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Variational bounds on energy dissipation in incompressible Aows. II. Channel Aow
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A variational principle for lower bounds on the time-averaged mass Aux for Newtonian Auids driven

by a pressure gradient in a channel is derived from the incompressible Navier-Stokes equations. When
supplied with appropriate test background Aow fields, the variational formulation produces explicit esti-
mates for the friction coefficient. These rigorous bounds are compared with the predictions of conven-
tional turbulence theory.
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I. INTRODUCTION

Most theoretical approaches to turbulence consist of
approximate treatments ranging from the imposition of
statistical assumptions and moment hierarchy trunca-
tions, to the introduction of scaling hypotheses [1]. In
this paper we focus on a specific fundamental problem,
the rate of mass transport in a pressure-gradient-driven
channel Aow, with the goal of deriving quantitative re-
sults directly from the equations of motion. We establish
a practical framework for the rigorous estimation of the
viscous energy dissipation rate, and thus the mass Aux,
directly from the incompressible Navier-Stokes equations
for a Newtonian Quid. Our approach is to derive a varia-
tional principle for lower bounds on the time-averaged
mass transport rate, utilizing a decomposition that we
refer to as the background Aow method. The variational
principle applies to both laminar and turbulent Aows, and
leads to rigorous predictions free from secondary hy-
potheses or uncontrolled approximations.

This paper is the second in a series of three that follow
up an earlier short presentation of some of these results
[2]. In the previous paper we applied the same general
approach to a boundary-driven shear layer [3], while the
third paper in the series deals with the problem of
thermal convection where bounds on the energy dissipa-
tion rate lead to estimates for the rate of convective heat
transport [4]. The application developed here is to a fiow
driven by a pressure gradient, where the averaged energy
dissipation rate is directly related to the global rate of
mass transport, and to the effective friction coefficient.

Suppose an incompressible Newtonian fluid is confined
to a rectangular channel as illustrated in Fig. 1. A uni-
form pressure gradient of magnitude P/L in the x direc-
tion drives the Aow. Without loss of generality mass

V.u=0, (1.2)

where p(x, t) is the pressure field determined by the
divergence-free condition on u, and i is the unit vector in
the x direction (1 direction). The boundary conditions on
u are taken to be no-slip on the planes z=0 and h, and
periodic in the x and y directions —with periods L„and
Ly respectively —for both u and p. The initial velocity
vector field u(x, 0) =uo(x) is square integrable.

The instantaneous mass Aux in the x direction is

h@(t)=f dy f dz u, (x,y, z, t) .
0 0

(1.3)

In light of the incompressibility condition and the bound-
ary conditions, this flux is independent of x. The instan-
taneous energy dissipation rate (per unit density) in the
Auid is

units can be chosen so that the density p=1, and we
denote the kinematic viscosity by v. The Quid's velocity
vector field u(x, t)=(ui, uz, u3) satisfies the Navier-
Stokes equations

BU P+u.Vu+ Vp =vAu+i
at L
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FIG. 1. Fluid is confined between parallel plates of dimen-
sion L„XL„,separated by a gap h in the z direction. Boundary
conditions are u=O for z=O and z=h, and periodic in the x
and y directions. The How is maintained by a pressure gradient
P/L„ in the x direction.
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vllVullz=v X

where
IIf112 denotes the L2 norm of a function f(x):

llf lip= f If(x)l'dx

We are concerned with time-averaged Auxes

(N)r= —f 4(t)dtT 0

and time-averaged dissipation rates

&vll«112&r= —f vll~« t)115«

(1.4)

(1.5)

(1.6)

(1.7)

The rest of this paper is organized as follows. In Sec.
II we formulate a variational principle for lower bounds
on the time-averaged mass Aux for Aow in a rectangular
channel driven by a pressure gradient. The basis of the
principle is a decomposition of the Aow field into a back-
ground and a Auctuation reminiscent of, but distinct
from, the Reynolds decomposition into mean and Auc-
tuating components. In Sec. III we use elementary func-
tional estimates to produce appropriate trial background
Aows, resulting in explicit estimates. In Sec. IV we com-
pare these rigorous bounds with the predictions of con-
ventional turbulence theory. This comparison leads natu-
rally to questions of how the estimates might be im-
proved, and we present some possible approaches in that
direction.

—llull5+ vll«115=P@ . (1.8)

The kinetic energy is constant on average in a steady
state, so the average rate of viscous energy dissipation per
unit applied pressure is precisely the time-averaged mass
Aux. Estimates of the average energy dissipation rate and
bounds on the average Aux are thus interchangeable, and
in this application we will focus directly on the mass Aux.

