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Nearest-neighbor statistics for packings of hard spheres and disks
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The probability of finding a nearest neighbor at some radial distance from a given particle in a
system of interacting particles is of fundamental importance in a host of fields in the physical as
well as biological sciences. A procedure is developed to obtain analytical expressions for nearest-
neighbor probability functions for random isotropic packings of hard D-dimensional spheres that are
accurate for all densities, i.e., up to the random close-packing fraction. Using these results, the mean
nearest-neighbor distance A as a function of the packing fraction is computed for such many-body
systems and compared to rigorous bounds on A derived here. Our theoretical results are found to
be in excellent agreement with available computer-simulation data.

PACS number(s): 61.20.—p, 05.20.—y

I. INTRODUCTION

Systems of many interacting particles are ubiquitous
in nature and in man-made situations. In considering
such many-body systems, a very natural question to ask
is, What is the efFect of the nearest neighbor on some
reference particle in the system? The answer to this ques-
tion requires knowledge of the nearest-neighbor distribu-
tion function H(r), i.e. , the probability density associ-
ated with finding a nearest neighbor at some radial dis-
tance r from the reference particle. From H(r) one can
determine other quantities of fundamental interest such
as the m, ean nearest-neighbor distance behoeen particles
and, in the case of sphere packings, the random close-
packing density Know. ledge of H(r) and A is of fun-
damental importance in a host of fields in the physical
and biological sciences, including the molecular nature of
liquids and amorphous solids [1—11], transport processes
in heterogeneous materials [12,13], stellar dynamics [14],
spatial patterns in biological systems [15], and the pro-
cessing of ceramics [16].

Hertz [17] evaluated H(r) for a three-dimensional sys-
tem of "point" particles, i.e. , particles whose centers
are randomly (Poisson) distributed. The D-dimensional
generalization of Hertz's solution for Poisson distributed
points at number density p is given by [18]

H(r) = p exp[ —pv(r)]
dv(r)

dr

where v(r) is the volume of a D-dimensional sphere of
radius r [cf. Eq. (16)]. In general, relation (1) is a
poor approximation to the nearest-neighbor distribution
function of systems of finite-size interacting particles.

A major influence on the structure of a many-body sys-
tem of finite-size particles is that brought about by their
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mutual volume exclusion, particularly at high densities
irrespective of attractive interparticle forces that may be
present [19]. For this reason, random packings of hard
spheres and disks have been used to model a wide variety
of materials such as liquids [19],glasses [20], suspensions
[11],porous media [21],particulate composites [22], fiber-
reinforced materials [23], powders [24], cell membranes
[25], and thin films [26], to mention but a few examples.
This paper focuses on obtaining analytical expressions
for H(r) of random isotropic packings of D-dimensional
hard spheres for the entire density range, i.e. , up to the
random close packing density.

Torquato, Lu, and Rubinstein (TLR) [18,27] de-
rived an exact analytical series representation of H(r)
for isotropic distributions of identical interacting D-
dimensional spheres at number density p in terms of
multidimensional integrals over the so-called n-particle
probability density functions pi, p2, . . . , p . The quan-
tity p„(ri,. . . , r„)characterizes the probability of find-
ing a configuration of n spheres with centers at posi-
tions rz, . . . , r„,respectively. For spatially uncorrelated
or Poisson distributed centers, p is trivially a constant
equal to p and the TLR series expression leads to the
simple formula (1).

For an equilibrium ensemble of hard rods (D = 1), the
p for any n are known exactly, permitting an exact eval-
uation of H(r) (see the Appendix). For D ) 2, however,
such exact and complete knowledge of the p for any n
is not possible for equilibrium ensembles of hard spheres,
implying that an exact solution of H(r) for D ) 2 for gen-
eral (equilibrium and nonequilibriurn) ensembles is out of
the question. In the case of equilibrium ensembles of hard
disks (D = 2) and hard spheres (D = 3), therefore, TLR
derived relations for H(r) that amounted to summing
the TLR series approxixnately. Their nearest-neighbor
expressions were shown to be accurate over a wide range
of densities, namely, up to the &eezing point [28]. TLR
noted, however, that their expressions must necessarily
break down near random close packing because they pos-
sess poles at the unphysical packing volume fraction of
unity.
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One of the main aims of the present paper is to
formulate expressions for the nearest-neighbor distribu-
tion function H(r) for equilibrium ensembles of isotropic
packings of hard spheres (D = 3) and of hard disks
(D = 2) of diameter cr that are accurate for all densities,
including the metastable branch from freezing up to ran-
dom close packing. Our procedure is based on knowing
the contact value of the radial distribution function g(0).
We make use of an important observation, namely, that
the functional nature of g(a) between dilute and freezing
densities is fundamentally different from that between
freezing and random close packing. A simple form for
g(cr) is assumed between freezing and random close pack-
ing that incorporates a pole at the random close-packing
density, enabling us to find simultaneously accurate and
simple expressions for H(r) and hence the mean nearest-
neighbor distance A.

In Sec. II, we define and discuss the nearest-neighbor
distribution function and closely related auxiliary func-
tions for systems of identical, interacting D-dimensional
spheres in general and statistically homogeneous and
isotropic packings of hard spheres in particular. In Sec.
III, we derive expressions for the nearest-neighbor func-
tions for an equilibrium ensemble of isotropic packings of
hard spheres (D = 3) that are accurate for all particle
packing fractions, i.e. , up to random close packing. In
Sec. IV, we carry out analogous calculations for hard
disks (D = 2). In Sec. V, we apply our results to com-
pute the mean nearest-neighbor distance A for equilib-
rium, D-dimensional hard spheres as a function of the
particle packing &action. Here we also derive rigorous
bounds on A and compare them to our predictions. Fi-
nally, we make concluding remarks in Sec. VI.

