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Density equilibration near the liquid-vapor critical point of a pure fiuid: Single phase T)T,

Fang Zhong and Horst Meyer
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(Received 17 November 1994)

A systematic study is reported, both experimental and theoretical, on the density equilibration in a
pure fluid, He, near the liquid-vapor critical point. Measurements of the density p were carried out
with capacitive sensors located in the upper and the lower half of a flat horizontal cell. The density
change 6p(t) after a step change in temperature of the cell walls was recorded along the critical isochore
and along several isotherms above the critical temperature T, . Direct observation of the sharp response
from adiabatic energy transfer into the bulk fluid { 'piston effect") is reported. The 6p(t) transients also
show the effect from the stratification change, and the relaxation time of the equilibration process is
found to diverge and then tend to a constant value as T, is approached. The entropy transport equation
is solved numerically in one dimension for He in the critical region above T, and in the approximation
of negligible mass flow velocity and instantaneous local hydrostatic equilibrium. The predictions for the
temporal and spatial evolution of temperature, pressure, and density of the fluid layer following a tem-
perature step of the enclosure are presented. The predictions for the profile 5p(t) are compared with the
experimental results and show good agreement in shape and amplitude, but a difference in time scale.
The approximations in the theory and the geometry of the cell are discussed. Predictions are also made
for the equilibration under reduced gravity along the critical isochore, and the fluid steady-state rms
density deviation (5p2) '~~ is computed for two temperature ramping rates at zero gravity. In Appendix
A, expressions for critical properties of He used in the computation are listed. Also, the convection on-
set near the He in the critical region is discussed.

PACS number(s): 44.10.+i, 05.70.Jk, 64.60.—i, 66.10.Cb

I. INTRODUCTION

Recent investigations of pure Quid properties near the
liquid-vapor critical point under conditions of reduced
gravity field [1—4] have shown that it is very important to
assess the equilibrium state of the Quid during the mea-
surements. It is well known that the thermal diffusivity
Dz. decreases to zero as the critical point (T„p, ) is ap-
proached, where T, and p, are the critical temperature
and mass density [5]. This decrease in DT produces a
"critical slowing down" in the equilibration process when
it occurs by diffusion. Several recent results under micro-
gravity conditions show that temperature equilibration at
constant average density p [1] is much faster near the
critical point than expected from thermal diffusivity
alone, in the absence of convection. This is because of
adiabatic energy exchange between the cell boundary and
the bulk Quid, as will be discussed in some detail below.
By contrast, local density equilibration in the Quid under
microgravity conditions is very slow [1,2] near T, . A
complete understanding of the dynamics of temperature,
and, especially, density equilibration is therefore neces-
sary for the planning of experiments —both static and
dynamic —in space under microgravity conditions.

We have undertaken an experimental program in
which He fiuid density equilibration is investigated fol-
lowing a small step change in temperature of the Auid en-
closure. Our experiments were conducted under normal
gravity conditions (g =go =980 cm /s) in which the aver-
age density is kept constant. Surveys include several
near-critical isochores and isotherms at temperatures

both above T, (single phase) and below T, (coexisting
liquid and vapor phases). We have used He because of
the comprehensive survey of the critical properties per-
formed on this fiuid in our laboratory [6,7], and because
of the practical advantages in carrying out such studies at
low temperatures, as will be elaborated in Sec. IV. It
needs to be pointed out that the critical behavior of He
is representative of that of other fiuids as well, as can be
seen in several reviews [8—10]. In parallel with these ex-
periments, a program of numerical simulation was
developed in one dimension (1D). It enabled calculating
for T )T, the response of the local density, pressure, and
temperature —as a function both of vertical position z in
the cell and of time —following a small step change in
temperature of the Quid enclosure. This erst paper re-
ports the results of both theory and experiments in the
one-phase region above T, . We plan to present the re-
sults of measurements in the two-phase regime for T & T,
in another paper [11]. Preliminary reports on data and
numerical computations have been presented elsewhere
[12—15].

In this paper, we present the method of numerical
simulation in Sec. II with the results and discussion in
Sec. III. In Sec. IV we describe the experimental cell, the
cryostat, the data acquisition, and reduction routine.
The experimental results in connection with the predic-
tions from the numerical simulations are presented and
discussed in Sec. V. Finally Sec. VI deals with the sum-
mary and outlook for experiments under reduced gravity.
Appendix A presents a compendium of parameters used
in the numerical calculations and equilibrium
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stratification for He. Furthermore the onset of convec-
tion in the critical region is discussed.

II. NUMERICAL CALCULATION

0

pto (t)
h p = constant

location:) of
sensors

In this section we start by writing down several equa-
tions relevant to the problem of equilibration. We brieAy
review expressions derived by Onuki and Ferrell [16] that
give certain time and space scales that are important in
this problem. Also discussed in Ref. [16] is the gravity
effect. An outline of the computational procedure is then
presented.

An earlier numerical computation was performed for
Xe under zero gravity [17]. It was mostly for the temper-
ature equilibration and within short times compared to
the system's difFusion time. The computation has recent-
ly been extended to density and temperature equilibration
under normal gravity [18] over a much wider time range.
The authors have treated in detail the spatial and time
profiles of pressure, temperature, and density for a tem-
perature quench from 20 to 10 mK above T, =289.7 K
for a sample at p=p, . Their computation procedure and
grid selection are different from ours, and will be dis-
cussed in conjunction with our own numerical results.
Also some of their findings differ qualitatively from ours.
Because of overlap in some of the respective observations
and conclusions, our presentation can be shortened, with
due references to [18]at appropriate places.

Xe and He are differently affected by gravity, and a
measure of their susceptibility is given by the inverse of a
characteristic height h, . Of all Auids, He is the most
susceptible to gravity while Xe is average, with
h, '=3.48X10 and 1.86X10 m ', respectively (See
Table 4.2.5 of [9]). Hence we expect that comparable
effects of gravity on stratification and on equilibration dy-
namics should occur at higher reduced temperatures
e—= (T —T, )/T, for He than for Xe.

A. Governing equations

We consider a Auid sealed in a Aat, cylindrical, and
horizontal cell with height h and diameter d, shown
schematically in Fig. 1. In this paper, we treat our prob-
lem in one dimension. The predictions thus made are ap-
propriate for the case of h «d in which the side wall
effect can be neglected. Even though the condition of
h «d is not met in the real experiment, the predictions
from 1D solutions are very helpful in understanding the
dynamics that controls equilibration. The thermal
diffusivity of the cell wall is much larger than that of He,
and thus it is treated to be infinite; as a result, the temper-
ature gradients in the Auid enclosure can be neglected
without afFecting the study of the temperature equilibra-
tion in the fluid. The system is initially in equilibrium at
Tp. The problem consists then in calculating the density,
temperature, and pressure profiles p(z, t), T(z, t), and
P (z, t) following a temperature change b, T of the cell wall
as shown in Fig. 1.

Our numerical computations are based on the thermo-
dynamic expressions presented in [16] where the fiow ve-
locity was neglected. The one-dimensional differential
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O
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FIG. 1. Top: Schematic view of the flat cell for fluid density
measurement at constant average density. Bottom: Tempera-
ture step AT of the cell versus time t.
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where y = c~ /c ~ is the ratio of specific heat at constant
pressure over specific heat at constant volume. When
Aow velocity is neglected, the Navier-Stokes equation
reduces to

(3)

This approximation assumes that the heat conducting
Auid in consideration is under hydrodynamic equilibrium
at any time. It is valid throughout the Auid layer espe-
cially in the late stage when equilibration becomes pro-
gressively diffusive. Recently, Boukari, Pego, and Gam-
mon [18] have treated the problem more completely and
hive shown that the contribution of Aow velocity was
small enough to be negligible. Furthermore, the change
in density is linked to the changes in pressure and tem-
perature linearly through the differential equation of
state:

Bp BT Bp BP
BT Bt BP & Bt

(4)

Equations (2) and (3) are solved numerically with the
measured static and transport properties of 3He [6,7].
The details of the computation are given in Secs. II C and
II D.

B. The Onuki-Ferrell approximations

In Ref. 16, Onuki and Ferrell gave a description for the
temperature and density changes inside a Auid layer fol-
lowing a small temperature step b T(((T—T, ) of the
Auid enclosure, as shown in Fig. 1. As the temperature of
the boundary Auid layer rises with that of the solid wall,
the Auid within it expands. The expansion produces a

equation for entropy transport is given by

Bs 8 BT
Bt Bz Bz

Here k is the thermal conductivity and s the entropy per
unit mass. When temperature T and pressure P are
chosen to be independent thermodynamic variables, Eq.
(1) becomes
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sound wave that propagates back and forth through the
layer and causes a fast adiabatic energy transfer to the in-
terior of the Quid. This process is similar to a piston
compressing and expanding on a working Quid. The tem-
perature of the bulk Quid then rises very fast through this
"piston effect" to nearly the wall temperature in a very
short time. The lower limit of the expected time scale for
th' process is the acoustic time defined as t„=h/cis p

~ ~ ~

where c is the Quid sound velocity. For a Quid sufficient y
close to the critical point where y &)1 and under zero
gravity, the adiabatic energy transfer takes place over a
time of the order of

4
w = —DTt (6)

There is a broad intermediate time range t& &t &y t&

over which one finds [1—(5T)(t)/bT]o-t '~ Here.
(5T)(t) is the spatial average of the deviation 5T(z, t)
from the initial equilibrium value. At times t & y t„an
exponential decay of the temperature transient is predict-
ed and the relaxation time is then given by

h
7 =

4m DT
(7)

This time constant is shorter by a factor of 4 than if equi-
librium was reached under conditions of constant pres-
sure instead of constant average density. Since DT goes
to zero as T, is approached, the vanishing of the spatial
temperature inhomogeneity 5T —( 5T ) will undergo
critical slowing down.

