
PHYSICAL REVIEW E VOLUME 51, NUMBER 4 APRIL 1995

Improved fluid-dynamic madel far vehicular trafFic

Dirk Helbing
II. Institute of Theoretical Physics, University of Stuttgart, 70550 Stuttgart, Germany

(Received 21 March 1994)

The fluid-dynamic traffic model of Kerner and Konhauser [Phys. Rev. E 48, 2335 (1993); 50,
54 (1994)] is extended by an equation for the vehicles' velocity variance. It is able to describe the
observed increase of velocity variance immediately before a traffic jam develops. Another modi6-
cation takes into account the Gnite amount of space that each vehicle needs. As a consequence,
the improved traffic model does not produce densities that exceed the maximum vehicle density or
negative velocities, like former models did.

PACS number(s): 51.10.+y, 47.35.+i, 47.40.Nm, 89.40.+k

I. INTRODUCTION

During the past decades, physicists and engineers have
tried to develop trafIic models with the aim of optimizing
trafFic Qow. Because of the drastical deterioration of the
traffic situation, this field has recently become very ur-
gent. However, there is still lively debate about the most
suitable approach for an efIicient real-time trafIic con-
trol. Apart from some folloiv the leader -mo-dels [1—4] and
some microscopic models of driver behavior [4—9], many
of the proposed models utilize the analogy of vehicular
trafFic with gases and Quids. In particular gas kinetic
(Boltzmann-like) models [10—13], fluid-dynamic models
[14—23], and cellular automaton models [24,25] have been
suggested. However, since cellular automaton models
contain an extreme number of variables, their numer-
ical simulation is rather time consuming and needs the
application of supercomputers. Otherwise simplifications
have to be made that lead to a coarse-grained description
(so-called low-fidelit models). The problem with gas ki-
netic models is that the introduced average phase space
density p(r, v, t) of vehicles per lane with speed v at place
r and time t is a very small quantity so that the corre-
sponding empirical data are subject to considerable Quc-
tuations. Moreover, Boltzmann-like models include too
many variables to be solved with computers in real time
and to be applicable to on-line tra%c control. Therefore,
some authors have preferred to apply Quid-dynamic mod-
els that can be derived from gas kinetic trafIic equations
as mean value equations for collective variables such as
the average spatial density p(r, t) = J dv p(r, v, t) per lane
or the average velocity V(r, t) = J'dv vp(r, v, t) jp(r, t)
[11—13,26].

This paper is organized as follows. In Sec. II the
Lighthill-Whitham model [27] and the Kerner-Konhauser
inodel [20,21] will be briefly discussed since they are
the basis of the "improved model" presented in Sec. III.
This introduces a modification that takes into account
the safe distance each driver keeps. Moreover, it ex-
tends the Navier-Stokes-like equations of Kerner and
Konhauser by a third difI'erential equation for the ve-
locity variance of vehicles. In Sec. IV a linear stabil-

ity analysis about the stationary and spatially homoge-
neous solution shows the instability of trafIic flow above
a critical density and reveals significant difI'erences with
respect to the Kerner-Konhauser model, including the
onset of instability at higher densities and shorter wave-
lengths. Computer simulations for a small initial pertur-
bation presented in Sec. V confi. rm the instability, but
also demonstrate substantially diferent predictions for
the detailed trafIic flow that develops from this pertur-
bation.

II. FLUID-DYNAMIC TRAFFIC MODELS

The simplest Quid-dynamic model is based on the con-
tinuity equation

Equation (1) describes the conservation of the number
of vehicles on a road without entrances and exits. Since
V(r, t) is an unknown quantity, Lighthill and Whitham
[27] suggested to assume

with a static velocity-density relation V, (p) that could be
determined from trafIic data or derived from the equilib-
rium solution of Boltzmann-like trafiic models [10]. As
several authors showed [14,27—29], Eqs. (1) and (2) can be
applied to the description of nonlinear density loaves and
the formation of shock waves (i.e. , discontinuous density
changes) in traiIic How.