II. DEFINITIONS AND GENERAL RELATIONS

A. Nearest-neighbor functions

We consider nearest-neighbor functions for statisti-
cally homogeneous and isotropic systems of identical, D-

I

dimensional spheres of diameter o at a number density
p. The potential of interaction is arbitrary within the
class of physically meaningful microstructures. We de-
fine the nearest-neighbor distribution function H(r) (for
0 ( r ( +oo) as follows:

H(r)dr = probability that the center of the nearest

particle from any reference particle

(centered at the origin) is at a distance

between r and r+ dr. (2)

H(r)dr =1.
0

It is useful to express the nearest-neighbor distribu-
tion function as a product of two related nearest-neighbor
functions as follows:

H(r) = ps(r)G(r)E(r)

where the exclusion probability function E(r) is defined
by

E(r) = probability that, given that a reference particle

is centered at the origin, a spherical region

of radius r encompassing this reference particle

is empty of particle centers (5)

and the conditional pair distribution function G(r) is de-
fined by

Note that H(r) is a probability density function (having
dimensions of inverse length) and normalizes to unity,
i.e.,

ps(r)G(r)dr = probability that particle centers lie in a spherical shell of radius r and volume s(r)dr
(centered at the origin), given that there are no other particle centers in this spherical region,

except for a particle located at the origin. (6)

Here s(r) is the surface area of a D-diinensional sphere
of radius r,

s(r) = 2~D/2rD —1

I'(D/2)

For example, for D = 1, 2, and 3, s(r) =2, 2vrr, and 47rrz,
respectively.

It follows that E(r) in (5) is the cumulative distribution
function associated with the probability density H(r) and
hence

The integral above represents the probability of end-
ing at least one particle center in the spherical region
around the respective reference particle. Differentiating

(8) yields

OE(r)—
Or

From the relations given above, it, is simple to show
that the exclusion probability E(r) is related. to the con-
ditional pair distribution function G(r) via the expression

E(r) = 1— H(y)dy . (8) E(r) = exp — ps(y)G(y)dy
0

(10)
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The coznbination of (4) and (10) yields Gv(r) = for 0&r &o./2,

H(r) = ps(r)G(r) exp
r

ps(y) G(y) dy . (11)

In summary, one can compute the function H(r) given
either the exclusion probability function E(r) [cf. (9)] or
the pair distribution function G(r) [cf. (11)].

TLR [18] found rigorous successive upper and lower
bounds on the nearest-neighbor functions. One of the
simplest inequalities worth noting here is the following
lower bound:

G(r) ) g(r)

where v(r) is the volume of a D-dimensional sphere of
radius r,

D/27D

r(i + D/2)

For example, for D = 1, 2, and 3, v(r) =2r, rrr, and
4rrr /3, respectively. Moreover, for an equilibrium en-
semble of D-dimensional hard spheres one can relate
Gv(r) at contact (r = o) to this function at r = oo
for D=1, 2, and 3, respectively, according to

where g(r) is the well-known radial distribution function
which characterizes the probability of finding any particle
(not necessarily the nearest particle) a radial distance r
away from a particle at the origin. Observe that when r =
o, G(o) is precisely equal to g(o), the radial distribution
function at contact.

ao =—Gv(oo) = Gv(o'),
ao = Gv(oo) = 1+2&Gv(o),
ao = Gv(oo) = 1 + 4$Gv(o').

Here a0 is the reduced equation of state, i.e. ,

(»)
(i8)
(»)

B. Hard-sphere systems

a0 —— (2o)

Consider now statistically homogeneous and isotropic
ensembles of mutually impenetrable (hard) spheres of di-
ameter 0, i.e., systems of spheres characterized by a pair
potential which is zero when the interparticle distance r
is greater than cr and infinite when r & 0. Calculations of
the nearest-neighbor distribution function H(r) and the
auxiliary quantities, the exclusion probability E(r) and
conditional pair distribution function G(r), are generally
nontrivial for such models for D & 2. For D = 1, an exact
solution is possible (see the Appendix). In the hard-core
region, the following exact relations always apply:

E(r) = 1, H(r) = G(r) = 0 for 0 & r & o..

Reiss, Frisch, and Lebowitz [1] have studied functions
closely related to the nearest-neighbor functions that
TLR [18 have referred to as void nearest-neighbor func-
tions [27]. For example, Gv(r) is the "void" conditional
pair distribution function in which the reference point is
any arbitrary point in the system rather than the center
of a sphere as in the case of G(r). TLR have shown that

Gv(r) = G(r),

However, for the range 0 & r & o, Gv(r) g G(r) [18].
Strictly speaking, Eq. (14) applies to ergodic ensembles
[29] of isotropic D-dimensional hard spheres in equilib-
rium. An equilibrium ensemble of statistically homoge-
neous and isotropic D-dimensional hard spheres, roughly
speaking, is the most random distribution of spheres sub-
ject to the condition of impenetrability.

Reiss et al. [1] determined a number of exact conditions
that the function Gv(r) must satisfy for ergodic ensem-
bles of isotropic hard spheres. For example, Gv(r) and
its first spatial derivative must be continuous at r = o/2.
We note that

where p is the pressure, T is absolute temperature, k is
Boltzmann's constant, and

P = pv(o. /2)

is the D-dimensional particle packing fraction. Finally,
we note that for an equilibrium hard-sphere ensemble,
G(r) is a monotonically increasing function of r [1].