As for the density equilibration in the same situation of
zero gravity, Onuki and Ferrell [16] demonstrate that

At, =
4y DT

Here D =A. /pc+ is the thermal diffusivity. As we shallT
see rome from numerical calculations, the interior temperature
change 5T of the Quid reaches about 70% of its fina
value ET by t, . For 0 & t & y t i

=h /4Dz the width w of
the thermal boundary layer increases diffusively as [19]

1/2

C. Computational procedure

The pressure P in the Quid comes from three contribu-
tions as discussed by Onuki and Ferrell [16],

P(z, t) =P„(z)+5P,(t)+5P, (z, t) . (10)

when the temperature is close to T, . The characteristic
time t, then becomes

2(cv)
(9)

4(DT )b (Cp )b

where (Cv) is the spatial average of Ci over the whole
fiuid layer and (DT)b and (C~)b are the properties at the
Quid boundaries prior to the temperature change. The
calculated t and t„ for He are presented in Fig. 2.
Here the cell height is chosen to be h =0.43 cm which
corresponds to our experimental system and the sound
velocity e is calculated at critical isochore in the limit o
zero frequency [20]. We find that tg levels off due to den-
sity stratification for e(10 . Hence the temperature
equilibration achieved by the piston effect takes a longer
time under the earth's gravity than under zero gravity.
On the other hand, tg is much longer than t„ in the ex-
perimentally accessible temperature range. This means
that the piston effect will not be hindered by the sound
wave propagation under the earth's gravity in contrast to
the case of zero gravity.

The characteristic times discussed above are appropri-
ate for the ideal situation of infinite thermal diffusivity of
th 11 walls. A theory taking into account the
enclosure's finite thermal diffusivity is described in

L

In our experiment, a temperature step takes approximate-
1 1 —2 s due to the thermal inertia of the apparatus and
the time constant of the electronics (see Sec. IV B .
y — s u

The
Quid equilibration at times of less than 3 s is therefore
governed by this time, which is much longer than the
time scale of the piston effect, even in the gravity field
near T, .

BpP [5T—(5T)] .

Equation (8) implies that, even though the diffusive tail of
the temperature inhomogeneity is difficult to observe due
to finite instrumental resolution, information on it can be
gained from the measurement of the density transient.
Here the spatial temperature inhomogeneity is consider-
ably amplified through multiplication with the thermal
expansion coefficient (Bp/BT)~ that diverges as T, is ap-
proac e .oached. For He the magnitude of the dimensionless

fmultiplication factor (Bp B/)T~(T, /p, ) is of the order o
10 at e=1X10 . It is thus clear that a measurable
slow density equilibration results from the diffusive tail of
the temperature equilibration.

Onuki and Ferrell [16] have also discussed the effect of
gravity on the characteristic time t

&
of the adiabatic ener-

gy transfer. For the Quid with p=p„most of the Quid is
off the critical isochore under the inQuence of gravity
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FICi. 2. Characteristic times t„, t&, and tg as defined in the
text and in Eqs. (5) and (9), plotted versus e along the critical
isochore. The solid circles mark the time when the maximum of
the rms density inhomogeneity is predicted from computer
simulations (Sec. III).
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Bp BT Bp

aT, at+ aP,
Y(z =0)= Y(z =h),

(12)

where

r)P (z, t)
Y z, t —:

Bt

BT ' 1
1 ——

Bt y

()T
()P

1 8 ~BT
pc& Bz Bz

(13)
T (z, t =0)= T, , 'r(z =0, t) =T (z =h, t) = T& .

In solving Eqs. (12) and (13) numerically, Y is always tak-
en at the (n +1)th time step; a smooth transition from
the Crank-Nicholson scheme to the fully implicit method
[22] is used for T depending on the differencing time step
At. Although the restriction for a stable solution on the
maximum At is removed, the existence of strong non-
linearity forces us to try various sizes of 4t to obtain con-
vergent and accurate solution. Once a 10 grid is set, T;
and F; are sandwiched to form a 2X vector; the
coefficient from the finite difference of Eqs. (12) and (13)
form a band diagonal matrix. The simultaneous solutions
of T and Y at the (n + l)th time are obtained by solving
the matrix through L U decomposition and backsubstitu-
tion [22]. These intermediate T, 's and Y s are used to
calculate 5p s from Eq. (4). Then the intermediate T, 's

and p,. 's are used to update the spatially varying thermo-
dynamic coefIicients. Usually up to three such iterations
are needed to achieve a convergence for each time step.

Near the critical temperature T„several thermo-
dynamic properties, such as C& and k, are strongly diver-
gent as T, is approached along the critical isochore.
Then Eqs. (12) and {13)become highly nonlinear. The
nonlinear coupling between temperature and density is
included through the iteration as mentioned above. In
Appendix A we indicate the relevant equations for the
measured static and dynamic properties that were fitted
to scaling expressions. In Appendix 8 we describe the
grid generation used in the computation.

III. COMPUTATION RESULTS

Only the fluid with p=p, and cell height h =0.43 cm
is considered in this section. To visualize what is happen-

Here P, (z) is the equilibrium pressure before the tem-
perature step, 5Po(t) is the homogeneous pressure change
after the step and 5P, {z,t) is induced by the local density
variation 5p(z, t) B. y spatially integrating Eq. (3), we
have

hP(z =h, t) P(—z =O, t)=g I p(z, t)dz=pgh .
0

Based on Eqs. (10) and (11) one has at the boundaries
5P, (O, t) =5Pl(h, t) =0 due to the mass conservation.
Our computation takes advantage of the resulting period-
ic boundary condition for 6P. Taking now a partial time
derivative on Eqs. (3) and (11), and using Eq. (4), we have

ing within the fluid layer after a step change in tempera-
ture of the horizontal boundaries, we will show (a) dia-
grams of the spatial distribution of temperature, pressure,
and density at given times and (b) temporal profiles of
these quantities at specific locations, especially at the 1o-
cations of the density sensors in our experimental cell
which are separated from the top and bottom boundaries
by 0.267h.

The following notation of scaled variables will be used:

T T.
Reduced temperature: e =

T.
AT

temperature step: Ae =
T,

'

(p —p, )
density deviation from p, : hp =

pc

density change from initial equilibrium: 5p =5( b.p ),
rms density change from initial equilibrium:

5p...—= (5p') '",
where ( ) is the spatial average. After the step he, the
local changes in the fiuid are denoted by 5e(z, t), 5p(z, t),
and 5P, (z, t) while 5p, , characterizes the overall density
change. A11 the quantities are scaled by their critical pa-
rameters T, =3.310 K, p, =0.0414 g/cm, and
P, =1.146X10 dyn/cm .

It is instructive to first describe the dynamics of equili-
bration when the isothermal compressibility Pr is very
sma11, so that the density stratification changes are negli-
gible for a step Ae in the earth's gravity field. Following
this, the diagrams are shown for moderate and strong
stratification.

A. Small strati6catioa

Figure 3 shows a spatial profile for @=3X 10 and a
step Ae = 1.5 X 10 . The three superposed graphs show
the changes 5e(z, t), 5P, (z, t), and 5p(z, t) at four time in-
stants. The initial conditions for the computer simula-
tion are shown by the dotted lines at t =0+.

By t =ti =1.22 s, the pressure 6Po caused by the pis-
ton efFect has risen very rapidly to 0.003. The work done
by this pressure change has raised the temperature uni-
fol'nlly 111 tile bulk Auld to 5EIAE 0.56 willie dlffuslon
from the wall produces boundary layers of efFective width
w/h =0.0071. The temperature step increase at the wall
has caused a sharp density decrease within the thin
boundary layer because of the fluid's large thermal expan-
sion coe%cient. The fIuid expansion within the boundary
layer is compensated by the density increase in the interi-
or of the fluid for total mass conserved. Hence the direct
consequence of the piston efFect is the density disturbance
in the entire fluid layer from its initial equilibrium. The
density change results in the pressure change 5Pl(z„t)
through the coupling of gravity, whose magnitude is
much smaller than that of 5Po(t). As time increases
beyond t&, the boundary layer continues to widen; the lo-
cal density in the bulk fluid reaches a z-dependent peak in
such a way as to cancel out in an integral fashion the den-
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FIG. 3. Simulated spatial profiles for 5e, 5P&, and 5p versus z
at three instants after the temperature step b,@=1.5X10 at
a=3 X 10

sity decrease in the expanding boundary layer. Due to
the boundary layer expansion, the Quid within approxi-
mately h/4 from the walls will approach final equilibri-
um from the opposite direction from that of the Quid in
the middle.

