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Convection for Prandtl numbers near 1: Dynamics of textured patterns

Yuchou Hu, ' Robert Ecke, ' and Guenter Ahlers'
Center for Nonlinear Studies and Materials Division, Los Alamos National Laboratory, Los Alamos, Netv Mexico 87545

Department ofPhysics and Center for Nonlinear Sciences, University of California, Santa Barbara, California 93106
(Received 19 September 1994)

Rayleigh-Benard convection in a cylindrical geometry with radius-to-height ratio I =40 was studied
with the shadowgraph imaging method. The working Quid was CO2 at 32 bars and at temperatures near
34'C, with a Prandtl number o =0.98. The onset pattern of largely straight, parallel rolls went through
successive qualitative changes as e=hT/hT, —1 was increased. Quantitative measurements of wave

numbers, of spatially averaged roll curvature, and of sidewall roll orientation as functions of e are
presented. As e was increased, pattern dynamics induced by the skewed-varicose instability were first
observed at @=0.09, and roll-nucleating sidewall foci were seen for e ~0. 15. Spiral defects appeared in-

termittently at @=0.55. The number of spirals fluctuated with time, but the average number increased
with e until, at a=0.8, spirals were present at all times. Coincident with the increase in spiral-defect ac-
tivity was a decrease in the average wave number, a marked increase in the sidewall-foci roll-nucleation
frequency and average roll curvature, and a distinct shape change in the structure factor S(k). The os-
cillatory instability was observed at @=3.0, in agreement with the stability analysis for straight rolls.

PACS number(s): 47.20.—k, 47.27.—i, 47.32.—y

I. INTRODUCTION

Rayleigh-Benard convection is a model system for pat-
tern formation [1] and has been extensively studied both
experimentally and theoretically. Much of the early
theory by Busse and Clever [2—4] on the stability of
infinitely extended straight, parallel rolls explained many
aspects of experimental observations in finite containers,
especially those at large Prandtl nuinber o =v/Ic (v is the
kinematic viscosity and tc is the thermal diffusivity).
However, textured patterns with roll curvature and
nonuniform wave number, observed in the experiments,
were not completely described by this approach. This led
to the theoretical development of phase-equation descrip-
tions of complex pattern dynamics in Rayleigh-Benard
convection [5—10] and to the recognition that for low-
Prandtl-number fluids mean-drift Rows are crucial [6,7]
to an understanding of the observed complex pattern dy-
namics [11—15]. Despite impressive theoretical progress,
a solid quantitative understanding of such experiments
has not been achieved, owing to the difficulty in experi-
mentally measuring mean-drift Aows [16] and to the
mathematical complexity of the coupled phase and
mean-drift equations [9]. Another important factor in
most experiments was the limitation in lateral size, mea-
sured by the radius-to-height ratio I, which was typically
less than about 20. Recent experimental results on Auids
with o close to one in large-I convection cells with
40&I &100 have revealed new phenomena including
spiral-defect chaos [17—19] and roll-nucleating sidewall-
focus patterns [20,21]. Whereas earlier observations
could be tied closely with predicted straight-roll instabili-
ties such as the Eckhaus or skewed-varicose instabilities,
these phenomena require explicit consideration of roll
curvature and, thus, are natural "objects" for further
theoretical study.

Experiments on Rayleigh-Benard convection in cells of
various shapes have demonstrated many of the predic-
tions of straight, parallel-roll instabilities. Busse and
Whitehead [22] established semiquantitatively the
correspondence between the predicted instabilities of
straight rolls [2—4] and experiments by using thermal
printing to impose a straight-roll pattern of a desired
wave number as an initial condition. The lateral size of
their system was so large that their experiments were
completed in times much less than a horizontal thermal
diffusion time; thus, the lateral boundaries played no role
during their observations of the instabilities. Later work
by several groups [23—26] investigated steady-state pat-
terns in smaller convection cells, 2&1 &20, and again
found reasonable agreement with theoretical predictions,
although some finite-size shifts of stability boundaries
were observed. In intermediate-size (5 ( I ( 12) cylindri-
cal containers and moderate o between 2 and 6, the inter-
play between lateral boundaries and bulk tendencies
caused complex textured patterns consisting of curved
rolls, defects, and wave-number distortions. These pat-
terns evolved slowly with a multiplicity of possible final
steady states arising from austensibly identical initial
states [12,13]. In one case [12,14], the evolution to a final
state could be described roughly by a Lyapunov function-
al derived from a Swift-Hohenberg model [27]. This was
done by constructing the wave-vector field from the ex-
perimental data. This analysis also revealed that under
some conditions the wave number k could exceed locally
the stability boundaries for straight rolls, providing a
qualitative explanation for the unexpected time depen-
dence observed in patterns at small e [12,13]. Variations
of the wave number large enough to cause k to be locally
outside the theoretical stability limits were also observed
in a small-cr experiment [11], where the patterns were
time independent for small e but became time dependent
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for @=0.1, far below the theoretically expected instability
value of about 0.7. In the low-o. experiments, mean-drift
Rows were believed to be responsible for the observed
wave-number distortions. Comparisons for convection
cells with and without rigid sidewalls demonstrated the
correlation between mean drift, wave-number distortion,
and the onset of time dependence [28].

One of the distinct features of many of the experimen-
tally observed patterns in cylindrical convection cells was
highly curved rolls in the form of sidewall foci. The ori-
gin of these defect structures is in the boundary condition
at the lateral wall that favors rolls perpendicular to the
sidewall. This tendency increases with e [14,27] so that
for e&0.3 the patterns are dominated by these sidewall
foci with more or less complicated defect structures in
the interior. The prevalence of foci in patterns suggested
that they are important in determining pattern dynamics,
and considerable theoretical effort has been directed to-
wards calculating their properties [9]. Concentrating
now on experiments for o. = 1, the main results can be un-
derstood as a combination of local wave-number instabili-
ty and nonlocal mean drift. These results for convection
cells with I ~ 20 are summarized by Croquette [15].
They have much in common with our present results for
I =40, which we use here to illustrate the phenomena.
For e (0.1, straight, parallel rolls dominated [20], brack-
eted by small regions of cross rolls, as in Fig. 1(a). For
somewhat higher e, wall foci appeared and rolls were
squeezed near the center [21]. This led to a skewed-
varicose (SV) instability in the interior, as shown in Figs.
1(b) and 1(c). Successive nucleation of rolls at the
sidewall foci and absorption of rolls through the SV
mechanism produced time dependence, which was
periodic or aperiodic depending on conditions. Recent
investigations by Bodenschatz et al. [17], Morris et al.
[18,29] (hereafter referred to as MBCA), and by As-
senheimer and Steinberg [19,30] revealed complicated
curved-roll states including single and multiarmed
spirals, targets, and the complex dynamics of spiral-
defect chaos (SDC). For our aspect ratio, we found that
SDC appeared for e ~ 0.55.