However, by (2), Lighthill and Whitham's model as-
sumes that the velocity V is always in equilibrium.
Therefore, it does not supply an exact description of
ramps or bottlenecks (where tra%c flow is not in equi-
librium). For the same reason, it does not describe the
well-known self-organization of stop and go trafJic wi-th-
a typical oscillation frequency and wavelength [30—32].
In order to remove this shortcoming it was suggested to
handle V(r, t) as an independent dynamic quantity that
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for an unidirectional n-lane road. Analogous to gas ki-
netic models,

P(r, t):= p(r, t) 8(r, t) —q,
BV(r, t)

(4)

is to be d.etermined by an additional differential equa-
tion. Similarly to Kiihne [18,19], Kerner and Konhauser
[20] gave reasons for applying the Navier-Stokes equation

very encouraging. However, assumption (5) is obviously
not justified since the velocity variance O(r, t) should
decrease with decreasing velocity V(r, t) and vanish if
V (r, t) vanishes. Moreover, for certain parameter values,
e.g. , Vo ——140 km/h, 8o ——(45 km/h), r = 0.5 min,
and rIo

——600 km/h, Eqs. (1), (3), and (4) produce den-
sities p(r, t) that exceed the maximum density per lane

p „=200 vehicles/km. In the following an improved
model shall be introduced that does not have these short-
comings.

O(r, t):= 8o (5)

and

V, (p):= Vs((1+ exp[(p/p „—0.25)/0. 06])
—3.72 x 10 ) (6)

(see Fig. 1), where p „=1/l is the maximum density (t
is the average vehicle length). Their numerical results are
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is called the pressure of the "vehicular gas. " 8(r, t)
I dv (v —V) p(r, v, t)/p(r, t) is the vehicular velocity vari
ance and rlo denotes a viscosity coeQcient. The viscos-
ity term qoBV/B—r causes sudden velocity changes to be
smoothed [18,19]. The term [V, (p) —V]/r, where 7. de-
notes a relaxation time that corresponds to the average
acceleration time, d.escribes the drivers' tendency to drive
with the density-dependent velocity V, (p). This velocity
V, (p) is given by the average desired velocity W of the
drivers diminished by an amount that is determined by
necessary deceleration processes when slower cars cannot
be overtaken. V, (p) depends on the physical situation,
which means the number n of lanes, the gradient of the
road, the weather conditions, etc.

Kerner and Konhauser [20,21] simulated Eqs. (1), (3),
and (4) on the assumptions [33]

III. THE IMPROVED MODEL

Similar to Eq. (3) it is reasonable to introduce an
additional differential equation for the velocity variance
8(r, t). This equation reads

I98 I98 2P I9V 1 BJ 2+V
Ot Or p Br p Or r

analogous to the equation for thermal conduction [35,36].
(Of course, here 8 does not have the interpretation of
"heat" but only of velocity variance. ) Equation (7) can
be derived from a Boltzmann-like traffic model [13,26].
The quantity

BO(r, t)J rIt = Kp
Or

where ro is a kinetic coeQcient, describes a ffuz of ve

locity variance leading to a spatial smoothing of O(r, t).
Similar to the viscosity term in Eq. (4), it results from
the finite reaction and braking time, which causes a de-
layed adaption of velocity to the respective traKc situa-
tion [13,26,35,36]. The term 2[O, (p) —8]/r originates in
the same way as the term [V, (p) —V]/r in Eq. (3). On
the one hand, it results from the drivers' attempt to drive
with their desired velocities and, on the other hand, &om
the drivers interactions [37] (i.e. , from deceleration ina-
neuvers in situations where a fast vehicle cannot overtake
a slow one when approaching it). The desired velocity vi

varies from one driver to another. Therefore, even for

p = 0 a finite velocity variance 8, (p) of the vehicles is
expected. Due to a lack of an empirical relation for 8, (p)
we shall assume

8.(p):= 8.((1+~ p[(pip-- —o 25)/0. 061) '
—372 x 10 ), (9)
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(v —V)s = ~8'/' (10)

which is at least phenomenologically justified [compare
to (6) and Fig. 1].