C. Mean nearest-neighbor distances
and random close packing

rH(r)dr .
0

(22)

In the special case of ergodic ensembles of isotropic
hard spheres of diameter o, the mean nearest-neighbor
distance between particles A is given as

rH(r)dr, (23)

which is equivalent to

E(r)dr . (24)

Since E & 0, then A & cr.
Equation (23) or (24) can be used to operationally de-

fine the random close packing frac-tion P, [18]. Specifi-
cally, one can define it to be the maximum packing &ac-

Consider a general ensemble of statistically homoge-
neous and isotropic of D-dimensional spheres of diameter
o with arbitrary interparticle interaction. A very useful
and convenient measure of the structure of such systems
is the mean nearest-neighbor distance between particles A,
which is defined as the first moment of H(r), i.e. ,
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E(r) = H(r) = 0 forr ) o. (25)

We shall adopt the view that P, is equivalent to
the packing fraction at which randomly arranged hard
spheres cannot further be compressed by applying hydro-
static pressure. According to this definition, the internal
pressure must diverge to infinity as one approaches P,
from below along the metastable branch. Song, Stratt,
and Mason [8] have argued that this singularity (refiect-
ing the limit of metastability of the hard-sphere fiuid) is a
special type of critical point. Specifically, they proposed
that the pressure, or equivalently the radial distribution
function at contact g(o'), has the following asymptotic
form in the vicinity of the critical point P, :

~(a) = G(~) - (&. —4) ' for Pm/, . (26)

Based upon simulation data, they determined that s =
0.76 for D = 3 and s = 0.84 for D = 2 (s is exactly unity
for D = 1). More recent simulations [30] suggest that
s = 1 in both two and three dimensions.

III. NEAREST-NEIGHBOR EXPRESSIONS
FOR HARD SPHERES

In this section we will derive nearest-neighbor expres-
sions for an equilibrium ensemble of statistically homoge-
neous and isotropic hard spheres (D = 3). The case D=3
has probably the widest application as it can be used to
model a variety of materials, including liquids [1—10,19],
amorphous solids [4,5,20], suspensions [ll], porous media
[12,13], particulate composites [22], and powders [24].

TLR [18] obtained analytical expressions for the
nearest-neighbor functions H(z), E(z), and G(z) for
equilibrium ensembles of D-dimensional hard-sphere sys-
tems. Here we have introduced the dimensionless dis-
tance

tion over all ergodic, isotropic ensembles j29j at which
A = a. This definition eliminates the possibility of a ran-
dom loose packing of spheres for which A = 0. but which
is known to occur at a volume fraction lower than the
random close-packing value [6]. It also eliminates (in the
thermodynamic limit), the existence of trapped but un-
jammed "rattler" spheres. When P = P„the functions
E(r) and H(r) must obey the relations

TABLE I. Some important packing fractions for
D-dimensional hard-sphere systems. The freezing and ran-
dom close-packing fractions are taken from Refs. [30] and [6],
respectively.

State
D= 1
D=2
D=3

Freezing
packing

fraction Py
1.0

0.69
0.49

Random
close-packing

fraction P,
1.0

0.82
0.64

Closest
packing
fraction

1.0
m/(2~3) = 0.907
m/(3~2) = 0.740

A. General determination of Gv(z)

Reiss and co-workers [1,2] have demonstrated that, for
large x, the conditional void pair distribution function
G~ has the following asymptotic form in arbitrary di-
mension D:

TLR noted that while their nearest-neighbor expressions
are accurate over a wide range of densities, these re-
lations must necessarily break down near the random
close-packing fraction P, . For example, we know that
when P = P„the functions E(z) and H(z), according to
relations (25), must be zero for all z ) 1. The nearest-
neighbor expressions of Ref. [18] do not obey relations
(25) when P = P, however.

One of the main aims of this paper is to obtain an-
alytical expressions for H(z), E(z), and G(z) that are
simultaneously simple and accurate up to the random
close-packing fraction. This shall be accomplished by
utilizing accurate expressions for the contact value of
the radial distribution function g(l) (which captures the
salient features of random close packing [cf. (26)] and
the related void conditional pair distribution function
Gv (z) described in Sec. II. We employ the void quan-
tity Gv. (z) described only to the extent that it enables
us to find approximations for G(z) [via Eq. (14)] and,
hence, H(z) and E(z). Relation (14) is an approxima-
tion at very large P since Gv (z) cannot be equal to G(z)
when P = P, . The study and deterinination of the void
nearest-neighbor quantities between freezing and close-
packing densities will be examined in detail in a future
paper.

(27)

ai a2 aD —i
Gv(z) = ao+ —+ —+ . +

x x2 ~D —1' (28)

Their procedure is based on knowing the contact value
of the radial distribution function g(l) or, equivalently,
G(l). They explored several choices for G(1), includ-
ing the scaled-particle and Carnahan-Starling approxi-
mations. The scaled-particle relation is in good agree-
ment with machine calculations, but is not as accurate as
the Carnahan-Starling relation, especially near the &eez-
ing packing fraction Py (see Table I). However, both the
Carnahan-Starling and scaled-particle relations possess
poles at P = 1 and hence predict a close-packing frac-
tion at the unphysical value P = 1. Therefore, such tra-
ditional expressions for g(1) are wholly inadequate for
densities near random close packing. For this reason,

aq a2
Gv(z) = ao+ —+— for z ) 1/2 (29)

They also showed that such a form is a good approxima-
tion for small z and thus (28) is a good approximation
for the entire range between z = 1/2 and z = oo. Note
that in the limit z ~ oo, Gv (oo) correctly equals the
reduced equation of state ao. For D = 3, Reiss et al. de-
termined the coeKcients ao, a~, and a2 by utilizing three
of the exact conditions mentioned in Sec. II, namely, the
"infinity" condition (19) and the continuity of Gi and
its first derivative at z = 1/2, given relation (15).