The theory of the dynamics of textured patterns in
thermal convection includes many of the ingredients for
dynamics in a general pattern-forming system. From one
perspective one can consider the stabilities and perturba-
tions about an ordered state, here the straight parallel-
roll state. Next a nonuniform distribution of wave num-
bers is incorporated through a phase equation, a reason-
able description when the amplitude is slaved to the wave
vector. Finally, the possible interactions of wave-number
gradients with the rolls themselves are considered; for
convection of Auids with low o., these interactions arise
from mean-drift Rows. These theoretical ideas are re-
viewed extensively by Cross and Hohenberg [1] and al-
luded to above in descriptions of the experimental investi-
gations. Despite the progress in the inclusion of mean
drift, quantitative predictions are still scarce owing to the
mathematical complexities of the equations brought
about by the nonlocal coupling mediated by the mean-
drift field. Even so, very recently work on highly curved
rolls has begun, aided by extensive computer modeling.

This includes simulations of the Swift-Hohenberg equa-
tion with coupled mean drift [31,32] as well as numerical
integrations of the Navier-Stokes equations in the Bous-
sinesq approximation [33]. Several of these simulations
have demonstrated the robustness of spiral-defect chaos
[32,33] and shown some indications of the importance of
large aspect ratios for observing these phenomena.

We report here on a systematic investigation of pattern
dynamics and wave-number selection for Rayleigh-
Benard convection in a Quid with o. =1 and for a range
0.05~a~5. This paper may be regarded as a sequel to
Ref. [20], which dealt with the range @50.1 for similar
aspect ratios and o.. We observed the skewed-varicose in-
stability, wall-foci roll nucleation, dislocation-defect dy-
namics, and the appearance and dynamics of spiral de-
fects. We quantitatively characterized the properties of
the patterns using the structure-factor S(k) (the square of
the modulus of the spatial Fourier transform) and algo-
rithms that measure the spatial roll curvature and the
orientation of the rolls at the lateral sidewalls. The roll-
nucleation frequency of wall foci is presented as a func-
tion of e. We detected a transition to spiral-defect chaos
as indicated by rapid increases in global measures of spa-

FIG. 1. Representative patterns at e=(a) 0.04, (b) 0.09, (c)
0.12, (d) 0.51, (e) 0.61, and (f) 0.84. Arrows in (a) point to the
cross-roll patches. I =40.
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tial disorder and roll curvature. Our results are com-
pared, when possible, to work in even larger aspect-ratio
cylindrical cells that used the same working fiuid
[17,18,34]. In the remainder of this paper, we present in
Sec. II a description of the experiment. Section III gives
a qualitative description of the observed pattern dynam-
ics as e was increased. Section IV contains the character-
izations of the patterns utilizing structure-factor analysis
and algorithms that extract local roll orientation and cur-
vature. Finally, in Sec. V, we discuss our observations
and measurements in the context of further work and
theoretical modeling. A brief report on some of our work
has been presented previously [21,35].

II. EXPERIMENTAL SETUP

The apparatus is described in more detail elsewhere
[18,20,36]. The circular paper sidewall used in this study
had a cross section shaped like the letter H. The two
vertical pieces were both 0.1 mm thick, and one had a di-
arneter of 86 mm and a height of 1.05+0.02 mm while
the other had a diameter of 100 mm and a height of
1.03+0.02 mm. The horizontal piece connecting the two
vertical pieces was 2.3 mm wide. The actual convection
layer studied was enclosed by the 86-mm-diameter ring.
This H-shaped design rninirnized the sidewall thickness
seen by the Quid. It reduced the effect of sidewall forcing
owing to the fact that the thermal conductivity of paper
was ten times larger than that of the fiuid [20]. The hor-
izontal piece of the H inhibited convection in the region
between the two circular rings and, thus, prevented con-
vection outside the studied region from affecting flow in
the interior. The sidewall was sandwiched from the top
by a sapphire window and the bottom by an aluminum
plate. The sapphire window was held rigidly at its edge,
and its vertical position could be adjusted independently
of the sidewall at three points separated by about 120'.
The uniformity of the cell height d was adjusted to within
0.002 mm by changing the sapphire position. The draw-
back of this arrangement was the uncertainty in d, as we
had no means to measure it directly after all adjustments
were finished. We inferred it indirectly through a com-
parison of AT, with that of a calibration cell with a
known cell height operated at the same temperature and
pressure [37] and through the assumption that at onset
the wave number of the straight-roll structure was the
critical wave number, k, =3.117. These two methods
gave the same d =1.06 mm with an uncertainty of 1%,
and an aspect ratio I, defined as the ratio of the cell ra-
dius to its height, of 40. An additional consideration is
that there were places where presumably the sidewall did
not make good contact with either the cell bottom or the
sapphire plate. These places generated small sidewall foci
near the onset of convection, but these foci disappeared
for @~0.05. The cell was filled with CO2 at 32 bars and
the temperature of the bath that cooled the top plate was
held constant within +0.0002'C over periods of a week
or longer near 33.7'C. Under these conditions, the Quid
has a Prandtl number of 0.98. The pressure was regulat-
ed by a temperature-controlled external ballast volume to
within 0.005%%uo. The variations of hT, owing to pressure

variations were less than 0.01%. Local instabilities such
as skewed-varicose defect nucleation occurred on the fast
time scale of the vertical thermal difFusion time r,=d /ir,
which was 4.8 sec. The time scale of large-scale pattern
dynamics was much slower, on the order of or longer
than the horizontal thermal diffusion time &I, =I
which was 7680 sec.

The observation of the convection patterns was
through the shadowgraph visualization method, and the
shadowgraph images were digitized and stored as eight-
bit gray-scale-coded images. In this paper, the contrast-
enhanced images show black regions corresponding to
hot fiuid (upflow) and white regions corresponding to
cold fiuid (downfiow). The processing includes first divid-
ing an image with convection by a background image
taken in the conduction state, and then rescaling to
enhance the contrast [24]. The image division eliminates,
to a large extent, the distortions of nonuniformities in il-
lumination and in cell-bottom reAectivity. Various
methods of analysis applied to the divided images will be
discussed as appropriate in the remainder of this paper.
When time-averaged values of parameters were desired,
we typically used 256 images at a particular e value.
Throughout the work discussed in the present paper, ap-
proximately 16000 images were analyzed.