The connection between the mass Aux and the energy
dissipation is seen in the energy evolution equation de-
rived from the Navier-Stokes equations (1.1) by dotting
with u, integrating over space, and integrating by parts
using the boundary conditions:

II. VARIATIONAL PRINCIPLE

Long-ti. me limits of the finite-time averages need not
exist, even if finite-time averages are bounded. Moreover,
the long-time averages in Eqs. (1.6) and (1.7) need not be
unique, for even if the limit T~oo did exist, it would
generally depend on the initial conditions. Eventual
bounds on the long-time averages nevertheless exist.

The variational principle for lower bounds on the
smallest possible time-averaged mass Aux expresses the
lower estimate as a supremum over a set of functions
U(z):

Theorem. For every solution of Eqs. (1.1) and (1.2),
with the prescribed boundary conditions,

Ph L
liminf(4) z. & supT~ Qo 12 vL

vL~Ly g pf U'(z) — (h —2z) dz U(0) =0= U(h), HU &0 ~,P 0 2vL„
(2.1)

where U' is the derivative of U(z) and HU is a quadratic
functional that depends parametrically on U(z),

I. L

HU[v] = f "dx f dy f dz —IVvl +v, v3U'(z)
0 0 0 2

(2.2)

component of Eq. (2.4), namely iU, as the background
Aow, and to v as the Auctuation. Writing down the evo-
lution equation for v and performing operations similar
to those that lead to Eq. (2.3), we find

1 U)
»II'+&~II&'"ll'& + )»' ~*lT2 Bz

defined for divergence-free vector fields v(x) satisfying u's
boundary conditions.

Proof. Let u(x, t) be a solution of the Navier-Stokes
equations starting from initial square-integrable
divergence-free velocity vector field u(x, 0). The integrat-
ed form of the energy evolution equation for u (integrated
over time from 0 to T) is

ll«T)ll2+&vll«lie&r= II«0)ll~+P&@&r

(2.3)

Use the fact that

C&=L~ f dz U(z)+ f dy f dz v,

II«II,'=&„&yf"«U'(.)'

(2.5)

(2.6)

Decompose u according to

u(x, t) =iU(z)+v(x, t), (2.4)
x h+2f "dx f 'dy f «U'(z) +ll~vll2

where v satisfies the same boundary conditions as u and
U vanishes at Z=O and h. We refer to the stationary along with Eq. (2.3), to deduce from Eq. (2.5) that

(2.7)
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h vL„L
(@) =2L J dz U(z) — J dz U'(z)

supremurn of the lower estimates in Eq. (2.1) is achieved
when the argument of the integral vanishes, i.e., when

+—J —
IVv~1 + U'(z)v, U, .dx)

2 v

P 2 T

U'(z) = (h —2z),P
2vL

(3.2)

+ pTllv( T)ll'+ 2pTII« o)II'

—
pT Ilv( o)112

—
2pT II«. T) 112 ~ (2.8)

with boundary conditions U(0) =0= U(h). Integrating,
we see that the solution is precisely the Poiseuille profile
in Eq. (3.1), sketched in Fig. 2.

The mass flux in this laminar flow state is

It can be shown by standard methods (see, for example,
t"e»»y»»n Ref 131) that llu(' t)112 and llv(' r)112

remain a priori bounded uniformly in time, implying that
the terms with coefiicients 1/T in Eq. (2.8) will vanish as
T—+ ~. Then invoking the positivity of HU, an eventual
lower bound for (4 ) T is given by the first two terms on
the right hand side of Eq. (2.8). The assertion follows im-
mediately from a completion of the square. IR

We will refer to the positivity condition on HU as the
spectral constraint on the trial background flow profile
U(z). This is because the non-negativity of HU is
equivalent to the non-negativity of the spectrum of the
associated self-adjoint eigenvalue problem

@Poiseuille
Ph Ly PoiseuilleL

12 vL„ y (3.3)

where we introduce the average speed defined by the flux

U=
L h

(3.4)

which for the Poiseuille proNe is

2

U Poiseuille

12 vL
(3.5)

In general a Reynolds number may be defined by this ve-
locity scale along with the channel width and the viscosi-
ty,

AU3 = —vAU3+

+ U'(z)U3,Bp

Bp

Bg

Bp + U'(z)U, ,

(2.9)

Uh

v

The friction coe%cient C&, defined according to

Ph
C~ —=

L„U

(3.6)

(3.7)