In Fig. 4, we present the temporal profiles of the aver-
age temperature change (5e), the temperature inhomo-
geneity [5e—(5e) ], the density induced pressure change
5P&, and 5p at the locations of both density sensors and
in the cell middle. It can be clearly seen that 5p is simply
a mirror refiection of [5e—(5e) ], in agreement with Eq
(8). The density equilibration appears to depends strong-
ly on position, being slowest in the rniddle.

In Fig. 5, the relaxation of 5p is shown on a semiloga-
rithmic scale that emphasizes the behavior at long times.
The asymptotic behavior at all three positions can be ap-
proximated by a single exponential function

FIG. 4. Temporal profile for the average temperature (5e),
the temperature inhomogeneity [5E—(5e) ], 5P&, and 5p taken
at the two sensor locations and the middle of the fiuid layer, fol-
lowing the temperature step he=1. 5X10 at e=3X10 . In
the top and bottom graphs, the solid and dashed curves overlap.

Also shown in Fig. 5 is the density change 5p, , Be-
cause the contributions from regions close to the boun-
daries are included in this average, 5p, , reaches an
asymptotic exponential decay mode much sooner than
the density deviations at the sensor locations. The 5p, ,
peak appears at t-t .

B. Moderate strati6cation

In the presence of observable stratification, one can ap-
proximately picture the total density change 5p(z, t) as a
sum of two contributions:

5p(z, t)=5p(z, ao )+ 3 (z) exp(

tlat)

. —(14)
10

The resulting relaxation time ~ agrees with the prediction
by Eq. (7) as shown in Table I. Because the density devia-
tion in the interior of the Quid results from the boundary
expansion whereas the boundary layer itself expands
diffusively, 5p reaches an asymptotic regime earlier at the
locations closer to the boundaries. By the time the
asymptotic regime is reached at the location of the densi-
ty sensors, 5p has already decayed to a magnitude less
than 10 . One can therefore expect that this asymptotic
regime will be observable over a restricted range of time
when the limited instrumental resolution, 5p=2X10
is considered (see Sec. IV). In a typical experiment, the
observed decay will be approximated by Eq. (14). Such a
derived efFective relaxation time might not necessarily be
the asymptotic one, as will be discussed in detail in Sec.
IV.

10

10
-5

10-6

0
I

300
t (s)

I

600

Flax. 5. Semilogarithmic plot of ~5p(t) 5p( ~ ) ~
taken at—the

two sensor locations (top and bottom) and the Quid middle for
De=1.5X10 at e=3X10 . 5p, , indicates the overall den-

sity deviation from initial equilibrium. The double-arrowed line
marks the limit of experimental resolution in 5p.
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TABLE I. The asymptotic relaxation times ~ for He in Oat
cell with h =0.43 cm, as a function of e, with p=p„under nor-
mal gravity. Column 2 is from the simulated density decay;
columns 3 and 4 show the approximations with two types of
spatial average on DT as described in text; column 5 is for
DT(p, )—this would correspond to the situation of zero gravity.
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5p(z, t) =5ppT(z, t)+5p „„(z,t) . (15)

Here 5ppT indicates density disturbance caused by the
piston effect as we have discussed in the previous subsec-
tion; and 5p „„is the result from the stratification change
upon a temperature step he. In the case of he) 0, the
stratification will decrease due to the decreasing compres-
sibility. Consequently, the density in the bottom (top)
half of the cell will decrease (increase) as the fiuid of
p=p, progresses towards a new equilibrium, leading to
5p „,asymmetric about the cell rniddle. On the other
hand, as we have seen in the previous subsection, 5ppT is

symmetric about the cell middle, and it decays back to
zero as time tends to infinity after having been raised
through a maximum by the piston effect. Hence we ex-
pect that the two density sensors (located as shown in
Fig. 1) will record a substantially different time profile.
The density transient at z =h/2 will only be affected by
the piston effect. Shown in Fig. 6 are the average temper-
ature change and temperature inhomogeneity, 5P&, and

5p as functions of time; they are presented in the same
format as in Fig. 4 to emphasize the differences with the
situation in the absence of stratification. After reaching
the peaks of density deviation, 5ppT and 5pg„„always re-
lax in the same direction at the bottom sensor location
but into opposite direction at the top sensor location.
The competition between 5ppT and 5p „„atthe top sen-
sor location gives the false impression that the density
transients at the top and bottom sensor location decay
with different time constants; in some situations this com-
petition prevents the use of a simple exponential function
to approximate the density transient decay. This can be
seen in a more expanded presentation of the absolute
values ~5p(t) —5p( ~ )

~

versus time on a semilogarithmic
scale in Fig. 7. In fact, 5p«~(t) decreases beyond its
equilibrium values before it is corrected back towards it,
causing a sharp dip in the plot at t =4X10 s. A fit of
Eq. (14) to the three individual curves for t )2X104 s
gives the same asymptotic relaxation time ~ within the er-

FIG. 6. Temporal profile for the average temperature (5e),
the temperature inhomogeneity [5e—(5e) j, 5P„and 5p taken
at the two sensor locations and the middle of the fiuid layer, fol-
lowing the temperature step he= 1.5 X 10 at a=3 X 10

ror of determination, in good agreement with the predict-
ed value (see Table I). Clearly stratification has not
affected ~. However, for this value of he, the asymptotic
behavior is not observable for 5p„, because of the limit

imposed by the instrumental resolution, as shown by the
double-arrowed line in Fig. 7. This demonstrates that the
"effective" relaxation times ~,z obtained by fitting Eq.
(14) to the experimental data might give different results
for the bottom and top sensors. This is a general observa-
tion at all temperatures we have already mentioned previ-
ously [14].

In the presence of even modest density stratification,
the temperature equilibration is affected in a very sensi-
tive way. As we compare [5e—(5e)] in Figs. 4 and 6,
the temperature at the top sensor location equilibrates
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FICx. 7. Semilogarithmic plot of ~5p(t) —5p( ~ ) ~
taken at the

two sensor locations (top and bottom) and the fiuid middle for
De=1.5 X 10 at a=3 X 10 . The double-arrowed line marks
the limit of experimental resolution in 5p.
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ahead of the one at the bottom. This can be explained by
reexamining Eq. (2). The coupling between the pressure
and temperature is through (BT/i3P) which varies
slightly with density as shown in Fig. 21(b) below. There-
fore even a homogeneous pressure change 5PO caused by
the piston effect converts its mechanical energy into
internal energy in an inhomogeneous way, resulting in a
spatial temperature gradient in the bulk fiuid immediate-
ly after a temperature change at the boundary.

C. Strong strati6cation
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As the critical temperature is approached, the roles
played by 5ppT and 5pg„, are changed in favor of the
latter. The trend can be best illustrated in Fig. 8, where
we plot the respective amplitudes of 5ppT and 5p „,for a
small temperature step as a function of e. The dashed
line is taken from the maximum value of (5ppT), , as
shown in Fig. 5 divided by he. It gives an idea of how
strong a spatial inhomogeneity in density can be induced
by the piston effect. The solid line is the rms average of
5p at t = ~ divided by Ae. It indicates the amount of the
change in 5p due to the change in stratification for the
same temperature change. As we expected, 5ps„„dom-
inates at small e while 5ppT does at large e. In between,
there is a crossover region where the observable density
profiles p(top, t) will be complex.

In Fig. 9 we show for @=3X 10 and De=1.5 X 10
the time profiles of [5e—(5e) ], 5P, (z, t), and 5p(z, t) at
the three locations as described before. At a=3 X 10
the piston effect sti11 rapidly equilibrates the average tem-
perature at the fiuid interior, in the same way as in Figs.
3 and 6. Its effect on density deviation is still visible in
the plot. However, the density changes due to
stratification after a long time are much larger than the
ones by the piston effect at these particular positions in
space. A semilogarithmic plot in Fig. 10 for the top and
bottom sensors confirms the density transient decays to
be exponential for t ) 1X10 s. A fit to the straight por-
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FIG. 9. Temporal profile for the average temperatures (5e),
the temperature inhomogeneity [5e—(5e) ], 5P„and 5p taken
at the two sensor locations and the middle of the Quid layer, fol-
lowing the temperature step he=1. 5 X 10 at @=3X 10

tions of the curves gives again the same value of z for
each of them, which is compared with the result from Eq.
(7) where DT has been taken on the critical isochore (see
Table I). Only a slight eff'ect on r from stratification is
noticed, which is consistent with arguments presented by
Berg [23], who developed expressions for the asymptotic
behavior of density transients in the presence of gravity.