The determination of AT, was done by quasistatically
ramping up hT and measuring both the Nusselt number
and Fourier power of the convection pattern. The
Nusselt number is defined as the ratio of the effective
thermal conductivity of the Quid to the thermal conduc-
tivity in the conduction state, and the Fourier power is
obtained from the structure factor, which is discussed in
Sec. IV. Above onset for an ideal system, both Nusselt
number and Fourier power vary linearly with hT. In our
system, there was a slight rounding, and a straight-line fit
away from the rounded region yielded
b T, = 1.487+0.004 C including a small correction,
about 1.5%, for the temperature drop across the sapphire
window. The rounding was caused by static sidewall
forcing, which was not completely eliminated despite the
design of the sidewall. Convection appeared in the form
of 3—5 circular rings next to the sidewall before the rest
of the cell convected. These rings persisted to a=0.02,
but the rounded region noticeable in the Nusselt number
was limited to —0.005 ~ a~0.007 with the value of the
Nusselt number less than 1.003 at a=0. The Prandtl
number, equal to 0.98, was calculated with the virial
equation of state at the mean temperature, 34.45'C, of
the Quid layer at the onset of convection. The kinematic
viscosity was 0.002 32 cm /sec, and the thermal
diffusivity was 0.002 38 cm /sec. The non-Boussinesq pa-
rameter P [38] was 0.22, considerably smaller than the P
values of MBCA.

III. PATTERN DYNAMICS

A consequence of the large lateral dimension of the
system is that, near onset, pattern evolution is very slow,
taking 3—10 days to reach a final steady state when hT is
increased slowly from below onset. To speed up this pro-
cess, we increased e to = 1 where the pattern was highly
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time dependent, and then reduced e to approximately
0.04. This method usually yielded a straight-roll pattern
like that in Fig. 1(a) within 36 h. The two small sidewall
foci on the upper right region were presumably caused by
gas Qowing in or out of the cell, and they disappeared at
e=0.05. Such patterns were time independent for
e (0.09. Over this range, the size of the cross-roll
patches, indicated by arrows in Fig. 1(a) and bracketing
the main straight-roll region, typically decreased some-
what with increasing e [20].

The first instability of the straight-roll pattern was the
skewed-varicose instability at @=0.09. The scenario was
as reported earlier [15,20], with defects nucleating Via the
pinching off of rolls in the central region of the cell and
then moving to the sidewall. Details of this mechanism
are illustrated in Fig. 2. These images were taken in the
I =41 cell of Ref. [20], but the observations in our
present cell are very similar. Some defects disappeared
upon reaching the wall, whereas others remained or
moved along the wall to disappear into the cross-roll
patches. A typical image at @=0.09 is shown in Fig. 1(b).
The two defects on the lower right part of the cell eventu-
ally disappeared into the cross rolls at the lower right.
The left defect moved to merge with the upper left cross
rolls. This locally occurring skewed-varicose instability
has been shown to be the result of a large-scale IIIow cou-
pled to roll curvature and wave-number gradients [28].
A useful way to show the defect nucleations Uia the
skewed-varicose instability is to plot the angular distribu-
tion of the modulus of the Fourier transform as a func-
tion of time. Figure 3(a), at @=0.12, is such a plot con-
structed from 43 images covering a time interval of 6~I, .
It is coded in a linear gray scale with the maximum black
and the minimum white. When there is a dominant roll
orientation, the power is concentrated around that orien-
tation; but, when roll pinching occurs, the power is more
dispersed owing to the defects. The numerous skewed-
varicose defect-nucleation events appear as the discon-
tinuities in the width of the narrow dark vertical band,
which indicates the dominant roll orientation as a func-
tion of time. Whereas the nucleation of defects happened
on the local time scale ~„,the interval between nu-
cleations was of the order of the global time scale, about
0.4~& for the data shown in Fig. 3(a).

Further increases of e caused faster defect nucleations
and more defect accumulations near the wall. The
straight rolls near the cross rolls also began to curve
measurably as the tendency for the rolls to end perpen-
dicularly to the sidewall increased with e. At @=0.12,
sidewall foci occasionally appeared as the result of defects
merging with the cross rolls. The foci would often con-
tain cross rolls unless the instantaneous curvature around
the foci was large. These foci interacted with defects and
were constantly annihilated and regenerated, but the new
focus typically appeared a few roll widths away and con-
tained cross rolls. In Fig. 1(c), we show a focus contain-
ing cross rolls at the upper left and a well-defined focus at
the lower right. To the left of the well-defined focus is a
line of defects (grain boundary) where differently oriented
rolls join. In this particular example, these defects
merged with the focus, resulting in a new focus with cross

rolls.
At a=0.20, the roll curvature was large enough that

foci were always present. There were typically two foci
with radii of about 20d. As e increased, the number of
foci also increased but their individual sizes decreased.
At e =0.50, there were typically 4—7 foci each measuring

FIG. 2. Defect nucleation mechanism for straight rolls at
a=0. 115 and for I =41. A fraction of the total image, about
22d on a side, is shown. Elapsed times {arb. orig. ) are (a) 0.0,
(b) 1.3, and (c) 2.6~,.
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about (6—8)d in radius. For e ~ 0.20, these foci generally
nucleated new rolls [21,39] while moving irregularly
along the sidewall. The frequency of the roll nucleation
co„,expressed in units of 1/~, varied a little for a given
focus but increased substantially when the focus was near
a defect or another focus. For well-isolated foci
varied linearly with e up to @=0.65 as shown in Fig. 4.
A linear-least-squares fit to the data gave
co„=0.17(e—0. 16). Around a well-isolated focus, the
time dependence could be attributed to skewed-varicose-
instability events and focus roll nucleation. At the inter-
face between a focus and the still indentifiably straight-
roll region, skewed-varicose instability formed defects
and at the same time reduced the local wave number (a
roH pinching-off created two defects but reduced the
number of roll pairs by one). At the center of the focus,
the nucleation of a new roll would increase locally the
wave number around the focus. So the interplay between
the skewed-varicose instability at the focus periphery and
the nucleation of new rolls at the focus center gave rise to
sustained time dependence locally around the well-
isolated focus. It is important to remember that, owing
to the large-scale Aow coupling these local pattern
features over a long range, the global dynamics cannot be
described solely in term of these local events. For exam-
ple, this simple picture is altered as soon as a defect

comes near the center of the focus or when two foci ap-
proach each other.