It is not necessary to derive equations for higher mo-

ments (v —V)":= J'dv (v —V)"p(r, v, t)/p(r, t) of the
vehicles' velocities v. For example,

FIG. l. Relation between the average velocity V and the
density p [cf. Eq. (6)] and the velocity variance 0 and the
density p [cf. Eq. (9)], respectively, in the stationary and spa-
tially homogeneous case (indicated by a subscript e standing
for equilibrium).

is a negligible quantity since the 8kemne88 p is small for
low densities p and the velocity variance 0 is small for
high densities p. This is confirmed by traffic data [12].

One additional advantage of approach (7)—(9) in com-
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parison with (5) is described in the following. Assume
that we have a sudden increase Op/Or ) p[V, (p)—
V]/(rOO) of density p at the end of a traffic jam that
is not moving (V = 0). In this case Eqs. (3)—(5) pre-
dict that the vehicles will begin to drive with negative
velocity due to

Oo Bp

p AT

which leads to OV/Ot ( 0. In contrast to this, (7)—(9)
give rise to non-negative velocities because of 8 —0,
which implies (1/p)OP/Or = 0.

We will now introduce some corrections which are due
to the fact that vehicles are not pointlike objects, as is
implicitly assumed w'ith Eqs. (4) and (8), but objects
that occupy a space of length

p(r, t) = p. + pe*"" "',
v(r, t) = v. + v"""-"',
o(r t) = o.+o""-"' (16)

v(r, t) = v. (p.), o(r, t) = o, (p.),
(i5)

where p, denotes the mean vehicle density on the entire
road. The unpleasant thing about Eqs. (1), (3), and (7)
is that the homogeneous solution (15) becomes unstable
for a large traKc volume p V, . As a consequence, there
develops stop-and-go traKc that is less eKcient than a
homogeneous fiow according to (15). The region of in-
stability is found via a linear stability analysis with

s(V) = l+ Vb, T. (12) This leads to the following condition for w:= A —ikV:

Here l is the average vehicle length, AT is about the reac-
tion time, and VAT the velocity-dependent safe distance.
As a consequence of (12) one would have to calculate a
virial expansion in p(r, t)s(V) for P and J. Since this re-
sults in approximate relations for moderate densities only
[35,36], we will, as a first approach, assume as corrected
(interpolated) relations [26]

2 ), (ik OP, rl. k' 1)
I

—'k'+ ——~
I

~' —~
I

— '+ ' + —
I(p~

( 2OP, ikp, OV, l+]k'
Op, 7. O

p(r, t)8 (r, t) OV(r, t)
1 —p(r, t) s[V(r, t)] Or

(13a)

where

2k2P OP, 2k OP, OO !

p~ Q0~ 7 00~ t9p~

and

BIO
n(p, v):=

1 (v), (13b)
P, := ' ', rl, := rl(p„v, ), r., := r(p„V, ) .

1 —p, s(V, )
'

O8(r, t)J r, t:= r-
t9p

r(p, V):= . (14)

IV. LINEAR STABILITY ANALYSIS

The stationary and spatially homogeneous solution of
Eqs. (1), (3), and (7) is

These relations are at least plausible from a phenomena-
logical point of view [26). The first term of (13a) was cho-
sen to be completely analogous to the pressure formula of
van der Waals for a real gas. Equations (13) and (14) take
into account the "repulsive" interactions between vehicles
[38], which become more and more important for high
densities because the vehicles are queuing. According to
(13) and (14), the repulsive effect of the pressure and the
smoothing effect of the kinetic coeKcients g, v grow with
increasing density p (compare Fig. 5 to Fig. 4). For
p ~ p „we have ps(V) —+ p „(l+ 0AT) = 1 so that
the diverging pressure P suppresses an increase of veloc-
ity and the term (1/p)OP/Or cau—ses a homogenization
of traffic fiow. This prevents p(r, t) from exceeding the
maximum density p, which is confirmed by numerical
results. In order to determine the exact functional de-
pendence of P, il, and v on ps(V), future investigations
are necessary which may lead to slight modifications of
(13) and (14).

