich, Phys. Rev. E 47, 1836
(1993).

[S2] P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
[53]The comparison of our algorithm with a library routine

for selected values of parameters revealed negligible nu-
merical deviations of about 10 ' o in l(x) for all values of
x whereby our algorithm was ten times faster. In our ac-
tual calculations we required an accuracy of 10 o..

[S4] J. O. Indekeu, Int. J. Mod. Phys. B 8, 309 (1994);J. O. In-
dekeu and H. T. Dobbs, J. Phys. {France ) I 4, 77 (1994).

[55] T. Getta and S. Dietrich, Phys. Rev. E 47, 1856 (1993).
[56] J. Gaydos and A. W. Neumann, J. Colloid Interface Sci.

120, 76 {1987).
[57] D. Li and A. W. Neumann, Colloid Surf. 43, 307 (1990).
[58] J. Drelich, J. D. Miller, and J. Hupka, J. Colloid Interface

Sci. 155, 379 (1993).