A further demonstration of the nonlocal interaction is
found in the comparison of two possible states for
0.2 & e &0.3, where both 2-foci and 3-foci states were ob-
served depending on past history. The time dependence
of the foci was dramatically dift'erent for the two states
despite the similarities of the foci, illustrating that the
global configuration of the rolls was important in the pat-
tern dynamics. An example of the 3-foci state is shown
in Fig. 5(a). The growth of an additional focus from a
grain boundary between the original two foci [the ones on
the right side in Fig. 5(a)] changed the characteristics of
the original ones. Instead of nucleating new rolls, they
absorbed rolls, but at a frequency a factor of 3 —4 smaller
than that of nucleating foci at the same e. Defect forma-
tion via the skewed-varicose instability near the focus
periphery slowed down or stopped completely. The dom-
inant time dependence then occurred in the vicinity of
the remaining grain boundary, which is shown in the en-
closed rectangular box in Fig. 5(b). In this region, rolls
switched their orientation rapidly, alternating between
two directions as shown in Fig. 5(c), which is a blowup of
the enclosed region in Fig. 5(b). Rolls of one orientation
grew into regions occupied by rolls of the other orienta-
tion, but these rolls at the same time were being replaced
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distance of 10d from the wall. At @=0.6, these defects
appeared more often and also grew in size, sometimes
forming circular structures measuring only (3 —4)d across;
some of these structures evolved into recognizable spiral
structures and actually traversed the width of the whole
cell. Figure 1(e) contains such a circular structure at the
lower right and a small point defect near the top. The
formation of spirals was intermittent in the sense that
there was an e range just above 0.6 over which spirals
were present only some of the time. This intermittency is
seen best again in a plot of the angular distribution of the
radially averaged Fourier-transform magnitude because

FIG. 4. Foci roll-nucleation frequency cu„asa function of e.
The vertical bars indicate the standard deviation of the distribu-
tion of frequencies. The solid line is a linear fit to the data for
e &0.63.

by rolls of the other orientation at the trailing edge. The
net effect was a set of differently oriented domain boun-
daries that traveled from a point near the center of the
focus along this line of defects. This same dynamics gen-
erated new rolls even as the original two foci absorbed
rolls, so the number of rolls in the system remained fairly
constant. Such a 3-foci pattern was remarkably stable
compared to a 2-foci pattern. In a 2-foci pattern, the foci
were generally destroyed and regenerated with an aver-
age period of 2~&, whereas in a 3-foci pattern the three
foci remained for between 6 to 12~&. The 3-foci state in-
variably gave way to the 2-foci state when e was de-
creased to below 0.2, but the long evolution time prevent-
ed the determination of the asymptotic pattern at a fixed
e between 0.2 and 0.3.

The roll-nucleation frequency increased with e while
the average size of foci decreased as seen in Figs.
1(c)—1(e). An abrupt increase in co„ofabout 40% oc-
curred at @=0.6S as seen in Fig. 4. This change was as-
sociated with the appearance of the SDC state [18,21] as
shown in Fig. 1(f). This state contained many rotating
and merging spirals, which could have one or two arms
and could be right- or left handed. The amount of time
for one rotation of a spiral was variable but typically was
of the order of 10~ . In the early stage, a spiral often ap-
peared as a concentric-ring pattern, but this "target"
would merge with the roll next to it to form a spiral. A
time series of images showing some scenarios for spiral
formations is presented in Fig. 6. These are similar to the
formation mechanisms described by Assenheimer and
Steinberg [19]. The arrows in Fig. 6 highlight the forma-
tion of two separate spirals; the one on the left originated
from a hne segment while the one on the right started as
a "broken" spiral. The transition into the spiral-defect
state was continuous and occurred over a narrow range
in e. At @=0.S3, pointlike defects appeared sporadically
from regions resembling grain boundaries. These point-
like defects were short lived and generally stayed within a

FIG. 5. Representative 3-foci patterns. (a) and (b) are
separated in time by 6000r . (c) A time sequence, 48~ apart, of
the region outlined in (b). The top image in (c) corresponds to
the image enclosed by the box in (b).
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spirals contribute power to all angles. In Fig. 3(b),
a=0.6I, we see that the spirals only existed during the
time interval when the power was dispersed. At @=0.69,
Fig. 3(c), about half of the time there were lots of spirals.
At @=0.75, spirals were formed and destroyed continu-
ously as shown by the widely dispersed power in Fig.
3(d).

Once the spirals appeared, further increases in e
brought no real changes in the pattern dynamics until the
appearance of the oscillatory instability at e= 3, in good
agreement with the predictions of stability analysis for
straight rolls [2]. The oscillatory instability manifested
itself as waves traveling along the rolls as indicated by the
arrows in Fig. 7, which shows only a portion of the cell.
The oscillation period was about 1~ . Even at @=4 where
these images were recorded, the traveling waves existed
only locally, and they did not appear throughout most of
the cell until a=5. 5. The traveling waves on rolls ending
at the sidewall always propagated toward the wall; so, for
a roll with both ends connected to the wall, there was al-
ways a source of traveling waves near its midpoint. Asso-

ciated with the fast dynamics of the traveling waves was
the comparatively slow rearrangement of the underlying
roll patterns. This is evident in a comparison between
Figs. 7(a) and 7(b), which are 78~ apart.

IV. CHARACTERIZATION OF PATTERNS

Characterization of complex time-dependent patterns
remains a major challenge in the experimental investiga-
tion of pattern dynamics. The patterns ideally should be
described by a small set of parameters, which capture
their essential aspects. Unfortunately, to our knowledge,
no theoretical works exist that point to such a set of pa-
rameters. We have employed standard techniques to
characterize the patterns by their wave numbers, wave
number distributions, average roll curvature, and average
roll orientation adjacent to the sidewall. These parame-

I::!~Q

FIG. 6. Formation of spirals at @=0.70. The images are
6.4~ apart. The arrows point to two structures that evolved
into spirals.

FIG. 7. Oscillatory instability at a=4.0. The images are 78~,
apart. The arrows indicate the traveling waves.
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ters do not give a complete description, but their inter-
pretation provides a first step in our understanding of the
patterns and their dynamics.