Equation (17) is satisfied for three complex roots w(p„k)
that have to be determined numerically. The homoge-
neous solution (15) is unstable if the real part Re w(p„k)
of at least one of the roots &u(p„k) is negative, i.e. , if

BV

v Oo Ope pe
(2o)

and can be explicitly derived via an analogous linear sta-
bility analysis [19]. All parameters that have been chosen
for Figs. 2 and 3 are specified in Eq. (21) of Sec. V.

A comparison of Figs. 2 and 3 shows that the im-
proved traffic model (1), (3), (7), (13), and (14) pre-
dicts unstable trafFic at higher densities p, and larger
suave numbers k (i.e. , shorter wavelengths 2vr/k) than
the Kerner-Konhauser model. A qualitative interpreta-

min Re u)(p„k) ( 0.
Figure 2 illustrates for which values of p, and A: this is
the case given that the road had infinite length. (For
a circular road of length I only the values k = 2vrm/I
with I, = +1,+2, . . . are admissible due to the periodic
boundary conditions [20]. The conservation of the num-
ber of vehicles excludes m = 0.) Figure 3 depicts the
region of instability for the trafFic model of Kerner and
Konhauser [20]. The corresponding instability condition
for their equations (1), (3), and (4) reads
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tion can be obtained from Eq. (20) by replacing 8o with
8 (p, ) and rjo with g(p„V,). On the one hand, the cir-
cumstance O, (p, ) ( 8o causes a larger instability region.
On the other hand, the increase of viscosity g with den-
sity p reduces the instability, especially for k g 0. This
also causes, on average, a less rapid growth of unstable
perturbations which is reflected by the smaller values of
—min Re u(p„k) in Fig. 2 compared to Fig. 3. Never-
theless, one should keep in mind that the instability con-
dition for the improved model includes additional terms
which stem from the dynamic Eq. (7) for the variance
O(r, t). In order to obtain the exact instability condition,
however, Eq. (17) would have to be solved analytically.

FIG. 2. The instability region of the improved model (indi-
cating the development of stop-and-go trafffc) is the region of
the k-p plane where the quantity —min Re u(p„k) is pos-
itive (i.e., where the real part of the smallest eigenvalue of
the linearized traffic equations is negative). For illustrative
reasons the vertical coordinate was set to zero at values p, k
for which the Quid-dynamic trafBc equations are stable.

For the numerical solution a two-step Lax-Wendroff
method [40] was applied. According to several tests, this
method gives very reliable results. Concerning the dis-
cretization, spatial intervals of Lr & 100 m length and
time intervals of Lt & 0.1 s duration showed to be suit-
able. In order to obtain plausible results, it is very im-
portant that At and LT are sufficiently small.

For reasons of simplicity periodic boundary conditions
were used: p(L, t) = p(0, t), V (L, t) = V(0, t), and
8(L, t) = O(0, t). The length L of the simulated circular
road was set to 10 km. Moreover, the initial condition
p(r, 0):= p, and V(r, 0):= V, (p )[1 + 0.01 sin(2~r/L)]
was taken since this corresponds to the simplest pertur-
bation and it seems quite natural that some vehicles drive
a little faster while others move a little slower than the
average. In addition, 8(r, 0):= O, (p, ) was chosen for
the improved traKc model of Sec. III. The results of the
numerical computations are depicted in Figs. 4 and 5.
These show significant differences, which should be em-
pirically observable. According to Fig. 4 the model of
Kerner and Konhauser shows the formation of a cluster
on a finite circular road. The back of the cluster has a
shock structure since its slope is almost perpendicular.