In order to obtain an accurate determination of the
coeKcients in the expression
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ap —= Gv(oo) = 1+4yGv(1) (30)

Gv(x = 1/2) =

These conditions yield the following equations for the
three unknowns ap, ai, and a~.

ap + ai + a2 = Gv(l),

at high densities for D = 3, we shall replace the condition
on the first derivative of Gv at x = 1/2 with a condition
on the contact value Gv(1) (equal to the contact value
of the radial distribution function). Thus the challenge
before us is to utilize an expression for Gv(I) that is
accurate up to the random close-packing density.

To summarize, we will require an accurate expression
for the contact value Gv(1) up to random close packing
and in addition will employ the conditions

indicated and found very good agreement with the data.
Note that for D = 3, eight coeKcients must be deter-
mined.

An examination of the figures in the paper by Song
et aL reveals that traditional expressions for g(l) that
possess poles at P = 1, such as Carnahan-Starling and
scaled-particle relations, are accurate up to the freez-
ing packing fraction Pt but increasingly diverge from the
simulation data for P larger than Py. Indeed, such ex-
pressions predict a close-packing fraction at the unphys-
ical value of P = 1. This indicates that the nature and
functional form of g(1) must be difFerent in the density
range between &eezing and random close packing. More-
over, it is important to note that the plot of the inverse
contact value g (1) versus P in the study of Song et al.
reveals that g (1) decreases almost linearly from freez-
ing to random close packing.

This motivates us to use the Carnahan-Starling expres-
sion

(4P —1)ap + 4/a i + 4$a2 ———1,
for 0&/(gt (39)

and the relation

Qp + 2Gi + 4G2 = 1— for Pt & P & P, . {40}
Solving this system of equations yields that the coefB-
cients of (29) are explicitly given in terms of Gv(1) as
follows:

ap —1 + 4QG v (1),

a„= + 2(l —3y) Gv(l),
3$ —4

2 1— (36)

2—
a2 —— + (2P —l)Gv(l).

2(1 —P)

B. Accurate expressions for g(l)
up to random close packing

(38)

The determination of G(x) for arbitrary values of x
rests on having an accurate expression for the contact
value of the radial distribution function g(1) or, equiva-
lently, G(1), up to random close-packing densities. Song
et al. [8] obtained empirical expressions for g(1) for equi-
librium ensembles up to random close packing by Gtting
the expression

Here gt(1) = (1 —Pt/2)/(1 —Pt) denotes the contact
value of the radial distribution function at the freezing
packing fraction Pt —0.49. The random close-packing
fraction P is taken to be 0.64 (see Table I). Equation
(40) is obtained by assuming that g i(1) decreases lin-
early from its value of g& (1) at P = Py to zero at the
random close-packing fraction P = P, . Note that expres-
sion (40) is consistent with the asymptotic relation (26)
with a critical exponent 8 = 1. This value of unity is
slightly larger than the value used by Song et al. , but is
in agreement with more recent simulations [30].

In Fig. 1 we compare Eqs. (39) and (40) to the empir-
ical fit of Song et aI. It is seen that the simple relations
(39) and (40) are in very good agreement with the em-
pirical fit. More sophisticated approximations for G(l)
could have been used. We choose to employ relations
(39) and (40) since they are simultaneously simple and
accurate [33].

C. Accurate nearest-neighbor expressions
up to freezing

We now apply the results of Secs. IIIA and IIIB to
And accurate expressions for nearest-neighbor quantities
in the packing fraction range 0 & P & Py. Use of the
Carnahan-Starling relation (39) and Eq. (14) in conjunc-
tion with relations (29) and (35)—(37) yields the nearest-
neighbor functions to be given by

to available computer simulation data for the entire pack-
ing fraction range, i.e. , 0 & P & P . As noted earlier, for
D = 3 and D = 2 they found 8 = 0.76 and 8 = 0.84, re-
spectively. They determined the coefBcients c by match-
ing the virial (density) expansion of g(1) up to the order

Gi CE2

G(x) = ap + —+
x x2 forx&1, (41)

&(x) = exp( —P[8ap(x —1)
+12ai(x —1) + 24a2(x —1)]) for x ) 1,

(42)



51 NEAREST-NEIGHBOR STATISTICS FOR PACKINGS OF HARD. . . 317S

1.0 E(x) = exp( —/[Sap(x —1) + 12ai(x —1)
+24a2(x —1)]) for x & 1, (48)

0.8
H(x) = 24$(apx + a,x+ a2)E(x) for x ) 1. (49)

g (1) 0.5

The coefficients a0, ai, and a2 are given by

ap ——1 + 4$gf (1)
(&. —6)

C
(5O)

0.2

3$ —4 (&. —&f)a, = + 2(1 —3$)gf(1) (51)

0.0
0.0 0.2 0.5 0.8 1.0

(4. —4f)+( & — )gf( ) (52)

H(x) = 24$(apx + aix + a2)E(x) for x ) 1. (43)

The coefficients a0, a~, and a2 are given by

FIG. 1. Inverse of radial distribution function at contact
g (1) vs packing fraction P for hard spheres (D = 3) and
hard disks (D = 2) of unit diameter. The solid curve for
D = 3 is generated using relations (39) and (40). The solid
curve for D = 2 is generated using relations (59) and (60).
Filled circles are obtained from the empirical 6t of Song et aL

[s].