1.0

0.8

A. Structure factor

The structure factor, equal to the modulus squared of
the spatial Fourier transform, provides information that
is averaged over the whole pattern since spatial informa-
tion is lost as the phase of the Fourier transform is dis-
carded. The calculations of various quantities from the
structure factor follow closely the procedures used by
Morris et al. [18,40]. The structure factor S;(k) of the
ith image in a sequence of images taken at the same e was
obtained by the following steps. The image was first di-
vided into the background, because this division
preserved the linearity of the mapping of the vertically
averaged temperature field of the Quid layer to the sha-
dowgraph signal [20,41] over a wider range of e. The di-
vided image was filtered by a radial Banning window
M(r)=[I+cos(nr jro)]/2 for r~rc and H(r)=0 for
r) ro, ro=0. 71I . A discrete Fourier transform on the
filtered image was performed to get the modulus squared,
S,(k). An average over all S;(k) taken at the same e
gave S(k ). From this time-averaged S(k ), statistics such
as the average wave number (k ), the correlation length
g defined to be the inverse of the width sz, and the skew-
ness s3 were calculated [18]. The definitions for these
quantities are

f ~k S(k)d k f 0"k S(k)dk
(k)—=

fS(k )d2k f c"kS(k)dk
1/2

f (~k —(k ) )'S(k )d'k

fS(k)d'k

I /2

f,"(k —(k)) kS(k)dk

kS(k)dk
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FIG. 8. kS (k) for (a) e =0.46, (b) e=O. 61, and (c) e=O. 81.

The application of the structure factor derived from
the Fourier transform to many areas of physics is well es-
tablished [42]. Its use for the analysis of textured pat-
terns in relatively small systems, however, is not as well
understood. In particular, the effects of defects, wave-
number distribution, pattern type, and finite size can be
complicated. Application of the structure-factor algo-
rithm to artificial patterns [43] suggests a cautious ap-
proach in interpreting the results. The main conclusion
of the study was that the sidelobe contributions in the
Fourier-transform peak shape cannot be neglected and
that different pattern types with otherwise uniform and
identical wave number have quite different peak shapes,
yielding significantly di6'erent values for ( k ) and also for
higher moments. For example, in a system with about
350 rolls, (k ) can vary by 4% and s2 by almost 200%%uo

between straight and concentric rolls. The variation also
depends on the limits in k over which the moments are
calculated. One should conclude that for systems of finite

S3=

1/3

f (~k~ (k))'—S(k)d'k

s2 fS(k)d k 1.0

f,"(k —( k ) )'kS (k)dk

s2 f 0"kS(k)dk

1 /3

(3)

In practice, the calculation did not extend from k =0
to k = ~ but only included values of k for which kS(k)
was greater than 15% of the maximum value of kS(k).
The limit of 15%%uo was chosen to be a suitable limit appli-
cable up to e =5. At e = 1, the shadowgraph nonlinearity
manifested itself as higher harmonics in kS(k), but a
15% limit excluded the higher harmonics quite well up to
e=3.5. In Fig. 8, we show examples of kS(k) averaged
over many patterns and over angle for several e values.
In Fig. 9, we show an average over k to yield S(8), the
angular power distribution. Figure 3 is composed of
many curves corresponding to &S(8) and offset in time.
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FIG. 9. S(0) for (a) @=0.46, (b) @=0.61, and (c) @=0.81.
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FIG. 10. Phase diagram near onset. ( X ) current cell with
I"=40, cr —0.98; (+) I =43, o —0.93; (~ ) I =78, o —0.95
from MBCA. E, Eckhaus; and SV, skewed-varicose instability
boundaries (adapted from Refs. [2] and [3]). The horizontal
bars on some of the data have a length equal to s2.

size caution is necessary especially since the inAuences of
defects and wave-number distribution have not been sys-
tematically studied. With this caveat, we proceed to ana-
lyze the experimental images using the S (k) procedure; it
has the attractive feature of being well defined and easy
to use on many images.

While the selected wave number for straight-roll pat-
terns has been studied theoretically and experimentally, it
is not clear for a textured pattern full of defects and
curved rolls what the selected average wave number
should be. A recent theoretical analysis by Newell, Pas-
sot, and Souli [44] suggested that in textured patterns
containing many curved rolls the wave number selected
would be close to that of a concentric-roll pattern at least
for time-independent patterns [45—47]. We shall see that
this does not seem to be the case for our system and that
the problem with wave-number selection in textured pat-
terns remains unresolved. We define the selected wave
number to be the average wave number ( k ), and nor-
malized (k ) to be 3.117 (k, ) at e=O to compensate for
the uncertainty in d.

Near onset, the system had a straight-roll pattern
within the circular region covered by the applied Han-
ning window. The selected wave number increased with
e as seen in Fig. 10 which plots our observations in terms
of (k ) —k, . The increase was accompanied by changes
in the sizes of the cross-roll patches bracketing the
straight rolls. The grain boundary between the cross rolls
and the straight rolls in the interior presumably provided
the wave-number-selection mechanism for the straight
rolls [20]. Also plotted in Fig. 10 are the selected wave
numbers for similar straight-roll patterns in a I =43 cell,
for which the wave number was calculated by locally
fitting a sine function to the rolls while assuming that
(k ) was 3.117 at e=O [20]. The data agree quite well,
showing that the wave numbers calculated from the
structure factor describe the straight rolls as well as local

fits which cannot be performed easily on patterns with
defects and curved rolls.

It is interesting to contrast the grain-boundary selec-
tion mechanism with a similar one investigated for large-
Prandtl-number cr =70 in a rectangular geometry [48].
In that case, grain-boundary wave-number selection was
shown to coincide with that of dislocation selection, both
were in close agreement with the condition that the per-
pendicular diffusion constant in the phase equation D~
equals zero. This condition in turn corresponds to the
boundary at low wave number for the zig-zag instability.
This description works very nicely for large Prandtl num-
ber, but in low-Prandtl-number convection, mean drift
stabilizes against the zig-zag instability and no previous
experiments or theory have addressed the selection of
wave number by dislocations or grain boundaries in that
case. Our results, Fig. 10, show that some different
mechanism was responsible since the condition D~=O
operates at low wave number, whereas our average wave
number increased unexpectedly with e up to the onset of
time dependence. It would be useful in exploring this
selection to consider a rectangular cell similar to that
used in [48] to minimize the possible e6'ects of sidewall
curvature in a cylindrical geometry. It would also help to
measure, if possible, the velocity and selected wave num-
ber for isolated defects in this low Prandtl system to
better quantify this new wave-number-selection mecha-
nism.