V) BV2 BU3

for vector fields v vanishing at z =0 and h and periodic in
the x and y directions. The spectral constraint (A, ;„&0)
makes the variational problem for the extremum flow
profile somewhat unusual, and one must use care in the
application of standard constrained variational calculus
to derive the Euler-Lagrange equations for the optimal
background profile U(z) 15j. We will return to this issue
in Sec. IV, where we indicate how the Euler-Lagrange
equations are derived. Optimization notwithstanding,
this variational formulation will be useful for establishing
rigorous bounds: to derive a lower estimate on the time-
averaged mass flux we need only produce a trial back-
ground fiow profile U(z) satisfying the boundary condi-
tions and the spectral constraint. In Sec. III we construct
appropriate flows, and show how the spectral constraint
can be verified by elementary functional methods.

provides a dimensionless ratio of the applied pressure
gradient to the square of the flow velocity scale. For the
Poiseuille flow the friction coe%cient is

CPoiseuille (3.8)

U{g)

When the applied pressure is low enough, the flux in
the Poiseuille profile is a lower bound on all long-time
averaged fluxes, and C&"""'"' is an upper bound on the
friction coefBcient. From the point of view of the varia-
tional principle, this is the case when the Poiseuille flow
profile satisfies the spectral constraint. In fact, more is
true. The nonlinear stability of the planar Poiseuille flow
is ensured by the positivity of the functional

III. EXPLICIT BOUNDS

There is an exact laminar stationary solution to the
Navier-Stokes equations in this geometry, known as the
plane Poiseuille flow:

Pu=i —z(h —z), @=const .
2vL

(3 1)

To see how this arises in the framework of the variational
principle, ignore the spectral constraint and note that the FIG. 2. The Poiseuille Row profile.
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Lx L
I[v j

= f "dx f 'dy f dz v~Vv~'

+ (h —2z)v, u& -,P
2vL„

sary to produce a trial background fiow profile U(z)
which vanishes at z=0 and h, and satisfies the spectral
constraint. What works is a two-parameter profile of the
form

(3.9)
V

Z
5

O&z (5
defined for divergence-free vector fields v(x) satisfying u's
boundary conditions [6]. (This functional is almost the
same as the functional Hz entering into the spectral con-
straint, for U replaced by the Poiseuille Aow profile. The
di6'erence is that the viscosity in I is replaced by half the
viscosity in Kv )T.he positivity of I defines a critical
pressure P„below which plane the Poiseuille Aow is the
unique asymptotic state of the system, where the unique
long-time averaged mass fiux is given in Eq. (3.3). For
P )P, this argument no longer guarantees that the Aux in
Eq. (3.3) is the minimum possible long-time average, and
we must appeal to the variational principle.

In order to derive bounds from the variational princi-
ple for pressure gradients higher than P, /L, it is neces-

U(z)= .

—(h —z) h —5~z ~hV
5

(3.10)

sketched in Fig. 3. As will be shown below, V and 5 may
be chosen so that the spectral constraint is satisfied.

Rather than solve the eigenvalue problem in Eq. (2.9)
in order to check the spectral constraint, we may perform
the analysis directly in terms of the quadratic form. For
the profile in Eq. (3.10), the second term in Kv is estimat-
ed in terms of the first term by standard methods as fol-
lows (for details, see the analogous calculation in Ref.

V L„L Lx L V5f dx f dy f dz uvz —f dx f dy f dz uv3 — ~~Vv~~p . (3.11)

Hence H~ is bounded from below according to

j 4 2
(3.12)

I

we conclude that

2LhP
liminf(4)r ~

z ~ 27 L
4&2L v.— (3.16)

and non-negativity is ensured by the choice

For the fiow profile in Eq. (3.10) subject to (3.13),

h vLx Ly h
liminf(@)r ~2L f U(z)dz — " f U'(z) dz
g~oo Q P 0

=2L hV 4&2L v ——"V—
P 2

Maximizing this lower bound with the choice

2&2 Ph
3 L

(3.13)

(3.14)

(3.15)

This is the essence of our result. Comparing with Eq.
(3.3) we see that while the mass fiux is directly propor-
tional to the pressure drop in the laminar state, we can
only be sure (based on analysis of the Navier-Stokes equa-
tions) that its average is at least proportional to the
square root of the pressure drop for strongly driven—
including turbulent —Aows.

This result may be reexpressed in terms of a friction
coefficient and a Reynolds number by defining the
minimum velocity scale as in Eq. (3.4),

(3.17)

and using it to define the Reynolds number as in Eq. (3.6),
and the friction coefficient as in Eq. (3.7). Then our
upper bound may be cast in a dimensionless form [analo-
gous to the laminar case in Eq. (3.8)]

C ~ — 1+
32 v'2 R

(3.18)

IV. DISCUSSION

0 1

0 6
I Z

h—8 h

FIG. 3. Trial background flow profile U(z).