It should be pointed out that the temporal profiles of
the spatial inhomogeneity in temperature and pressure
have dramatically changed compared to the correspond-
ing ones with moderate stratification in Fig. 6. As in the
case of moderate stratification, the work done by the
homogeneous 5Po on the bulk fiuid is converted inhomo-
geneously into internal energy. As a result, the tempera-
ture at the top half cell equilibrates not only ahead of the
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FIG. 8. Sensitivity of 5ppT and 5pg„„ to a small temperature
step Ae as a function of e. Here d (5p»)/de is calculated from
the maximum value of (5ppT), , as shown in Fig. 5, and
d (5pg„„)/de is from the rms average of 5p at t = ~. Both the
calculations are made with h =0.43 cm, g =go, and
he=1X10 e.

t (Io's)

FIG. 10. Semilogarithmic plot of ~5p(t) —5p(~) ~
taken at

the two sensor locations (top and bottom) and the Quid middle
for he=1. 5X10 at e=3X10
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one at the bottom half (Fig. 6) but also ahead of the aver-
age temperature (Fig. 9). This leads to the surprising
phenomenon that the temperature starts to overshoot its
equilibration value Ae near the top boundary, as the pis-
ton effect continues to draw energy from the bottom
boundary layer and equilibrates the temperature in the
whole bulk Quid. This phenomenon has been indepen-
dently found and discussed by Boukari, Pego, and Gam-
mon [18]. The spatial distribution of the overshooting
and its evolution are presented in Fig. 11 for e =3 X 10
and a step b,@=1.5X10, where 5 (ez, t), 5P, (z, t), and
5p(z, t) are plotted against z at several instants. The de-
tails will be discussed in Appendix C. Due to the temper-
ature overshoot, the density transient at z =h /2, induced
initially by the piston effect, goes beyond its new equilib-
rium value. The density transient shows a sharp dip in
Fig. 10 for 5pm;d at t=7X10 s (=7.5r). For
t & 10~=1.2X10 s, its decay becomes parallel with the
ones at other locations. Clearly the overshooting will
have a strong effect on the determination of effective re-
laxation time at z =h/2.

D. The density relaxation times at normal gravity

Because of the complex behavior of the density tran-
sient decay, it is important to describe clearly the method
of determining the effective relaxation time ~,~ in a con-
sistent way. Hence the temperature steps Ae used in the
simulation are comparable with the ones taken in the ex-
periment described in Sec. V. After the transient has de-
cayed to roughly —,

' of its maximum amplitude, we fit Eq.
(14) to the remaining portion. In the worst case, such as
when the piston effect dominates the transients the ~+e8'

determined from the same fit, but over about —' of the
3

remaining decay, can have a value that is 15% smaller

than the previous one. Furthermore„ if a Gaussian noise
with the amplitude of 2X 10 and rms of 0.5 is added to
the simulated transient before the fit, the deduced ~,~ will
be lowered by up to 25%. This noise level corresponds to
that in the density measurements, described in Sec. V.
Given this value, the larger the Ae, the larger the portion
of the transient closer to the asymptotic regime that will
be resolvable, which results in larger value of r,tr (see Fig.
5).

e8'From Fig. 7 it can be seen that the determination of ~
will then depend on the spatial location. In Fig. 12 we
present the ~,z at both sensor locations obtained from the
fit without adding the Gaussian noise. For @&1X10
the fit is determined by the stratification alone. The jump
in the value of r,a (top) in the region of @=1 X 10 is due
to the competition between the relaxations of the piston
effect and of the stratification. For e & 1 X 10, the re-
sult from the fit rejects mostly the relaxation of the pis-
ton effect.

The interesting question raised from the numerical
simulation is whether there is an asymptotic relaxation
time which is independent of spatial location in the pres-
ence of strong stratification. In the case of small
stratification, the whole system equilibrates with a single
asymptotic relaxation time for t )2r (Fig. 5). For
e&1X10, the temperature overshoot and its subse-
quent decay complicate the density equilibration. For
2X10 &e& 1X10, where stratification is approxi-

—4, —3

mately linear in the vertical position z, the overshooting
effect is small, and the long term density transients
(2r & t & 30') have a single relaxation time at all the loca-
tions except near the cell's middle. For e&5X10
where stratification is strongly nonlinear, our computa-
tions show that the overshooting effects have disappeared
for t & 1.5 X 10 s, and then the whole system equilibrates5
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FIG. 11. Simulated spatial profiles for 6e, 5P&, and 5p versus
z at five instants after the temperature step he=1.5X10 at
e=3X10 '.

FICx. 12. Computed relaxation times for top and bottom den-
sity sensors as a function of e. The symbols are for w, &, as de-
scribed in the text. The dashed line is obtained from the simu-
lated transients in the asymptotic regime (column 2 of Table I).
The se solid line is the approximation of the asymptotic v. calculat-
ed from Eq. (7) with spatially averaged (Dr) to account for
stratification. The dot-dashed line is from Eq. (7) with DT taken
at p„which corresponds to zero gravity. For e & 3 X 10 the
three curves overlap.
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with a single relaxation time. In the crossover region,
overshooting effects are predicted for t & 20~. We did not
continue to search for the unique relaxation time after
t & 30~. The dashed line in Fig. 12 shows the asymptotic
relaxation time ~ as obtained from the fit to the straight
portion of the density transient decays at locations other
than z =h/2 (see Fig. 10). The values are also presented
in column 2 of Table I. The data obtained within the
crossover region are only approximate.

At present, we do not have a clear understanding of
the dynamics of the temperature overshooting (see Ap-
pendix C). We hope that some of the observations from
our numerical simulations will stimulate further theoreti-
cal study of this problem. In the absence of a rigorous
proof, we assume that the asymptotic relaxation regime
exists even in the presence of strong stratification. If as a
first approximation we are to take stratification into ac-
count in the calculation of r via Eq. (7), we can try spatial
averages (DT ') and (DT ) ' in the place of DT ' in Eq.
(7). The result of these averages is shown in columns 3
and 4 of Table I by r, (go) and rb(go). The calculations
using (DT ) give the solid line in Fig. 12, but we speci-
fy that this is only an approximation.

All the time constants ~,~, ~, ~„and ~b show an initial

divergence for e& 3X10, and they gradually level off
into a horizontal plateau. This is caused by the gravity
field since near T, all the Quid sample, except for a very
thin layer in the middle, is off the critical isochore.

The investigation for Xe in Ref. [18] was performed
with h = 5 mm and a temperature quench (he & 0) from
e;=6.9X10 to a&=3.5X10 . In Figs. 6 and 7 of
[18], the authors indicate that for Xe the asymptotic ex-
ponential decays have not been reached for times up to
27 h, and the effective exponent for their decay was found
to vary randomly with z.

We point out that for Xe the temperature range used in
[18] is located right at the crossover between linear and
nonlinear stratification. The observations by Boukari,
Pego, and Gammon then agree in general with what we
have discussed above. We have indeed seen in the corre-
sponding range for He that the effects of the temperature
overshoot prevent us from determining an asymptotic re-
laxation time up to t -30~. Also, as we can see from Fig.
11, 5Pi still changes substantially for t &0.64~; some
nondiffusive temperature change will result from the adi-
abatical work of this spatially varying parameter. It
would be interesting to have density transient decays gen-
erated for Xe at longer times and other values of e to see
whether asymptotic exponential decays are predicted
with a ~ independent of z.

E. Equilibration under reduced gravitational acceleration

Under reduced gravity, taken arbitrarily as
g =go X 10, the equilibration dynamics is substantially
changed, since now stratification is much smaller. Our
numerical simulation then shows that for e&10 the
density transients 5p(z, t} have the same shape as those in
Fig. 4, namely, there is a substantial spike due to the pis-
ton effect immediately following the temperature step,
and a subsequent decay. The divergence of the relaxation

time as T, is approached is strong at least down to
e= 10 . With the reduced stratification, the
phenomenon of temperature overshooting the equilibri-
um value over a certain range of z occurs at lower values
of e; hence the transient decays become exponential at
earlier times than under normal gravity.

F. Temperature ramping at zero gravity
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FIG. 13. Logarithmic plot of 5p, , vs the reduced tempera-
ture at the cell wall, e„,», for four constant ramping rates
de„,»ldt. The ramping starts at equilibrium for both directions.

In Sec. II 8, it was shown that the piston effect equili-
brates the temperature in the bulk Quid in a very short
time, but it disturbs the density from its equilibrium dis-
tribution. This phenomenon exists with or without gravi-
ty. The resulting density disturbance follows the temper-
ature inhomogeneity as predicted by Eq. (8}. The overall
density deviation, characterized with 5p, „reaches a
peak at a time approximately equal to tz (Fig. 2) with an
amplitude proportional to b.T (Fig. 8). It then decays
diffusively with a very long time constant, as shown in
Fig. 5.