At @=0.09, (k ) began to decrease with increasing e.
This was accompanied by the appearance of defect for-
mation via the skewed-varicose instability in the system
interior. Further e increases brought about sidewall foci
and increased roll curvature; ( k ) maintained roughly the
same distance from the skewed-varicose instability
boundary up to @=0.55. In Fig. 10 we also show, for
comparison, data from a I =78 circular cell at o. =0.95
from MBCA [49]. In that experiment, the measured cell
height was used to set the length scale, whereas we nor-
malized (k) at e=O to k, . A detailed comparison for
e (0.5 is dificult because MBCA did not concentrate on
this regime. In particular, they did not have a high
enough density of e values to determine unambiguously
the behavior of (k) for e(0.05 or for @=0.25. These
two regions are of interest as discussed below. Neverthe-
less, some general features of the two data sets can be
compared. The MBCA data did not approach the SV in-
stability boundary and may or may not have the increase
in (k ) observed in this work; the data are consistent
with either a small increase for e (0.05 or a monotonic
decrease with e. The source of this difference is unclear
since the qualitative appearance of the patterns (except
for the system size) was similar to ours for e up to about
0.25, i.e., they were dominated by straight rolls for
e ~0. 1 and by curved rolls and sidewall foci for larger e.
For @=0.25, MBCA observed the onset of SDC. Their
results for (k ) showed only a small (if any) change in
their e dependence near this value. This differs from our
smaller cell, in which the onset of SDC did not begin un-
til m=0. 55. As shown in Fig. 11, beyond that e value
(k ) decreased more rapidly and moved further away
from the SV instability boundary. For @~0.75, well into
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FIG. 11. Phase diagram over a larger e range. (X) current
cell with I =40, cr =0.98; () I =78, o.=0.95 from MBCA. E,
Eckhaus; and SV, skewed-varicose instability boundaries (adapt-
ed from Refs. [2] and [3]). Dashed line, predicted (k) —k, for
concentric patterns [47].

the spiral-defect state for both cells, the average wave
numbers for the two systems were the same within exper-
imental uncertainty.

The predicted wave number for concentric patterns
[46] crosses the skewed-varicose boundary near E=0.8 as
shown in Fig. 11. It does not agree with measured wave
numbers in the experiments. Thus, the conjecture by
Newell, Passot, and Souli [44] that the concentric-pattern
wave-number-selection mechanism might set the average
wave number in textured patterns owing to the presence
of sidewall foci does not seem to apply for time-
dependent states in either the I =40 or 78 convection
system with o. =1. This idea seemed to work reasonably
well [44] in describing experimental observations for
somewhat higher Prandtl number [14], cr =2.5, and in a
moderate-aspect-ratio container, I =14. The origin of
this inconsistency is unclear. It may be the result of the
larger aspect ratios in the CO2 experiments, which
perhaps permit a di6'erent mechanism unrelated to
sidewall foci to dominate the wave-number selection in
the system interior.

At higher e, the basic spiral formation and destruction
remained qualitatively the same, but the overall wave
number decreased as seen from Fig. 12. The average
wave number never crossed the skewed-varicose bound-
ary and instead crossed the oscillatory instability bound-
ary at @=3. At e slightly less than 3, the oscillatory in-
stability was visible locally. Presumably this is due to the
existence of a wave-number distribution, with the local k
below the oscillatory instability in some places.

In addition to ( k ), higher moments of the structure
factor may also be used to convey information about the
patterns. The correlation length g, defined in Eq. (2) to
be the inverse of the standard deviation of S(k),
represents roughly the average size of correlated regions
in the system. In Fig. 13, we show how g varied with e in
our experiment. The correlation length decreased mono-

FIG. 12. Phase diagram over a very large range of e. (X)
current cell with I =40, o.=0.98, () I =78, o. =0.95 from
MBCA. E, Eckhaus; SV, skewed varicose; and OS, oscillatory
instability boundaries (adapted from Refs. [2] and [3]).
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FICx. 13. Correlation length g vs e. (X) current cell with
I =40 and o.=0.98; () I =78 and o.=0.95 from MBCA. The
solid line is a least-squares fit to the data with /= 2. Re

tonically with increasing e and varied as
(2.8+O. 3 )E —,very close to the variation of
(2.4+0. 1)e —. reported in MBCA. One should
note that, in MBCA, spiral defects appeared at @=0.25;
therefore, most of the data from that study were from
patterns with spirals. In our system, spiral defects did
not appear until the much higher e of 0.6, so the close-
ness of the two exponents and the coefficients may be in-
dicative of the insensitivity of g to the details of the
specific underlying pattern.

The third moment of the structure factor, the skewness
s 3 provides a measure of the relative contributions of
wave numbers higher or lower than the average, i.e., of
the distribution asymmetry. We found that it was a use-
ful indicator of the transition to the spiral-defect-chaos
state. The decrease of s3 right above onset, Fig. 14, was
caused by the formation of defects via the skewed-
varicose instability. Once the skewed-varicose instability
appeared, s3 remained fairly constant until spirals ap-
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peared at @=0.6. It then increased rapidly with e until
spirals were always present for e&0.8. The increase in s3
is consistent with a slightly larger effective wave-number
contribution from concentric pattern types such as tar-
gets or spirals [43].

What is not clear from s 3 (e) is the Iluctuating nature of
spiral formation. This is revealed in plots such as those
of Fig. 3, which give time series of the radially averaged
modulus of the Fourier transform, i.e., of the radial aver-
age of the square root of S;(k). Individual examples of
S(8) are shown in Fig. 9. To quantify the intermittency,
we defined the intermittency fraction Fl as the fraction of
time for which the standard deviation of the angular
power distribution was greater than 30' [50]. The cutoff
of 30 was somewhat arbitrary, but the results were not
very sensitive to this choice. The fraction grew from 0
for no spirals to 1 for continuous spiral formation: It
corresponded very well with changes in the skewness (see
Fig. 14). Detailed analysis of the statistics of individual
spiral defects presented elsewhere [51] yields conclusions
similar to those derived from the global measures
presented here.

from the sidewall boundary condition that favors rolls
perpendicular to the boundary. Thus, a quantitative
measure of these influences would provide an important
characterization of textured patterns in low-Prandtl-
number convection. Previously Heutmaker and Gollub
[14] were able to obtain some information on the spatially
averaged curvature (

~
V n

~ ) and sidewall obliqueness
( ~n s

~ ), where n is the unit wave vector and s is the
sidewall normal vector. In a I =10 circular cell, they
showed that up to @=3 and for averages over a number
of patterns, the curvature increased and obliqueness de-
creased with increasing e. With the manually interactive
procedure that they employed, only a small number of e
values could be considered and only a modest number of
patterns could be averaged. We extended this analysis to
many patterns and to a large number of e values by devel-
oping an automatic procedure for obtaining roll orienta-
tion and roll curvature.

Our algorithm for determining local roll orientation
and curvature includes several steps, which are indicated
in Fig. 15. First, the gray-scale i~age of a convection

B. Roll curvature and sidewall obliqueness

Phase dynamics descriptions of textured patterns in-
clude significant contributions from roll curvature and
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FICx. 14. Skewness s3 and intermittent fraction I'I vs e.