It is important to emphasize that the relations (47)—
(49) capture the salient feautures in the vicinity of ran-
dom close packing. In particular, due to the existence of
a pole at P = P„both E(x) and H(x) are zero for all
x ) 1 when P = P„i.e. , the relations (48) and (49) obey
(25). This is to be contrasted with the corresponding
relations of Ref. [18] which do not obey conditions (25)
because they do not incorporate information about the
random close-packing state. This point is elaborated on
below.

1+4 + 4' —0'
(1 —&)' (44) E. Discussion

$(3qP —4P —3)
2(1 —y)'

0"(2 —0)
2(1 —P)s

'

(45)

(46)

Figure 2 depicts the exclusion probability E(x) for a
packing fraction below the freezing fraction (P = 0.2)
and slightly above the freezing fraction (P = 0.5). The
figure also compares our theory to available Monte Carlo
simulation data [32]. Agreement between theory and the

1.0

Note that the left-hand side of (43) actually reads o H(x),
but since we implicitly set o = 1, we simply write H(x)
here and henceforth.

The relation for G(x) given by TLR [18] uses the
Carnahan-Starling relation (3.13), but does not satisfy
the infinity condition (3.4). Thus the present relations
(41)—(43) are to be employed over the corresponding re-
lations in Ref. [18], even though they are numerically
only slightly more accurate.

E{x) 0 5

D. Accurate nearest-neighbor expressions
from freezing to random close packing

Gy Q2
G(x) = ap+ —+-

x x2 for x & 1,

Here we obtain nearest-neighbor expressions for densi-
ties between the freezing and the random close packing,
the most difficult regime to treat theoretically. The com-
bination of the new relation (40), Eq. (14) (an approx-
imation for such large P), and the expressions (35)—(37)
gives

0.0
1.0 1.2

X

1.3

FIG. 2. Exclusion probability E(x) for hard spheres

(D = 3) of diameter o vs dimensionless distance x = r/a
at two different values of the packing fraction p. Solid curves

for y = 0.2 and p = 0.5 are obtained from Eqs. (42) and (43),
respectively. Filled circles are corresponding simulation data

[32].
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60

50

H(x)
40

30

20

10

0
1.00 1.05

FIG. 3. Nearest-neighbor distribution function K(x) for
hard spheres (D = 3) of diameter rr vs dimensionless distance
x = r /cr at two different values of the packing fraction P.
Solid curves for P = 0.2 and P = 0.5 are obtained from Eqs.
(43) and (49), respectively. Filled circles are corresponding
simulation data [32].

simulation data is seen to be excellent. Figure 3 shows
that our theoretical expression for the nearest-neighbor
probability density function H(x) is again in excellent
agreement with simulation data for P = 0.5.

Figure 4 illustrates our results for the conditional pair
distribution function G(x) for several values of the pack-
ing fraction. As expected, G(x) is a monotonically in-
creasing function of x for fixed P; it increases with in-
creasing P for fixed x.

Recall that the nearest-neighbor relations derived by
TLR [18] are accurate up to freezing densities and thus
agree well with the simulation data at P = 0.5, a value
slightly higher than the &eezing value Pt = 0.49. How-
ever, the TLR relations must break down near P = P, =

0.64 because the only pole they possess is at the unphys-
ical value P = 1. This implies that the TLR relations
generally overstimate E(x) and H(x) near P . Figure 5
compares our results for the exclusion probability E(x)
at a packing fraction value very near the random close
packing (P = 0.63) to the corresponding TLR result. The
TLR expression overestimates E(x), especially for x near
unity. The efFective range of the TLR expression for E(x)
is about 6 times greater than that of relation (48) at this
packing fraction. The mean nearest-neighbor distance
A predicted from the TLR relation turns out be almost
twice as great at that obtained from relation (48).

How different are the nearest-neighbor functions for
hard-sphere systems versus Hertz's Poisson (randomly
overlapping) sphere systems [cf. Eq. (49)]'? The answer
was given by TLR [18], but it is worth repeating here.
Exclusion-volume effects associated with hard cores lead
to a nearest-neighbor distribution function H(x), which
is strikingly different from the corresponding quantity for
spatially uncorrelated particles at nondilute conditions.
For x ( 1, unlike hard particles, H(r) g 0 for penetrable
particles since their centers can come arbitrarily close to
one another. For large x, H(x) for penetrable particles
is larger than H(x) for hard particles since in the former
system one is more likely to find larger void regions sur-
rounding the central particle as the result of interparticle
overlap. The behavior of H(x) for these models for any
D is qualitatively the same.

Finally, we mention that one can use our results for
hard spheres of diameter o to obtain nearest-neighbor
functions for interpenetrating spheres in the penetrable-
concentric shell (chervy pit) model [-34]. In this model
each D-dimensional sphere of diameter 0 is composed of
a hard core of diameter eo, encompassed by a perfectly
penetrable concentric shell of thickness (1 —e) o /2. The
extreme limits of the impenetrability parameter e = 0
and e = 1 correspond to the cases of fully penetrable
and totally impenetrable spheres, respectively. Given our
totally-impenetrable-sphere results of Secs. III and IV,
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/=0. 63

/=0. 5

0
1.0 2.0

/=0. 2

3.0 4.0 5.0 6.0
0.0

1.00 1.01 1.02 1.03

FIG. 4. Conditional pair distribution function G(x) for
hard spheres (D = 3) of diameter o vs dimensionless dis-
tance x = r/o at three different values of the packing fraction
P. The curve for &P = 0.2 is obtained from Eq. (41) and curves
for P = 0.5 and P = 0.6 are obtained from Eq. (47).