Our calculation under zero gravity endeavors to
answer the following questions. (1) Will the 5p, „caused
by the piston effect, keep growing as the temperature of a
fiuid enclosure continues to change? (2) At what temper-
ature ramping rate can a measurement of a Quid property
be considered as in a quasiequilibrium state? The calcula-
tion was carried out for He with p=p, and h =0.43 cm.
It covers the reduced temperature range of 1X10
~ e„,&&

~ 8 X 10 for two ramping rates
~
d e/dt

~

=3.0
X 10 /h and 3.0X 10 /h. In both warming and cool-
ing directions, the ramping started with an equilibrium
state. Our calculations show that spatial inhomogeneity
in e is always less than 4X10 for the ramping rate of
3.0 X 10 /h. Figure 13 shows the computed 5p, ,
versus the reduced temperature of the enclosure, e,&&, on
a logarithmic plot for cooling and warming.

When the cooling starts, there is an immediate buildup
of 5p, s through the piston effect. The sharp departure
from the vertical rise indicates that the system reaches a
quasisteady state at t =5~. As e„,&&

decreases, the thermal
expansion coefficient becomes larger, resulting in a larger
density inhomogeneity off the critical isochore, which in
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turn increases the overall thermal diffusion rate and
reduces the temperature inhomogeneity. This interplay
causes 6p, , to level off to the values of 2.3X10 and
6.4X 10 for the two ramping rates at e

&I

= 1 X 10
Upon warming, the initial rapid 6p, , increase is the

result from increasing temperature inhomogeneity. Then
the increasing diffusion rate "catches up" with the given
ramping rate, leading to a maximum value in 6p, ,
After that, 6p, , decreases with increasing e,&&

until the
sharp change at @=8X10 . (We note that the starting
temperature was above T, . Had it been below T,—as
during typical calorimetric experiments [24] —the 5p, ,
could be expected to be much larger because of the coex-
isting two phases. Such a ramping calculation remains to
be carried out. )

The two ramping rates chosen in our calculation are
comparable with ~de/dt~ = 1.2 X 10 /h and
1.9 X 10 /h, used by Straub and Haupt in recent
calorimetric experiments with the Quid SF6 under micro-
gravity conditions [26]. The eFect on the calorimetric
measurements caused by 6p, , can now be assessed. Us-
ing the computed spatial distributions of temperature and
density when e,&&

is ramped from 1X10 to 1X10
we calculated that 1 —( Cz }/Cz(p, ) ~ 3 X 10 and
2. 5 X 10 for the cooling rates of 3.0 X 10 /h and
3.0 X 10 /h, respectively.

In their experiments, Straub and Haupt started from a
reduced temperature e= 10 and cooled toward e =0.
They reported observing the Cz singularity in agreement
with predictions. Their ramping rate mentioned above is
thus slow enough to avoid the effects from an excessive
6p, „and this is consistent with the result of our calcula-
tions.

G. Summary of the numerical simulations

Detailed numerical simulations of the equilibration
process for He Quid have been made along its critical
isochore over the reduced temperature range
5 X 10 & e & 8 X 10 . The evolution of thermodynamic
variables (temperature, pressure, and density) was fol-
lowed both spatially and temporally under conditions of
normal and reduced gravitational acceleration g. The
density is a good property for studying the equilibration
through the slow diffusive process that dominates at long
times. When stratification is small, the equilibration pro-
cess leads to an exponentially decaying transient with an
asymptotic relaxation time ~. However, the asymptotic
regime may not be accessible in an experiment due to
finite instrumental resolution; an effective time ~,z, with
~,z& ~, is more likely to be deduced from available tran-
sients when an exponential function "appears" to be a
good approximation.

When stratification becomes significant, the spatial and
temporal evolution of the thermodynamic variables be-
comes more complex because of competition between the
processes of the difFusion and adiabatic energy transfer
into internal energy. As a result, at certain values of z
and t the variables will overshoot their final equilibrium
value to which they then slowly relax back. Simulations

then show that the overshooting can prevent the tran-
sients from entering the asymptotic regime even for
t &20~ when e-1X10 . For e&1X10, the
overshooting takes place at earlier times and the whole
system eventually equilibrates with an asymptotic relaxa-
tion time w.

Under normal gravity, g =go, the crossover from
linear to nonlinear stratification starts at @=3X 10 for
He with h =0.43 cm. This crossover corresponds to the

reduced temperature where the simulated ~,z values start
to level ofF after diverging with decreasing e. Under re-
duced gravity the crossover temperature is pushed to-
wards lower values.

It is interesting to compare the evolution of the ther-
modynamic variables in the situation we have discussed
with that in a thermal conductivity cell [28]. Here the
Quid is again contained between two parallel and horizon-
tal plates, but the temperature of the bottom plate,
T (z = h), is kept constant. A heat current is switched on
at time 0+, and crosses the Quid layer in a downward
direction. One observes the temperature difference
b, T =T (z =0, t) —T (z =h ). The general equations de-
scribed in Sec. III B are the same, but the boundary con-
ditions are different. In the case of the thermal conduc-
tivity experiment, the temperature increase at the top
boundary causes the Quid to expand within the top
boundary layer and the resulting piston effect increases
the temperature in the bulk Quid just as we have seen in
Fig. 3. However, this increased bulk temperature drops
sharply across the bottom difFusive layer to the constant
bottom boundary temperature, resulting in a compressed
Quid within the layer. As a result, the piston effects at
the two boundaries nearly cancel each other. Further-
more, the measured AT is roughly the sum of the temper-
ature diff'erences established diQusively within the two
boundary layers. Hence AT across the Quid layer does
not exhibit any sudden change in its time evolution. Nu-
merical simulations, carried out by us but not reported
here, show that 5T(z =0) enters the asymptotic regime
earlier than the local thermodynamic variables in the
bulk Quid and can be observed experimentally. The mea-
sured. relaxation time is smaller by a factor of 4 compared
with equilibration under constant pressure [28]. The
good agreement between the measured relaxation times
[6] and their analysis in [28] is quantitative confirmation
of the inclusion of the adiabatic energy transfer term in
the entropy transport equation when the Quid system is
held at constant volume.

IV. APPARATUS AND EXPERIMENTAL PROCEDURES

A. General remarks

Our method to detect density changes with high reso-
lution uses the measurements of the dielectric constant e'
from two thin horizontal capacitors, located in the upper
and in the lower half of a fiat copper cell (see Fig. 14).
The density is then obtained via the Clausius-Mossotti re-
lation. All the measurements of density and temperature
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are made with ac bridge circuits. Such a circuit consists
[29] of a ratio transformer, a reference element mounted
on a temperature-regulated platform to insure long term
temperature stability, and a phase-sensitive detector with
its output recorded by a computer.

B. The density cell

The Qat horizontal cell, made of oxygen-free high-
conductivity (OFHC) copper is shown schematically in
Fig. 14. It was constructed for density stratification
measurements near the critical point of He [7] and the
tricritical point of He- He mixtures [30]. For conveni-
ence we repeat brieQy the cell specifications and describe
the temperature control.

Two pairs of thin perforated stainless stee1 blades with
28% transparency form the capacitors that are separated
by 2.0 mm, while the total Quid layer height in the cell is
4.3 mm and the layer diameter is 33 mm. The capacitors,
each sampling over a height of 0.1 mm, are symmetrically
placed about the cell's midplane, as shown in Fig. 14.
Beryllium-copper spacers with holes of 2 and 5 mm form
a rigid support and an electrical shielding for the capaci-
tor assembly. These holes enable rapid vertical Quid Qow.
The two capacitors measure the local density p„, and pb„
at the top and bottom positions z„p and z„„. They are
connected individually to an ac bridge circuit. With a
driving voltage of 11 V at a frequency of 1.2 kHz, a densi-
ty resolution and stability of 2 parts in 10 over a period
of several hours is achieved.

FIG. 14. Schematic presentation of the vacuum-insulated
density cell assembly (left) and of the Hat ce11 with superposed
density sensors (right).

A second platform is kept at a temperature T3 between
T =2.8 and 3.2 K. It is regulated within 20 mK with an
analog temperature controller. This platform supports
the cell platform with three stainless-steel tubes of low
thermal conductivity. The controlled temperature
difference between the two platforms produces a heat
current through the thermal coupling of a braid of
copper wires.

The temperature T, of the cell platform is controlled
digitally by a computer. When the offset in the feedback
loop is changed, the heat current through the thermal
coupling adjusts itself, causing a rapid temperature
change of the cell platform. Nonlinear algorithms are
used in the digital control in order to avoid significant
temperature overshooting and oscillations after the step,
so that the initial response of the local density can be
compared with predictions. The regulation of better than
3 pK is reached within 3 s after a step change, and is
shown by the monitoring temperature T2.

The presence and importance of the convection effects
could be assessed by taking both positive and negative
temperature steps, as will be discussed in Sec. IV.

D. Calibration procedures and data acquisition

Following initial thermometer calibration, the critical
point had to be located.

It is known from the scaling properties of Quids nearly
their critical point [9] that (Bp/Bp) z is a symmetric func-
tion of IbpI which permits an accurate location of p, .
Above T„we measured along several isotherms the
difference (pb„—p„), which is proportional to (Bp/Bp, ) z.

with a maximum at p, . From the location of this max-
imum, the critical density was then determined within
0.2%%uo.