FIG. 15. Illustration of the procedure for determining roll
orientation and curvature. The image is for e =0.11. (a) Origi-
nal thresholded image, (b) skeleton-line image, (c) reconstruc-
tion of image based on calculated local orientation, (d) orienta-
tions (darker equals small angle with zero angle corresponding
to the horizontal axis), and (e) curvatures (darker equals large
curvature).
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FIG. 19. Probability distribution P(y) of the curvatures y.
Solid line, @=0.35; dash-dotted line, @=0.65; and dashed line,
@=0.81.

FIG. 21. Spatially and temporally averaged sidewall oblique-
ness P, , vs e. The vertical bars indicate the standard deviation
of the distribution of P at a particular E. The solid circles are
for decreasing, and the open circles for increasing e.

and white quadrants with the first quadrant being white.
The interfacial regions between two spirals are similarly
represented, except the first quadrant is black. The cur-
vature of a roll measures the angle traversed per unit arc
length along the roll and is the inverse of the radius of
curvature [53], so for a spiral the curvature gets larger
with decreasing distance from the center of the spiral.

Because of increased video noise near the cell edges,
the average roll-curvature calculation was limited to a
circular region for r ~ 38d, where r is measured from the
center of the cell. For the sidewall obliqueness calcula-
tions, the increased noise affects the precise determina-
tion of roll orientations next to the sidewall; unfortunate-
ly, this effect could not be avoided since, by definition,
the obliqueness is calculated next to the wall.

The spatially averaged curvature y, as a function of
time is shown for several values of e in Fig. 17. Below
the onset of SDC, at @=0.35, y, did not change appreci-

ably with time since the patterns were composed mostly
of large sidewall foci. At @=0.81, where SDC was well
developed, spirals were present at all times but their num-
ber and sizes fluctuated considerably as indicated by the
variation in y, . In the transition region, 0.55~a~0. 8,
y, changed significantly, from less than 0.06 correspond-
ing to almost no spirals to 0.12 corresponding to many
spirals. These large changes in y, reAect the possible pat-
terns the system could have at the same e. For example,
at m=0. 73, there could be no spirals as shown in Fig.
18(c), which looks very similar to Fig. 1(d) at @=0.51, or
there could be many spirals as in Fig. 18(d), which is
similar to Fig. 1(f) at e=O. 84.

Figure 19 plots the probability distribution of the local
curvature y for the same e values as in Fig. 17. As ex-
pected, the fraction of highly curved rolls increased with
increasing e while the fraction of straighter rolls de-
creased. The time and spatially averaged curvature y, ,
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FIG. 20. The spatially and temporally averaged curvature
vs E. The vertical bars indicate the standard deviation of

the distribution of y at a particular e.

FIG. 22. Spatially averaged curvature (solid line) and spatial-
ly averaged sidewall obliqueness (dashed line) at @=0.73 as
functions of time. The points (a) —(d) correspond to the images
in Fig. 18.
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FIG. 23. Cross correlations C~ p (~) between the spatially
S S

averaged curvature and the spatially averaged sidewall oblique-
ness. (a) t'=0. 69 and (b) @=0.28.

as a function of e is shown in Fig. 20. The increase near
a=0. 1 is readily identi6ed with the appearance of defects
owing to the. skewed-varicose instability and of sidewall
foci, whereas the increase near @=0.6 corresponds to the
appearance of spirals. An interesting result is that y, ,
hardly varied over the wide range of 0.2~ e(0.55. This
contradicts the general notion that roll curvature should
increase continuously with e as suggested by phase-
dynamics descriptions of pattern dynamics in finite sys-
tems [1].

The sidewall obliqueness measures the extent to which
rolls terminate at the sidewall with their axes perpendicu-
lar to the wall. The boundary condition at the wall
favors rolls ending more nearly perpendicular to the wall
as e is increased [1]. This tendency has been demonstrat-
ed to be responsible for the formation of sidewall foci and
for the associated depressed onset of the skewed-varicose
instability [15]. We measured the obliqueness, p= ~in s ~i,

via the dot product of the sidewall normal vector and the
normalized wave vector of the rolls adjacent to the wall,
so if the roll joined the wall perpendicularly, the value

would be 0. In Fig. 21, two separate runs are presented
for the time and spatially averaged obliqueness p, , The
data taken while e was decreased did not differ
signi6cantly from those taken during a run with e in-
creasing. We note that the data for decreasing e were
much shorter in duration (about ten times) than for the
increasing data set. The t. dependence was very similar
for the two cases with the rolls becoming more and more
perpendicular (smaller p) to the wall with increasing e for
e(0.3. For 0.3 (e(0.6, the obliqueness was relatively
constant but with the appearance of spiral-defect chaos,
rolls ended less and less perpendicular (larger P) to the
wall as e increased above 0.6. Both the constant value of
P at moderate e and the increase at higher e were unex-
pected based on previous measurements [12,14].

The average curvature is a global measure over a large
area of the cell, while the obliqueness is restricted to a
narrow band next to the sidewall. This raises the ques-
tion of whether these two quantities are related, and if so,
whether they are correlated in time. In Fig. 22 are plots
of y, and P, for e=0.73, and representative images are
shown in Fig. 18. The cross-correlation calculations be-
tween y, (t) and p, (t) show that the obliqueness was
strongly correlated with the average curvature, and that
the correlation was instantaneous to within our experi-
mental time resolution of 50~ . The cross-correlation
coefficients C & (r), where r denotes the lag time, be-

s' s

tween y, and P, are shown in Fig. 23 for two values of e.
It is interesting to note that at e=0.28, y, and p, were
uncorrelated; but, as SDC appeared in the system, y, and

P, were positively correlated. Note that the fact that the
average values of y, (t) and p, (t) were roughly constant
for e below 0.5, the temporalguctuations about the mean
were not correlated. The correlation coeKcients at zero
time lag for different values of e are plotted in Fig. 24.
For 0.2( e(0.5, y, and p, were not correlated, and for
e) 0.6, the correlation increased but saturated at about
0.35.

V. CONCLUSION
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FIG. 24. Cross correlation at zero time lag C~ & (~=0) be-

tween the spatially averaged curvature and the spatially aver-
aged sidewall obliqueness as a function of e. The average of
C~ p {~)over the interval —0. 1~& ~~(0.1~& is shown.