FIG. 5. Comparison of exclusion probability E(x) for hard
~ph~~~~ (D = 3) of diameter o' vs dimensionless distance
x = r/o obtained from Eq. (42) (solid curve) and Eq. (5.22)
(dashed curve) of Ref. [18] for p = 0.63.
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one can obtain the corresponding results for penetrable
spheres (e & 1) by simply replacing cr (on the right-hand
sides of the relations) with acr For example, in the fully
penetrable case (e = 0), this procedure allows one to
recover Hertz's solution (1).

IV. NEAREST-NEIGHBOR EXPRESSIONS
FOR HARD DISKS

G(1) = gt'(1)
(~ ~)

(& —6) forPf &P&P, . (60)

Here gf(1) = (1 —0.436$)/(1 —Pf) is the contact value
of the radial distribution function at the freezing packing
fraction Pt 0.69. The random close-packing fraction
P, is taken to be 0.82 (see Table I).

Equation (59) is obtained by assuming the form

The procedure described above for D = 3 is followed
here to obtain analogous nearest-neighbor relations for
an equilibrium ensemble of isotropic hard disks (D = 2).
Our main aim again is to improve upon the predictive
capability of existing relations [18] in the vicinity of the
random close-packing fraction P, . Hard-disk systems are
reasonable models of fiber-reinforced materials [22], cer-
tain types of cell membranes [25], and thin films [26].

A. General determination of Gv(x)

For D = 2, we assume that the conditional void pair
distribution function is of the form

ai
Gv (x) = ao + — for x & 1/2. (53)

In order to determine the coefFicients ap and ai we will
require an accurate expression for the contact value of
the radial distribution function as well as the condition

(1+cP)
(1 —&)' (61)

(1 —&/2)
(1 —~)' (62)

was used in the TLR study. Relation (59) is somewhat
more accurate than the scaled-particle relation at densi-
ties near freezing.

Figure 1 shows that the agreement between the rela-
tions (59) and (60) and the corresponding empirical fit
of Song et aL [8] is very good.

and determining the coeKcient c by requiring that this
form give the correct third virial coefBcient. We note
that the scaled-particle expression for D = 2

Gv(* = 1/2) = (54)
C. Accurate nearest-neighbor expressions

up to freezing

ao ~a, = Gv(1), (55)

ap + 2ai 1— (56)

These conditions yield the following system of equations: Here we use the results of the previous two subsections
to obtain accurate expressions for nearest-neighbor quan-
tities in the range 0 & P & Pt. Use of relation (59) and
Eq. (14) in conjunction with the general relations (57)
and (58) yields

Solving this system of equations yields that the coeK-
cients of (53) are explicitly given in terms of Gv(1) as G(x) = ao+— for z & 1, (63)

ao = 2Gv(1)—

1a, = -Gv(1)+

(57)

(58)

E(x) = exp[ —P(4ao(x' —1) + 8ai(* —1)] for x & 1,

H(*) = 8y(aox+ a, )&(x) for x &1. (65)

B. Accurate expressions for g(l)
up to random close packing The coefBcients are ap and ai are given by

(1 —0.436$)
(1 —&)'

for0&$&gf (59)

and the relation

Here we follow the same procedure that we used for
D = 3, i.e. , for densities below freezing we employ an ex-
pression that possesses a pole at P = 1 and for densities
between &eezing and random close packing we assume
that g (1) decreases linearly from its freezing value.
Specifically, we employ the expression

1 + 0.128$
(1 —&)' ' (66)

ai
—0.564$
(1 —4)' (67)

Relations (63)—(65) are slightly more accurate than the
corresponding TLR expressions because the present rela-
tions use the more accurate expression (59) for G(1).
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D. Accurate nearest-neighbor expressions
from freezing to random close packing

We now obtain nearest-neighbor relations for densities
between &eezing and random close packing. The combi-
nation of the relation (60), Eq. (14) (an aproximation in
this density range), and general relations (57) and (58)
yields

1.0
\

E(x) p 5

aq
G(x) = ap +— for z & 1, (68)

E(x) = exp( —4[4ao(x —1) + 8ai(x —I)]) for x & 1,
(69) 0.0

1.00 1.01 1.02 1.03 1.04 1.05

H(x) = 8$(aox+ ai)E(x) for z &1. (70)

, (& —&f)ao = 2gf(1)
1

1 —P'

(~. —6)ai ———gf (1)

The coefFicients ao and ai are given by

(72)

FIG. 7. Comparison of exclusion probability E(x) for hard
disks (D = 2) of diameter o vs dimensionless distance x = r/o
obtained from Eq. (48) (solid curve) and Eq. (5.13) (dashed
curve) of Ref. [18j for P = 0.8

ing TLR relation for P = 0.8, a packing fraction value

very near random close packing P, = 0.82. We again
see that the TLR relation generally overestimates E(x),
especially for x near unity.

Relations (68)—(70) are clearly superior to the corre-
sponding TLR relations near P, for reasons already
noted. V. MEAN NEAREST-NEIGHBOR DISTANCE

BETWEEN D-DIMENSIONAI HARD SPHERES

E. Discussion

Figure 6 shows the nearest-neighbor probability den-
sity function H(x) for D = 1, 2, and 3 at P = 0.3. Since
the packing efficiency increases as D increases, H(x) for
x near unity increases with increasing D. In Fig. 7 we
compare the expression (69) for E(x) to the correspond-

20

The mean nearest-neighbor distance between particles
A is defined by either (23) or (24). In dimensionless
terms, (24) can be written as

E(x)dx
OO x

exp 2DP —G(y) y dy
1

H(x) 10

0
1.0 1.2

1

1.4

In arriving at (73) we have used (7), (10), and (21) and
that G(x) = 0 for 0 ( x ( 1. Relation (73) is valid for
any ergodic, isotropic ensemble of D-dimensional hard
spheres.