Below T„ the coexistence curve was measured at
several temperatures. By using the known equation of
the coexistence curve and also of the compressibility
along the critical isochore, as compared with our data, T,
could be located within 20 pK.

For a sequence of equilibration measurements, both
positive and negative hT steps were taken once equilibra-
tion from the previous step had been reached. The nu-
merical analysis of the recorded curves p», (t) and p«~(t)
from the bottom and top sensor was obtained by fitting
them to a single [Eq. (14)] or double exponential decay of
the form.

5p(t) =5p( ao )+ A,s exp( —t/r, s.)+ A
&

exp( —t/r&),

(16)

C. Temperature control

The cell is bolted to a temperature-regulated platform
with a heater and a germanium thermometer T, on it.
This thermometer and a reference wire-wound resistor
are part of a second ac bridge circuit with its offset feed-
ing back into the heater. Thus the temperature T& can be
regulated to 3 pK. The cell temperature is further moni-
tored by a second thermometer Tz inserted into the cell
wall at the top (see Fig. 14).

where ~,z& v.&. This fit is limited to a time range where
the signal-to-noise ratio is acceptable, namely, where
I5p(t)I is larger than 2X10 . As shown in Sec. III E, v;s.
is usually smaller than the asymptotic ~.

V. RESULTS AND DISCUSSION

We first present experimental results of the density
transient 5p(t) at p=p, after a b, T perturbation, and
compare them with numerical simulations for the same
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temperature step. We choose three representative re-
duced temperatures: (a) e= 1 X 10 at which
stratification is negligible, (b) e= 1 X 10, in a regime
where stratification becomes significant, and (c)
@=3X IO where stratification is very important. Fol-
lowing this, we present equilibration data along two iso-
therms for the first two regimes and finally we show a
comparison of the effective relaxation times from experi-
ments and predictions.

A. Negligible stratification

In Fig. 15 we show the density transients for both sen-
sors in a standard sequence of temperature steps
~5@~=2.5X10 at e=i X10 . The top trace shows
the time dependence of Tz which is sharp with negligible
overshoot at each step. The lower two traces represent
p«~(t) and pb«(t). Immediately after the step, whether
positive or negative, the density shows a sharp spike
where dp/de) 0. This is consistent with the theoretical
description of the piston effect: the sudden wall tempera-
ture increase (decrease) leads to a fast thermal expansion
(contraction) in a boundary layer. Because of mass con-
servation in the cell, the density measured away from the
boundary layer will respond by increasing (decreasing).
At this temperature, the compressibility PT and its
response to temperature change are small. Because of the
negligible change in stratification the density, disturbed
by the piston effect, will relax via a diffusive process back
to its initial value. This can be seen from the traces of
p(t) at two equilibrium states before and after the temper-
ature step: there is no visible density shift. To compare
the experimentally observed equilibration process with
the numerical simulation, we transfer one portion of

0 —-
CO

0—
CD

pb„(t) from Fig. 15 for examination into Fig. 16. The
simulated curve is computed without any adjustable pa-
rameters for the same spatial location z and temperature
step as in the experiment. Several remarks need to be
made:

I'irst, the observed noise in the transients determines
the instrumental resolution in density, which we estimate
to be 2X 10 . The fit of Eq. (14) to the observed experi-
mental decay that follows the spike yields the observable
and effective relaxation time ~,z. As we have discussed
before, such a ~,z usually is smaller than the ~ that is ob-
tained in the asymptotic regime.

Second, we note that while the magnitude and the gen-
eral shape of the computed density change are in good
agreement with the experimental observations, the simu-
lated transient has a much wider spike and its decay
takes a longer time than does the observed. From Eq. (4)
in [19] and Eq. (3) in [25], we see that the temperature
equilibration by the piston effect depends on an experi-
mental ratio, S/V, where S is the boundary area for net
heat fiux and V is the fiuid volume. The larger the S/V
ratio, the larger the adiabatic energy generated at the
boundaries for a finite amount of Quid, and the faster the
temperature will be equilibrated. In our experiment, (a)
heat also flows in through the side wall of the cell; (b) the
sensor supports reduce the effective volume for the Quid.
The larger value of S/V in the experiment compared to
the one in the 10 model might possibly explain the
difference in time scales of the two curves in Fig. 16.
However, this difFerence in the S/V ratio does not affect
the spike magnitudes of the density transients since the
total density change from the boundary layers will
remain the same.

Third, in this temperature range, where stratification is
negligible, the time evolution of the density is calculated
to be nearly symmetric about the cell midpoint for t &~,
namely, p(z, t)=p(h z, t). However, —the experimental
data in Fig. 15 show some differences between the top
and bottom sensors. These differences in the transient
shapes yield slightly different effective relaxation times.
We suspect that the differences might be caused by our
cell departing from a simple 10 geometry, and the com-
plication introduced by the sensor supports. We do not
believe that convection causes the differences since the
absolute magnitude of the change stays nearly the same

0--

I

0.0 0.5 1.0
I

1.5 2.0

t (io's)

FIG. 15. Representative sequence of temperature changes
and the measured temporal density pro61es. The first trace is
the temperature change at the cell's wall followed by those of
the density changes 6p as recorded by the two sensors. The
measurement was taken at @=1X 10 with De=2. 5 X 10

0

100 200 300
t (s)

l

400 500

FIG. 16. Comparison between calculation and experiment of
density transients at the bottom sensor at e=1X10 with
he=2. 5 X 10
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upon warming and cooling steps for either the top or bot-
tom, and furthermore the convection would have decayed
before the long term transient could be affected. We cal-
culated the onset of convection for our cell dimension to
be about b,a=2.2X 10 (see Appendix D for convection
onset calculations), which is smaller than the
he=2. 5X10 used in our sequence. However, the pis-
ton effect is expected to suppress the onset of convection
by quickly reducing the temperature difference between
the interior and boundaries within a few seconds. The
same argument applies to experiments closer to T, .

B. Moderate stratification

In Fig. 17 we show the density transients observed for
E = 1 X 10 and he =+1.2 X 10 during a similar se-
quence of temperature steps (the complete sequence is
shown in [13]). We note the difFerence, both in the shape
and in the time scale, from those in Fig. 15. The shape
of p(z, t) at the sensor location has been explained in Sec.
IV with a simple model when stratification changes can
be detected. The good agreement for the shape and am-
plitude proves that the equilibration process is qualita-
tively understood, and that again there is little evidence
for convection. However, the predicted time scale (simu-
lated r,s) is longer than the observed one by a factor of 6.

C. Strong stratification

In this regime, the density difference between the top
and the bottom of the Quid layer is of the order of several
percent of p, (see Appendix A for the stratification
profiles). In Fig. 18(a), we show the absolute value of the
density transients observed for e=3X10 and after a

4

I

Q. 2—
o 1—

t) = 1302 s

temperature step he= —3 X 10 . The amplitude of the
bottom transient p(t =0)—p( cc ) is normalized to the top
one for the purpose of comparing with the computer
simulation. Because of the long relaxation times and
slow drift in temperature control, fluctuations in the am-
plitudes of p(t =0)—p( ac ) will be enhanced close to T, .
However, the amplitude difference between the top and
bottom transients was found to be random, and on aver-
age they individually are consistent with the simulation.
This justifies the normalization. We note that the magni-
tude of the fast initial density change from the piston
effect has become small in comparison with the large
change from the stratification for both sensors. The top
sensor seems to have recorded an effectively faster tran-
sient than the bottom one.

The simulated density transients for the same tempera-
ture change and sensor locations are shown in Fig. 18(b).
The time scales of the experimental and simulated evolu-
tions are now different by a factor of = 10, as we can tell
from the respective values of ~,~. The ~,~ obtained exper-
imentally is smaller at the top sensor than at the bottom
one. The difference is in the same direction for the ~,&
obtained from the computer simulation, where the
difference, however, is hardly visible.

In Fig. 18(c), we show on a semilogarithmic plot the
simulated transient ~p(t) —p( oo )

~
versus time at four loca-

tions including both top and bottom sensors for the same
change of he. The density overshoot is clearly seen as a
dip at z =0.1h and the top sensor location. Due to the
overshoot, the ~,z will be smaller at the top two locations
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FIG. 17. Comparison between calculation (left) and experi-
ment (right), for the density change recorded by top and bottom
sensors at e=1X10 for a step he=1.2X10 '. The dotted
line on the left is 5ppT, computed without gravity. The numbers

tagged on the curves are ~,&. Note the difference in the time
scale presentation between the left and right, chosen so as to en-

able comparison of the profile shapes.