We have derived a rigorous upper bound on the fric-
tion coefficient, valid when P ~ (48/V2)v L„/h, so that
the boundary layer thickness 5 ~ h /2. Asymptotically at
high Reynolds numbers this bound takes the form
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C& (const, (4.1)

which is independent of the viscosity v, the fundamental
local friction coefficient. This result, which may at first
seem surprising, is in accord with Kolmogorov's scaling
hypothesis for turbulence [7]. That theory asserts that
the rate of energy dissipation in fully developed (R ~~ )

turbulence ought not depend on the viscosity. The ener-

gy dissipation is directly proportional to the mass Aux for
the problem under consideration, and this translates
directly into the viscosity independence of the global
effective friction coefficient.

Kolmogorov's hypothesis —usually invoked for homo-
geneous isotropic geometries —is known from experi-
ment to require corrections in the presence of boundaries,
and the problem of wall-bounded turbulence is necessari-
ly more complicated. Classical turbulence theory in the
form of Prandtl's mixing length closure approximation
[8] (see also Refs. [1]or [3] for a simple version of the clo-
sure) predicts the so-called logarithmic friction law at
high Reynolds numbers:

1

(1nR )
(4.2)

This approximate theory, which with one or two adjust-
able parameters provides a very good fit to existing exper-
imental data for high Reynolds number pipe flow, pre-
dicts a relatively weak logarithmic dependence on the
viscosity. So the rigorous upper estimate in Eq. (4.1)—as
far as the Reynolds number dependence is concerned—
appears to be sharp to within logarithms. Such results
are encouraging, but it is natural to ask where there
might be room for improvement in the estimates.

Two short cuts were taken in Sec. III in order to obtain
explicit rigorous results. First, primarily for analytical
convenience, trial profiles were sampled from a very re-

stricted class of functions, namely simple piecewise linear
functions as in Fig. 3. Second, elementary and somewhat
crude estimates were employed to ensure that the spectral
constraint was satisfied rather than verifying it explicitly.
The constraint is oversatisfied, resulting in an overesti-
mate of the best bound on CI. What is neglected is the
divergence-free restriction on the functions in the domain
of the functional in Eq. (2.2). To optimally check the
spectral constraint for a given test background profile,
the eigenvalue problem in Eq. (2.9) should be solved, and
the lowest eigenvalue determined as a functional of the
test background profile. In the case of piecewise linear
U(z), the eigenvalue problem is a set of linear, piecewise-
constant coefficient differential equations. For the shear
fiow case (Refs. [2] and [3]) the constraint has been ap-
plied exactly for the piecewise linear profiles [9], yielding
an order of magnitude improvement in the prefactor, but
the same Reynolds number dependence for the frictional
drag. Hence it is apparent that even with the spectral
constraint precisely enforced, the simple form of the trial
background How profile that we used will not lead to
qualitative improvement in the upper bound on C&.

Ideally the variational problem for the optimal back-
ground profile will be solved exactly to yield the best esti-
mates that this method has to offer. There is hope that
the extremum background profile for the variational
problem may be solved: the first step in this direction is
to derive the associated Euler-Lagrange equations. Of
course the spectral constraint is not standard, but it can
be handled as follows.

Transform the function to be varied, U(z), to a vari-
able function W(z) according to

W(z) = U'(z) — (h —2z),P
(4.3)

2vL

and rewrite the variational problem as

vLL p,—liminf(@)T &inf. f W(z) dz 0= f W(z)dz, HU &0
P 0 0

(4 4)

(4.5)+ W(z)v&u3 ',
or A,o)0, where A,o is the lowest eigenvalue of the self-
adjoint operator in

Av& = —vhv&+ + (h —2z)u3+ W(z)u3,Bp
Bx 2vL
Bp

Zv ———vaU+ ~,
By

Au3 = —vhu3+ + (h —2z)v&+ W(z)u&,Bp P
Bz 2vL„

BU~ BV~ B'V3'=B +B +B

(4.6)

In terms of W(z), the spectral constraint HU )0 is
equivalently

0( f dx f dy f dz, —~V'v~ + (h —2z)u&u3
0 0 0 2 2vL„

In the form of Eq. (4.4) it is clear that the best possible
bound to be hoped for (the Poiseuille limit) is realized
when 8'—=0. But this is acceptable only if P is low
enough for the spectral constraint to hold, a sufficient
condition for which is the nonlinear stability of the
Poiseuille flow.