Cluster formation can also be observed for the im-
proved model illustrated in Fig. 5. However, the propa-

p(r, t) (veh
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V. COMPUTER SIMULATIONS

In this section the results of the different proposed
fluid-dynamic trafBc models will be compared for the in-
stability region (p = 60 vehicles/km). In the computer
simulations the following values typical for Germany were
used for the model parameters (cf. [18,39]):
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FIG. 3. Instability region of the Kerner-Konhauser model
(compare to Fig. 2).

FIG. 4. Temporal development of (a) density p(r, t) and
(b) velocity V(r, t) according to the model of Kerner and
Konhauser.
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VI. CONCLUSIONS AND OUTLOOK

During the past years, fluid-dynamic models have be-
come promising candidates for the description of vehic-
ular traKc. On the one hand, they are complex enough
for a detailed calulation of traFic flows and, on the other
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gation velocity of the cluster and its shape are diferent
from those depicted in Fig. 4. Obviously, the spatiotem-
poral density and velocity changes are not as extreme
for the improved model as for the model of Kerner and
Konhauser. This is due to the additional smoothing ef-
fect of (13b) for high densities. Note that the velocity
variance O(r, t) in Fig. 5 increases immediately before
the traffic jam develops [i.e. , directly before the density
p(r, t) increases]. This empirically observed fact was re-
ported by Kiihne [18,30].

hand, they are suKciently simple for real-time trafBc sim-
ulations.

However, even the most advanced fluid-dynamic mod-
els showed some shortcomings that were overcome in
this paper by introducing two improvements. First, the
model of Kerner and Konhauser was extended by an
equation for the vehicles' velocity variance. This allowed
for the description of the observed increase of velocity
variance immediately before a trafEc jam develops. Sec-
ond, the Rnite amount of space that each vehicle needs
was taken into account. This prevented the trafFic model
from producing densities that exceed the maximum ve-
hicle density. On a finite, circular road the improved
model showed the formation of a cluster, like the model
of Kerner and Konhauser did. However, the density and
velocity changes were not as extreme.

Further work will focus on the investigation of road
networks and How optimization with the aim of develop-
ing eKcient methods of trafBc control. In addition, a gas
kinetic derivation of the improved fluid-dynamic model
is planned to be presented in a forthcoming paper [26].
The underlying gas kinetic model is based on reasonable
assumptions about individual driver behavior concerning
acceleration, overtaking, deceleration, and lane-changing
maneuvers. It takes into account multiple lanes, the vari-
ation of desired and actual speeds, distance keeping, as
well as reaction and braking times.

The same behavioral assumptions are applied in recent
"microscopic" traKc simulations of a large number of in-
teracting vehicles for which the model parameters can be
determined relatively easily. From these simulations, the
model parameters go and Ko of the fluid-dynamic traf-
Gc model can be obtained. Something similar holds for
the equilibrium velocity-density relation V, (p), the equi-
librium variance-density relation 8,(p), and other collec-
tive quantities. One advantage of evaluating microscopic
simulation results is that spatial variations of the den-
sity p(r, t), the average velocity V(r, t), and the velocity
variance 8(r, t) can be easily determined, whereas traf-
6c data are normally collected at single intersections of
a road only. Another advantage is that the initial traf-
fic conditions can be prepared arbitrarily. By this one
can achieve that specific terms of the fluid-dynamic traf-
Gc equations are negligible for a certain time interval.
In contrast, for real traKc data the separation of single
terms is difBcult since the data would have to be collected
at the right place at the right time. For example, V, (p)
and O, (p) can best be evaluated in quasistationary and
quasihomogeneous traKc conditions. With a bit of effort
this is still feasible, but some traKc situations that are
essential for special measurements may be hard to And
in reality.

0
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FIG. 5. Temporal development of (a) density p(r, t), (b)
velocity V(r, t), and (c) velocity variance O(r, t) on a circular
road for the improved trafBc model.
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