S S

In this paper, we have presented experimental observa-
tions of pattern dynamics in a large-aspect-ratio system
with a Prandtl number near 1. The initial time-
dependent straight-roll patterns at onset first became un-
stable at e =0.09 to the skewed-varicose instability
enhanced by global mean drift. The tendency for rolls to
end perpendicularly to the sidewall increased with e for
e(0.2 and produced large sidewall foci, which often
emitted but occasionally absorbed rolls. The typical fre-
quency of the roll emissions by the foci increased linearly
with e. Below the onset of spiral defect chaos, the dy-
namics were dominated by defect nucleation via the
skewed-varicose instability and new roll creations by the
focus instability. Large-scale global How was apparent in
the interactions among the various defects and foci, but
was difticult to analyze quantitatively. The time scale for
dynamics in this parameter range was comparable to ~z
for the time between nucleation of defects, although the
time scale for the nucleation event itself was more nearly

V'
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The onset of spiral-defect chaos occurred at
@=0.55+0.04. The spiral formation was intermittent
slightly above its onset. The fraction of time over which
spirals existed in the system increased from 0 below onset
to nearly 100%%uo at @=0.8. This transition is interesting
from the perspective of determining the mechanism for
spiral-defect chaos. Perhaps it can shed some light on
the degree to which mean drift is important in creating
and/or sustaining spiral defects. We hope that some of
the characterizations we have used to analyze the state of
the system may yield clues to the mechanisms for time
dependence and spiral-defect creation. We now review
the results reported earlier in this paper with an eye to-
wards these issues.

We first consider the average wave numbers of the pat-
terns, determined through structure-factor analysis. The
average wave number increased unexpectedly for
e(0.09, owing to a lateral boundary cross-roll selection
mechanism [20]. After the onset of time dependence re-
sulting from dislocation-defect nucleation at e=0.09,
(k ) decreased monotonically with increasing e, main-
taining approximately constant distance from the
theoretical skewed-varicose boundary. At e =0.55, there
was a rapid decrease of about 0.35 in (k ) over the inter-
val of fluctuating spiral nucleation. The change in slope
of (k ) occurred approximately where ( k ) crossed the
theoretical focus selection curve. This is suggestive but
perhaps coincidental since there are appreciable
differences in the e dependence of (k) for cells of
different aspect ratios. For example, the (k) data of
MBCA with r =78 showed little or no increase in ( k ) at
small e and were always smaller than the focus wave
number. Another observation is that the decrease in ( k )
at the onset of SDC was much smaller for MBCA (we es-
timate no larger than 0.1) than for our smaller cell with
I =43. The significance of these two observations is un-
clear and further experimental and theoretical work will
be needed to understand the selection of the average wave
number in this system and the role, if any, which this
plays in the formation of spiral-defect chaos.

Structure-factor analysis, in addition to yielding the
average wave number, provided a measure of the distri-
bution of wave number through the peak shape. The
second and third moments were used to define a spatial
correlation length and the peak-shape asymmetry or
skewness. The correlation length was not particularly
sensitive to pattern changes and varied approximately
like e ' . The skewness, on the other hand, was quite
responsive to pattern variations and provided a good
operational means for determining the onset of spiral de-
fect chaos. The change of the shape of $(k ), which pro-
duced an easily measurable change in the skewness over
the transition interval leading to fully developed spiral-
defect chaos, is consistent with a larger contribution from
spirals or targets to the peak distribution.

Other important characterizations for the pattern dy-
namics reported here are the average roll curvature and
sidewall obliqueness. These two quantities help measure
the relative inliuence of bulk versus surface (i.e., lateral
boundary) contributions to the pattern dynamics. The
notion of boundary-induced frustration coupled with roll

curvature and mean drift has been quite successful in
describing the slow dynamics in the dislocation-defect re-
gime. So it is important to understand the interaction of
these quantities as well as their individual dependences
on e. The unexpectedly constant value of the curvature
between 0.2 ~ a ~0.6 and the increase in both the curva-
ture and sidewall obliqueness after the onset of SDC are
interesting trends. So too is the appreciable correlation
between curvature and obliqueness in the SDC regime.
Thus, the picture of phase-dynamic frustration seems
pretty good in the dislocation-defect regime with increas-
ing curvature and decreasing sidewall obliqueness. In the
SDC regime, however, this picture apparently breaks
down quite dramatically. The time scale for defect
motions, both spiral and other, decreases so that it is now
much faster, of order ten times ~ . The rapid increase in
the curvature is no surprise since spirals and targets are
highly curved objects. The increase in sidewall oblique-
ness and the moderate degree of correlation between cur-
vature and obliqueness above the SDC onset suggests that
sidewall effects are overwhelmed by the spiral state, being
driven by the behavior of the bulk rather than imposing
structure on it. Another reAection of this may be the in-
crease in nucleation frequency of sidewall foci. After the
transition, there are typically more sidewall foci of small-
er size. Perhaps the frequency increases with decreasing
size. We have not made a systematic investigation of this
point. Finally, it is clear that our characterization is in-
complete in an important way. A more complete charac-
terization of the phase dynamics would include a local
determination of the complete wave-vector field so that
the wave-number distribution could be calculated directly
since the global measure determined through Fourier
transform techniques is not very sensitive nor accurate
for single images. We hope to resolve this in future work.

For e ~ 0.8, the wave numbers for the spiral-chaos
state matched closely those measured in an aspect-ratio
78 system [18]. At even higher e, the oscillatory instabili-
ty was observed. The onset of the oscillatory instability
at a=3.0 occurred at an average wave number, which
agreed with the stability analysis of infinitely extended
straight rolls [2]. The roll oscillations were superimposed
on slower time dynamics of the pattern, which was simi-
lar to that below the oscillatory onset. The wave motion
on the rolls was complex, consisting of both standing and
traveling waves with numerous sinks and sources for the
traveling waves. One noticeable feature for traveling
waves was that waves on rolls that terminated at the la-
teral boundary always traveled towards the sidewalls.

In summary, many questions remain unanswered about
low-Prandtl-number convection in a spatially extended
system away from the convective onset. Whereas this
study has concentrated on particular features of the dy-
namics such as the focus instability or the spiral-defect-
chaos state, the interactions of different regions of the cell
via globally coupling mean Aows were not studied direct-
ly. The characterizations of individual robust features
like the focus emission frequency provided only the first
steps in the characterization of the complex spatiotem-
poral dynamics that we observed. Statistical methods
employed in this study such as the structure-factor
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analysis or intermittency fraction in angle-time plots are
unable to completely elucidate the time evolution of the
patterns. One thing is abundantly clear to us in the
analysis and interpretation of these experimental data.
Very large numbers of images are required to achieve
reasonable statistics; thus, automated and highly robust
analysis algorithms are necessary for progress to be
made. Although we have made a good start, further
analysis tools are needed to characterize these complicat-
ed patterns and to interpret current and future experi-
mental data.
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