Before evaluating (73) for the mean nearest-neighbor
distance A/cr of equilibrium hard-sphere ensembles using
the nearest-neighbor relations developed in the previous
sections, we 6rst derive rigorous relations and bounds
on A/o. Specifically, we derive results for A/o in terms
of the packing fraction P and the contact value of the
distribution function G(1).

We begin by deriving an exact expression for A in the
limit P ~ P, . Provided that G(x) has the form (28) and
that G(l) diverges to infinity in the limit P ~ P„an
asymptotic analysis of the integral of (73) reveals that
one has the equality

FIG. 6. Nearest-neighbor distribution function H(x) for
D-dimensional hard spheres of diameter cr vs dimensionless
distance x = r/o for D = 1, 2, and 3 at a packing fraction

P = 0.3. Curves for D = 3, D = 2, and D = 1 are obtained
from Eqs. (49), (70), and (A2), respectively.

1
o D2DQG(1)

for P —+ P, . (74)

The remarkably simple form of expression (75) is note-
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for P —+ Q, . (75)

Next we derive rigorous upper bounds on A (see also
Ref. [35]). Specifically, since G(x) is generally a mono-
tonically increasing function of x for equilibrium ensem-
bles of D-dimensional hard spheres [1], then we have the
following upper bound on E(x):

E(x) & exp[ —2 QG(l)(x —1)]. (76)

Substitution of (76) into (73) yields the upper bound

worthy. Observe that if G(l) has the asymptotic form
(26), then we have the following scaling law for the quan-
tity A/tr —1:

1+ (' "'-, 0&
24$(1 —y/2)

'

(4" —4) (s3)

Observe that the bound (82) involves no approximation
and turns out be valid not only for equilibrium ensem-
bles but for a class of ergodic ensembles of isotropic hard
spheres [35]. Of course, for hard rods (D = 1), expression
(82) is exact [cf. (81)].

In the special case of an equilibrium ensemble of parti-
cles, the bound (81) can be written explicitly for D = 3
and D = 2 using the approximate results of the previous
sections. The combination of (39), (40), and (81), gives
for, D=3,

—& 1+ exp[ —2 QG(1)(x —1)]dx.
0

Substitution of relations (59) and (60) into (81) yields,
for D=2,

The integral of (77) can be further simplified by trans-
forming to the variable u = x —1, giving

(1 —&)'
8$(1 —0.436$) '

(4. —4) (84)
—& 1+ exp[ —2 (j&G(1)(u
0 p

+Du '+ . + Du)]du. (78)

Since each term of the polynomial u +Du + .+Du
is positive, the integral of (78) is bounded from above
by retaining only the linear term Du, yielding the less
restrictive inequality

Elsewhere [35] it is shown that for any ergodic ensem-
ble of isotropic packings of identical, D-dimensional hard
spheres, the mean distance obeys the inequality

—( 1+ 1
cr D2DQG(l) (79)

Thus any packing of identical, D-dimensional hard
spheres in which the mean distance obeys the relation

A &1+ 1

2D(p/pkT —1)
' (so)

where p is the pressure, T is absolute temperature, and A:

is Boltzmann's constant. For equilibrium hard rods (D =
1), we know that G(z) is exactly given by 1/(1 —P) for
1 & x & oo (see the Appendix) and hence the inequality
(79) coincides with the exact result

cr 2$G(1) 2P

It is important to observe that the bound (79) becomes
exact in the limit P ~ P, [cf. (74)]. Elsewhere [35] it is
shown that inequality (79) actually applies not only to
equilibrium ensembles but to a certain class of ergodic
nonequilibrium ensembles, such as the random sequential
addition process [36].

Finally, we derive still weaker but general rigorous up-
per bounds on A. Noting that Gi (1/2) = (1 —P)
G(x) for 1 & z & oo for equilbrium hard spheres, one can
employ inequality (79) to find that

A 1 —Q—& 1+o. D2~$ (s2)

The bound (79) can be written in terms of the reduced
equation of state p/pkT for equlibrium hard spheres via
relations (18) and (19) as

1A) 1+. D2~ (86)

cannot be ergodic and isotropic.
Figure 8 plots our prediction (thin solid line) of the

dimensionless mean nearest-neighbor distance A/o for
D = 3 as a function of the packing fraction P. This is
obtained through use of definition (73) and the relations
(42) and (49). Our prediction is seen to be in excellent
agreement with available simulation data (open circles)
[32]. In the limit P —+ P, = 0.64, our prediction of A/0
correctly goes to zero, in contrast with the TI R predic-
tion in which A/o does not go to zero until P -+ l. It
is interesting to note that the upper bound (77) is so
sharp that it is indistinguishable from the result of (73)
(solid line) on the scale of this figure. The upper bound
(83) (thin dashed line of Fig. 8) is very sharp for pack-
ing &actions between freezing and random close packing
and indeed becomes exact in the limit P ~ P, . The
thick dashed and solid lines are the upper bounds (82)
and (85), respectively. The shaded region is prohibited
to ergodic, isotropic hard spheres according to (86).