FIG. 18. Absolute density changes at the top and bottom
sensors for e= 3 X 10 ' and he= —3 X 10, as described in the
text. (a) Experiment. (b) Simulation. (c) Simulation on semilog-
arithmic plot at four spatial locations. The damped density os-
cillation around its value p (shown as sharp dips) is suspected
to be the possible origin for the difference in the ~,z between the
top and bottom sensors.
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compared to the two below z =h /2. The difference in ~,~
gets larger closer to the boundary. We suspect that the
overshoot could be the origin for the smaller observed ~,ff
at the top sensor compared to the value at the bottom
sensor even though the time scale of the computed tran-
sient is larger by a factor of 10 than the experimental one.
The asymptotic regime is only reached at a time well
beyond that of the overshoot and is not accessible to ex-
perimental observation. The difference between the simu-
lated ~«and ~ will be shown in the next section.

D. The effective relaxation times

We have seen in the previous three subsections that as
decreases the time scales increase and so does the

difference between the experimentally observed and the
simulated transient times ~,z as described in Sec. IIID.
The overall results are rejected by equilibration time
constants versus e as shown in Fig. 19. Here Eqs. (14)
and (16) are used to fit the experimental transients for ob-
taining r, tr. (Due to the small values of Ae used in the ex-
periment for e) 1 X 10, the amplitude of the measured
density deviation was not large compared to the instru-
mental noise, and more than —,

' of the remaining transient
tail portion was used in the fit which could lower the
value of r, tr. ) Although the representation of the experi-
mental ~p(t) p(~)~ a—ppears to be a straight line on
semilogarithmic plots, we have seen from the numerical
simulations that the relaxation times obtained from them
may not be the asymptotic ones which are shown in Fig.
12.

Average values of ~,& over successive cooling and
warming transients for the data are shown in Fig. 19. It
is clear that both the experiment and simulation show

that as the critical point is approached the relaxation
times first diverge and then level off. However, the diver-
gence of the calculated w,z is steeper than of the experi-
mental one. The cause of this discrepancy is not under-
stood, but it may have its origin with the beryllium-
copper supports of the capacitors that complicate the cell
geometry. We estimate the DT of beryllium-copper to be
greater than 10 cm /s at T =3 K, which is much larger
than for He.

The leveling off of the relaxation time for e ( 1 X 10
is understood in terms of density stratification, as dis-
cussed in Sec. IVB. Also we see from Fig. 18 that the ~,z
fitted from the simulated transients is smaller at the top
sensor than at the bottom one. One possible explanation
is the density overshoot at the top sensor location. We
note in Fig. 19 some discontinuity in the experimental
r,tr(top) data near e=5X10 . This is not experimental
scatter, but represents a genuine effect where one passes
from the regime where the piston effect dominates to that
where stratification dominates in total density change.
The effect is also shown in the simulation results. (See
the discussion in Sec. IV B.)

In Fig. 20 we compare the experimental and simulated
7 g along the isotherms e = 1 X 10 and e=5 X 10
The data for b,p=0 are the same as those shown in Fig.
19. Also shown on the same plot is the asymptotic r.
For @=1 X 10, it is the small stratification that causes
the simulated ~,z for the top sensor to be smaller than for
the bottom sensor while the difference between the mea-
sured ~,~ at the two locations is not clear. For
e=5X10, the simulated r,s(top) displays the discon-
tinuity at the same average density as the measured one.

10

I I I I IIII' i I I I III[ I I I I I I lli I I I I IIIII I I I I I IIII

103

top bot

10

7 ff (s)
jeff(s)

10
102

~ ~
0

10 10 10

I I I I I lltI I I I I I llll I

10 10 10

I I l I I III I I I I I I II
I

-0.15
I

-0.10
I

0.00 0.05

FIG. 19. The effective relaxation times for density equilibra-
tion at the top and bottom sensors. The open squares and solid
circles are for the experimentally observed ~,ff and the dashed
and dot-dashed lines are guides to the eye. The same symbols,
smaller in size and connected with solid lines, represent the
simulated v;z at the same vertical locations as described in the
text.

FIG. 20. The relaxation time along two isotherms versus 4p.
Symbols are for the experimentally observed relaxation times 7 ff

at the two sensor locations. The same symbols, smaller in size
and connected with solid lines, are for the simulated ~,z at the
same vertical locations, as described in the text. Dashed lines
represent the asymptotic relaxation times ~ calculated from Eq.
(7) as described in the text.
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This discontinuity is also observed for the critical iso-
chore, as shown in Fig. 19, and is due to the transition
from the piston effect dominated regime to the
stratification dominated one. The ~,z obtained by the
simulation is systematically larger than the one observed
in the experiment. This difference, already present along
the critical isochore, is maintained along isotherms as
we11.

VI. SUMMARY

In this paper we have presented a theoretical and an
experimental study of the local density change 5p(z, t) in-
side a pure Quid at constant volume in the region above
the critical point. This study was carried out with He
and the experiment was performed in a Qat cylindrical
cell with two superposed density sensors, mostly along
the critical isochore. Studies were also performed along
other near-critical isochores (not presented here) and
along isotherms. In this paper we concentrate on the re-
gion above T„while those below T, are presented else-
where [11]. The principal results for the critical isochore
are as follows.

(1) At reduced temperatures when stratification
through gravitational acceleration is small, both numeri-
cal computations and experiments demonstrate a rapid
density change throughout the fiuid layer (piston effect),
immediately following a temperature step. The simula-
tion shows that the shape of 5p(t) is sensitive to the verti-
cal z position, especially when the piston effect dominates
and the equilibration process is not yet driven solely by
diffusion. Pseudoexponential transient decays are then
obtained with effective relaxation times that depend on
vertical location. The asymptotic transient decay is al-
ways exponential with a relaxation time ~ that is the same
throughout the Quid, but with amplitudes that are depen-
dent on the vertical position.

(2) There is a good qualitative agreement between the
predictions and experiments as far as shape and ampli-
tude of 5p(t) are concerned even though they change con-
siderably over the critical region we have investigated
(10 & e & 10 '). However, the peak width of the densi-
ty change caused by the piston effect is much narrower in
the experiment than in the simulation. While there is a
fair agreement at e=8X10, the time scale of the nu-
merical calculations becomes systematically larger than
that of the experimental equilibration; this discrepancy
needs to be understood.

(3) Both simulation and experiment show that the
equilibration relaxation time first diverges as T, is ap-
proached and then rolls over to a constant value because
of Quid stratification in the cell. The divergence of the
predicted relaxation time is stronger than the experimen-
tal one and this discrepancy needs to be understood.

(4) The simulation reveals a temperature overshoot
starting at the top boundary layer. This overshoot is
caused by density stratification and results in complex
transients of the density equilibration especially above the
rniddle of the Quid layer. Even though no experiment has
reported such an effect directly, the difference between
7 ff observed above and below the middle of the Quid layer

for e & 1 X 10 can be considered as indirect evidence of
the dynamics that causes the overshoot. This assertion is
based on the good qualitative agreement of the difference
in v,& obtained between the simulation and experiment.

(5) The simulation also reveals that the stratification
only affects the onset of the asymptotic regime around
t - 1 X 10 where the stratification starts to become non-
linear. Away from this e region, the simulated transients
eventually relax asymptotically with a single time con-
stant ~ throughout the Quid but with position dependent
amplitudes. A further theoretical study is needed to es-
tablish rigorously the existence of the asymptotic regime
when the strong stratification is present.

The agreement between the simulation and experiment
can be expected to become more quantitative when data
obtained with a cell having a simpler, more ideal
geometry and insulated side walls can be compared with
the 10 calculations. Pending these further develop-
ments, we can already make predictions of the density
perturbation and equilibration after a temperature step
under microgravity conditions. There the relaxation
times will continue diverging instead of leveling off as T,
is approached.

(6) The overall density inhomogeneity caused by the
piston effect will accumulate if the boundary temperature
is continuously changed. This accumulation depends on
the ramping rate and ramping direction. Our computa-
tion gives a useful estimate of how well a property, such
as Cz, measured during this ramping can approach its
value ideally determined under static conditions.
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APPENDIX A: CALCULATIONS OF THERMODYNAMIC
PROPERTIES OF 3He

Here we give the expressions that are used to calculate
the thermodynamic properties of He for any given e and
p. For the static properties, the calculation is based on
the "restricted cubic model" [9]. These expressions are

pc
a8(1 —8 )r~2 (Ala)

= r(1 b 282) (A lb)

hp= =kr~8(1+c8 ) .p pc

pc
(A 1c)

In Eq. (Al), r and 8 describe the location with respect to
the critical point in a parametric space and a and k are
Quid dependent parameters, which for He are a =4.09
and k =0.819 (based on a new simultaneous fit to the ex-
perimental data of (BP/BT) [31] and Cr [32]). We
adopt the effective critical exponents as given in Ref. [9].
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These are

a=O. 100, /3=0. 355, y = 1.190,

v=0. 633, 6=4.352 .

With the critical exponents listed above, the restricted
cubic model yields

b = =1.310, c = =0.0393 .3 2 5 —3

3 —2P
'

3 —2P

Once the critical exponents and the coefBcients for the
cubic model are selected, the equilibrium density
stratification is readily calculated [33].

The dimensionless expressions for the static properties
are listed in Table 4.3.3 of Ref. [9]. Here we only present
the information on the background contributions for He
(dimensionless). We assume the pressure coefficient to
have an analytic background, i.e.,

dAo(e) =Co+ C i E'+ C2E

with

co=3.42, ci = —2.66, c2= —9.22 .