Now observe that in the space of square-integrable
functions with mean zero, the set of functions W(z) satis-
fying the spectral constraint is convex. By this we mean
that if W&(z) and W2(z) both satisfy the constraint, then
for each 0 + I; ( 1 the convex combination
tW, +(1 t) Wz also satisfies the co—nstraint. This is most
easily seen by noting that 8' appears linearly in HU, so
the inequality is preserved by replacing either 8', or 8'2
with a convex combination. What this means is that if
the set of 8 s satisfying the spectral constraint does not
include the origin of the function space, then the 8 in the
set minimizing the distance to the origin must lie on the
boundary of the set. Analytically this means that the
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constraint X0~0 can be replaced with 0=0. Because
A,o=A.o[ W] is a functional of W, albeit a complicated one,
the spectral constraint is now expressed in a form suitable
for the usual constrained variational calculus.

Define the functional F [ W] by

F [ W] =
—,
' f W(z) dz —a f W(z)dz+PAO[ W], (4.7)

0 0

0=iku + Bw

az
'

(4.9)

d Bp I'
A, w=v k — w+ + (h —2z)u+ W(z)u,

dz2 Bz 2vL„

6A,00= = W(z) —a+P68' 68' ' (4.8)

where a and p are Lagrange multipliers. Then the
Euler-Lagrange equation for the constrained variational
problem is

The variation of the eigenvalue is

~ dw dw

2f, +k'iw(z')i' dz'
0 dz

(4.10)

where the variation of the ground state eigenvalue X0
with respect to the potential 8' is straightforward to
compute via regular first order perturbation theory.

For simplicity let us specialize to the two dimensional
channel How problem ( v2 =0=u 2 and B/By =0).
Presuming an e' dependence for v i, v3, and p, and using
the shorthand u(z)=e '""v, and w(z)=e '""v3, the ei-
genvalue problem is

T

Au =v k —
2 u+ikp+ (h —2z)w+ W(z)w,2 d . P

dz2 2vt.„

W(z) =a —Pik 2
I

+k'~w(z')~' dz'
dz'

(4.11)

The mean-zero constraint on 8 determines one of the
Lagrange multipliers, so that

The Euler-Lagrange equation for the extremal profile,
Eq. (4.8), expresses the optimal W in terms of the set
(u, w, p) associated with A, =O in Eq. (4.9):

~ dw dw

W(z) =a 1—
dw(z) dw*(z)

dz dz

1 I (,)
dw(z') (,)

dw*(z')
(4.12)

Inserting this into the equation for w with A, =O leads to a
nonlinear boundary value problem in which a is to be ad-
justed so that a solution exists.

While the Euler-Lagrange equation has not been solved
for this incompressible Aow problem, a simpler variation-
al problem with a spectral constraint has been solved ex-
actly in Ref. [5], showing that the procedure is consistent
and adding to the hope that progress in this direction will
be possible. It is likely that a combination of numerical
and asymptotic methods can be fruitfully brought to bear
to solve this nonlinear problem.

Once the optimal profile has been obtained, the self-
adjoint eigenvalue problem associated with the spectral
constraint leads to consideration of the complete set of
eigenfunctions. When the background profile is optimal,
these eigenfunctions provide a basis that is adapted to
turbulent How problems, uniquely generated in an in-
teresting way from the fundamental equations of motion.
It will be interesting to look at the structure of these Aow
fields with the hope that elements of the turbulent dy-
namics may be illuminated in these coordinates (see Ref.
[9] for further development of this idea applied to the
piecewise linear background profile in the shear-Aow
problem). Using these adapted bases for Galerkin trun-
cations, leading to finite dimensional dynamical systems

models, is also an interesting open area for investigation.
A different variational approach to bounds on Aow

quantities was previously developed starting from the
Reynolds decomposition into mean and fluctuation Aows

[10]. The predictions of that method, both the Reynolds
number scaling and the magnitudes of prefactors, are
generally the same as those derived in this paper directly
from the Navier-Stokes equations but without the addi-
tional assumption that time averages exist, or that spatial
averages are time independent.

In conclusion, the methods and results presented here
illustrate the potential and utility of rigorous studies of
the Navier-Stokes equations in problems of direct
relevance to high Reynolds number turbulence. Al-
though many mathematical challenges remain, the
outlook is good for continued development of these tech-
niques, resulting in improved analytical estimates and
more fundamental physical understanding of the struc-
ture and behavior of Auid dynamical systems.
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