In Table II we compare the mean nearest-neighbor dis-
tances for equilibrium hard spheres (D = 3), a face-
centered-cubic lattice of spheres, and Poisson distributed
(i.e. , randomly overlapping) spheres. As expected, A for
equilibrium hard spheres lies between the correspond-
ing distances for the other two systems. Although the
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1.0
0.0

FIG. 8. Dimimensionless mean nearest-neighbor distance A/o
vs packing fraction P for hard spheres (D = 3). The t in so i

49 . 0 en
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( ). pen circles are simulation data [32] Th h d
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upper bounds (82) and (85), respectively. The shaded. region
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86 .

mean nearest-neighbor dista f h dnces or ar and overlap-
ping spheres approach one another in th l' 't pe i' p —+ 0,

ey diverge kom one another a ~ das ~~ is j.ncreased. For
example, at P = 0.5, A for hard spheres is abo t t
as lar e as th

a ou wince

ge as that of overlapping spheres. Note th h
ackin &

oe att e

[«. (16)].
—exp[ —pv(o /2)], where v(o/2) is the volume of a s hvo ume o asp ere

InFi . 9we'g. we depict our prediction (solid hne) of the
dimensionless mean nearest-neighbor distance A/rr for

= 2 as a function of the packing &action P. This is ob-

1.6

TABLE II Dim
ance ~ ~ or

imensionless mean nearest- '
hb-neig or is-

nce /o for a face-centered-cubic lattice of
/( -„~@) )], equilibrium hard spheres (83), and

overlapping spheres (A/o = 1'(4/3)/(2[in(l-

Dimensionless mean
nearest-neighbor distance A/o

Face-centered-cubic Equil'b ' 0qui i rium Overlapping
lattice hard spheres spheres
1.949 1.221 0.945
1.547 1.098
1.351

0.736
1.050 0.630

1.228 1.026 0.559
1.140 1.013
1.073 1.003
1.050 1.000
1.019
1.000

0.420
0.404
0.381
0.338

0.10
0.20
0.30
0.40
0.50
0.60
0.64
0.70
0.74
0.80
0.90

tained through use of the definition (73) and th
( ) an ( ). Our prediction of A/o. again correctly goes
to zero in the limit that P -+ P, = 0.82. A

oun ~~ j is so sharp that it is indistinguishable from
the result of 73 t( ) ( hin solid line) on the scale of this fig-
ure. The thin dashed line of F' 9 '

hig. zs t e upper bound
(84). The thick dashed and s 1 d 1'

ounds (82) and (85), respectively. The shaded region is
prohibited to ergodic, isotro ic h d d
(86.

In Table III we corn apare the mean nearest-nei hbo d'—
tances for three

01 ls-

librium e ~

ee i erent two-dimensional s tsys ems: equi-
um hard dj.sks, triangular lattice of disks an

son distribute ed disks. The general trends described above
for D = 3 apply here as well.

Table IV corn arp res the mean nearest-neighbor dis-
tances for equilibrium hard rods D = 1

ro s, an oisson distributed rods. Note that the non-

jii It

", '. , I Ll~jl III

1.0
0.0 0.5 1.0

FIG. 9. Dim
vs

imensionless mean nearest- hb
packing fraction P for hard disks (D = 2 .

s -neig or distance A o

1' i 11 lib i Ã ' (

an so i ines are upper bounds ~82 a
e s a e region is prohibited to er od'

hard disks according to (86)
ergo ic~ lsotr oplc

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.82
0.90

0.907

TABLE III. Dimensionless mean n

= 7r /[(2~3$) ~ ]), equilibrium hard disks (84), and over-
lapping disks (A/o = ~7r/(4[in(]. —P)] ~

imensionless mean
nearest-neighbor dista A

iangular Equihbrium 0verlappin
lattice
3.011 1.675 1.365
2.130 1.333
1.739

0.938

1.506
1.195 0.742
1.120 0.620

1.347 1.073
1.229

0.532
1.043 0.463

1.138 1.022 0.404
1.065 1.003 0.349
1.052 1.000 0.338
1.004
1.000

0.292
0.288
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0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Periodic
lattice
10.000
5.000
3.333
2.500
2.000
1.666
1.429
1.250
1.111
1.000

Dimensionless mean
nearest-neighbor distance

Equilibrium
hard rods

5.500
3.000
2.167
1.750
1.500
1.333
1.215
1.125
1.056
1.000

A/o
Overlapping

rods
4.746
2.241
1.402
0.979
0.721
0.546
0.415
0.311
0.217
0.000

ergodic lattice arrangement satisfies the inequality (86)
for all P ( 0.5.

TABLE IV. Dimensionless mean nearest-neighbor dis-
tance A/o' for a periodic lattice (A/cr = 1/P), equilib-
rium hard rods [A/cr = (1 + P)/P], and overlapping rods
(A/o = 1/[2 ln(1 —@)]).

functional nature of g(0) between dilute and freezing den-
sities is fundamentally different &om that between &eez-
ing and random close packing. Rigorous bounds on A

were also derived for D-dimensional hard spheres in equi-
librium.
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APPENDIX: EXACT RESULTS
FOR HARD RODS

The nearest-neighbor functions for hard rods (D = 1)
at packing fraction P were found exactly by TLR [18]
using their series expansions. MacDonald [9] found the
same expression earlier using a different approach. One
has

VI. CONCLUSIONS

—2$(x —1)E(x) = exp for x & 1, (A1)

A simple form for the contact value of the radial dis-
tribution function g(o) is assumed between freezing and
random close packing that incorporates a pole at the ran-
dom close-packing density, enabling us to find simultane-
ously accurate and simple expressions for the nearest-
neighbor functions of equilibrium hard spheres and disks
and hence the mean nearest-neighbor distance A. We
made use of an important observation, namely, that the

H(x) = exp
2P

1 —P
for x & 1, (A2)

for x & 1.

The case D = 1 may serve as a useful model of various
types of layered media.
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