The regular contribution for specific heat is

&=3.73 X10, g=y/2,W
cmK '

Xo =0.488 E& =2.98 E2 =0.281

From a combination of the values of pC~ and A, we ob-
tain the diffusivity DT. In Fig. 21(a) we present the densi-
ty stratification of He for three values of E, with p =P, in
the cell of 4.3 cm height and under the earth's gravity.
Due to the density stratification, other key thermo-
dynamic properties depend strongly on the vertical posi-
tion z in the cell as the critical point is approached. For
example, in Fig. 21(b), the pressure coefficient (BP/BT)
varies with z in the same manner as Ap. As a result, even
the spatially homogeneous 5I'o produces an inhomogene-
ous temperature profile. We present in Fig. 21(c) the spa-
tial profile of DT at the same three isotherms. When
strong stratification is present for the Quid ofP=P„DT is
not symmetric at the top and bottom boundaries. The
spatial variation is even sharper for the isothermal
compressibility which alters significantly the behavior of
p near the cell center [Fig. 21(d)]. All these observations
point to the necessity of carefully choosing the grid in the
computation procedure in order to properly take into ac-
count the spatial as well as time variation of thermo-
dynamic parameters.

Cy

reg

d Ao(e) d p(p„e)
dE dE'p

From Ref. [31], d p(p„e)/de is independent of e and
we have treated dAo(e—)Id@ as a constant. The new
fit gives 0—

d Ao(e)
3% 22/

dE

d ( , e)P Pc ~

2 90
dE

The thermal conductivity is also assumed to be the sum
of a regular and a singular contribution,

0.296—

0.292—

A, =A,„(T,hp)+A, „„s(e,hp) . (A2) 0.288—
I I I I

For A,„(T,bp) we ignore the density dependence and use
the expression for bp=O in [6]. For the singular part, we
use the scaling expressions as proposed by Sengers [34],
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For He, we have [6]

(A3c) FIG. 21. (a) The equilibrium spatial profiles of 'He density
for g =go and h =0.43 cm at three values of e. (b), (c), and (d)
The spatial variations of DT, (Bp/BP)T, and (BP/BT)~ due to
the density stratification at the same three values of e. The top
of the cell is at z/h =0.
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APPENDIX 8: GRID GENERATION

where M is the number of points inside the boundary lay-
er, and N is the total number of grid points which we set
to be odd. We then set up a grid point distribution based
on

0.5u (i)
A +(1—A)u (i) '

z, =1—x&, ;, N/2&i &N,

where

(Bl)

1 tanh[o. (1 4i /N—)]
2 tanh(o )

(B2)

is the conventional stretching function [35]. The damp-
ing factor o. is obtained by solving the relation

sinh(2o )—
Zo

(B3)

As time evolves, the large initial temperature gradients
within the calculation domain relax. Hence fewer grid
points are needed to approximate these smaller gradients.
To minimize the calculation time, we gradually reduce
the number of grid points.

Once an initial time step Ato is chosen, the boundary
layer thickness w is calculated from Eq. (6). A large tem-
perature gradient is expected within the layer at short
times. Hence we want a small grid spacing near each of
the two cell boundaries. Furthermore, the expected large
spatial variations in thermodynamic coefficients within
the layer around p=p, (see Appendix A) will affect the
dynamics in the neighborhood of this layer. In the case
of p=p„ this layer is at the midpoint of the Auid sample.
Hence a small grid spacing at the cell center is desired.
In the rest of this section, the space variable z is scaled
with cell height h. We now follow the method described
in [35]. The grid spacings at cell boundary and at the cell
center are chosen as

N Aza
za y Azpf /2

spatially homogeneous 6P0 produces an inhomogeneous
temperature profile which causes the temperature at the
top to approach the equilibrium ahead of the bottom one.
The stronger the stratification, the larger spatial variation
will be for the pressure coefficient. Then the piston effect
in turn causes a stronger spatial gradient in temperature.
This phenomenon is very clearly demonstrated when the
stratification becomes nonlinear in space. Then the spa-
tial temperature variation follows that of (BT/BP) .

P
Since the piston effect pushes the average temperature to-
wards the final equilibrium value, the temperature within
the top boundary layer starts overshooting the boundary
value he at the time of 50tg —100t . After the overshoot-
ing node moves out of the top boundary layer, the heat
Aux at the top boundary is higher than at the bottom.
The whole Quid system then starts to release some extra
thermal energy absorbed earlier via the piston efFect. The
local amplitude of the overshooting reaches a peak and
then decays. The motion and final equilibrium location
of the node seem to depend on the difference of the
thermal diffusivity at the boundaries, and they are very
different for fluids with average densities of +hpAO. The
whole fluid system approaches final equilibrium with a
single relaxation time only after the node motion is negli-
gible.

The density equilibration with stratification is even
more complicated to describe than that of the tempera-
ture. It is affected by the temperature overshoot and spa-
tial variation of the thermal expansion coefficient and
compressibility. The density also overshoots its final
equilibrium value, but it is not always driven by the tem-
perature overshoot.

APPENDIX D: ONSET OF CONVECTION
NEAR THE CRITICAL POINT

gapI ATR=
vD~

(D 1)

Consider a Quid between two parallel solid boundaries
separated by a distance I, with a temperature difference
hT. The control parameter for convection is the Ray-
leigh number

APPENDIX C: TEMPERATURE OVERSHOOT

In this section, we present our observations on the tem-
perature overshoot based on our numerical simulation of
the equilibration process under normal gravity. We find
that stratification plays an important role in equilibration
for e ( 1 X 10 . More studies are needed in order to ful-

ly understand the mechanism.
Here we deal with the spatial and temporal variations

of the temperature inside the Auid after the step hT.
First, the thermal diffusivity is higher at the cell bottom
than at the cell top; in the early stage of the equilibration,
the boundary layer expands faster and more adiabatic en-
ergy is drawn at the bottom than at the top. Second, the
conversion of adiabatic energy into internal energy varies
across the bulk Quid due to the density dependence of the
pressure coefficient (BP/BT) in Eq. (2). Hence, even the where

1+(1/l, ) +(l/l, ) (l2/l, )

1+(l3/l ) ) (l2/l)'
(D2)

where v is the kinematic viscosity (g/p) and a~ is the
isobaric thermal expansion coefficient. When the fIuid
compressibility is neglected, we have the Rayleigh cri-
terion for the onset of convective instability, namely,
R & ya results in no convection and R )y0 causes con-
vection. Here yo is a number with the value 1708 for
solid boundaries [36]. This criterion does not apply for a
Quid near the critical point, where the compressibility
diverges. Gitterman and Steinberg [37,38] have
developed an expression for the critical Rayleigh number
to describe the onset of convective instability near the
critical point, and obtain
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y1~DT
1 —Cy/Cp dP

1/4

l2=

XovD

g (tJp/tJP)T
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2 ~Pl, = yovDT g
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Equations (D2) and (D3) are derived without considera-
tion of the density stratification. We have used Eqs. (Dl)
and (D2) to calculate the critical temperature difference

~
b, T, ~

across a Quid layer of He at the critical isochore
for the onset of convection. For our experimental setup,
both solid boundaries are at the same temperature which
undergoes a steplike change by hT to a new value. For
AT) 0, the heat goes into the Quid layer from both the
top and the bottom boundaries; but only the bottom half
of the Quid will be mechanically unstable. As a result we
use the boundary condition of solid bottom surface and
free top surface with l =h /2 =0.21 cm. With this
boundary condition [39], ye = 1100.657 and y, =70.5.
(Reference [39] does not give y, for the boundaries we
choose, so we use the value of y1 for both boundaries be-
ing solid surfaces. ) The known properties of He are used
in the calculation. The result is shown in Fig. 22 where
AT„„, ,„„,is plotted logarithmically as a function of e
along the critical isochore. Here, unlike for an in-
compressible Quid where ~AT„„„,„„,~ continues to de-
crease sharply as T, is approached, the critical tempera-
ture difference passes through a shallow minimum and
tends to a constant value of 5T =7.2 pK.

FIG. 22. The temperature difference hT for the onset of con-
vection in He with effective cell height of 0.21 cm, plotted
versus e along the critical isochore.

In our experiment described in Sec. IV, the tempera-
ture steps did produce initial temperature differences in
excess of this limiting value. However, we have seen only
very limited evidence of convection effects. There are
three possibilities. First, Gitterman and Steinberg [37]
have discussed the inAuence of density stratification on
the predicted AT, and found that it increases strongly as
a function of I. Second, the temperature difference be-
tween the interior and boundaries is quickly reduced by
the piston effect in seconds and does not exceed AT,
through the transient stages. Third, it is also conceivable
that the geometry inside our cell causes a smaller length
scale l than h /2, and therefore a larger b, T can be sus-
tained before convection sets in. In our experiments we
have not conducted a search for the critical hT„„, ,„„,.
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