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Heat transport in a dilute gas under uniform shear How
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Energy transport in a dilute gas under a steady shear Bow state is analyzed. The physical situation
is such that a linear profile of the How velocity coexists with a weak thermal gradient. The shear
rate is arbitrary so that the heat Hux is affected by the presence of the shear How. The results are
obtained from the Boltzmann equation for Maxwell molecules. By performing an expansion around
the shear How state, an explicit expression for the shear-rate-dependent thermal conductivity tensor
is derived. A comparison with previous results obtained from the Bhatnagar-Gross-Krook kinetic
model is carried out.

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The theory of linear nonequilibrium thermodynamics
establishes that fluxes and forces of diB'erent tensorial
rank cannot be coupled [1]. In particular, in a physical
problem where a fluid is simultaneously subjected to both
weak velocity and temperature gradients, the heat flux
(vector quantity) is not affected by the presence of the ve-
locity gradient (second-rank tensorial quantity). Conse-
quently, the thermal conductivity coeKcient is indepen-
dent of the strain rate. Beyond the linear regime, this
assumption is no longer valid and the energy transport
may be disturbed, for instance, by shearing motion.

In order to capture the essential aspects of such a non-
linear problem, a dilute gas with short-range interactions
can be chosen as a prototype system. Further, we adopt
a kinetic description according to which the state of the
system is characterized by the one-particle velocity dis-
tribution function. This function obeys the well-known
Boltzmann equation [2]. Nevertheless, due to the intri-
cacy of its collision term, only a few solutions are known
for spatially inhomogeneous situations far from equilib-
rium. Perhaps, the so-called uniform shear flow [3] is the
most physically relevant solution since rheological prop-
erties such as nonlinear shear viscosity and viscometric
functions can be exactly computed for all values of the
shear rate. This solution is restricted to the particular
case of Maxwell molecules, namely, particles interacting
via a repulsive potential p(r) = Pr

The aim of this paper is to study a linear energy trans-
port problem in a dilute gas under steady uniform shear
flow. As the system is strongly sheared, the heat flux
can be modified by the presence of the shear flow. In
the limit of small temperature gradients (but arbitrary
shear rates), one expects that the heat flux verifies a gen-
eralized Fourier law where a shear-rate-dependent ther-
mal conductivity tensor can be identified. Our goal is to
get the explicit expression of this tensor in the special
case of Maxwell Inolecules. The search for such expres-
sion has been prompted by recent results [4] derived from
the Bhatnagar-Gross-Krook (BGK) kinetic model of the
Boltzmann equation. According to the results obtained

from this model, the thermal conductivity tensor hap-
pens to be a highly nonlinear function of the shear rate
and its expression is not restricted to any particular inter-
action potential. The derivation of an exact expression
for the thermal conductivity also allows us to test the
relevance of the results previously derived from the BGK
approximation.

In the context of dense gases, Evans [5] has obtained
a Green-Kubo formula for the thermal conductivity in
fluids subjected to shear flow. In the same way as in
the equilibrium description, the thermal conductivity of
a shearing steady state is related to fluctuations in steady
state heat flux. This formula has been subsequently used
to analyze the dependence of the thermal conductivity
on the shear rate in a Lennard-Jones fluid by means of
computer simulations [6].

The paper is organized as follows. In Sec. II we pro-
vide a brief account of uniform shear flow at the level of
the Boltzmann equation. The particular case of Maxwell
molecules allows one to obtain the velocity moments
as functions of the shear rate. Here we consider the
erst nontrivial moments in the steady state: the second-
degree moments, which are directly related to hydrody-
namic quantities, and the fourth-degree moments, whose
knowledge is necessary to evaluate the heat flux under
shear flow. In Sec. III we get the thermal conductivity
tensor from a perturbation expansion around the uni-
form shear flow state. Finally, in Sec. IV the results are
discussed and compared with previous works.

II. UNIFORM SHEAR FLOW

From a macroscopic point of view, the uniform shear
flow is characterized by constant density n and temper-
ature T and a linear velocity field given by

u,. =—a;~r~, a;~ = ab, b~y,

where a is the constant shear rate. The shear flow pro-
duces viscous heating so that the temperature increases
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monotonically. Prom a simulation point of view, it is de-
sirable to measure the rheological properties in a steady
state. For this reason, a nonconservative external force is
included to remove this heating effect. Usually the force
is taken to be of the Gaussian form [7]

T = —moV, (2)

where m is the mass of a particle and V = v —u is the
peculiar velocity. In our description we will choose o. as
a function of the shear rate a by the condition that the
temperature T reaches a constant value in the long time
limit (steady state). In this sense, W plays the role of a
thermostat force.

The uniform shear flow state becomes spatially homo-
geneous when the velocities of particles are referred to a
frame moving with the flow velocity u(r). Therefore, the
distribution function adopts the homogeneous form

f (r, v, t) = g(V, t)

and the nonlinear Boltzmann equation becomes [8]

0—g — (a;,.v,. + nv;)g
Ot OV,

(3)

dV1 dA~V —V1~o.(~V —V1~, 0)(g'g' —gg1)

(4)

( ) (kg+kg+k3)/2m
n (2k~T)

dV VI'1 VI'2 VJ'3g
x y z

where k~ is the Boltzmann constant. According to the
symmetry of the uniform shear flow problem, one expects
that the only stationary nonvanishing moments corre-
spond to k1+ k2 and k3 even [10].

In the long time limit, the first nonzero moments are
the second-degree moments. They are related to the pres-
sure tensor

P,.~ = m dVV;V~g .

After a transient period, one expects that the solution to
Eq. (3) adopts a norrnat form [2] in which all the time
dependence of g appears through the time dependence of
T. Consequently, and according to the thermostat choice
for o., for large t the distribution g is expected to reach
a stationary form. This expectation has been recently
discussed elsewhere [9].

In the particular case of Maxwell molecules, Eq. (4)
can be exactly solved by the moment method. For this
interaction the collision rate Vo is independent of V, so
that a collisional moment of degree k is a bilinear combi-
nation of moments of g of degree equal to or smaller than
k, the sum of degrees being equal to k. This property of
the collison operator allows one to recursively solve the
infinite hierarchy of moment equations. To get the shear-
rate dependence of the velocity moments, we introduce
the dimensionless moments

Taking moments in Eq. (4), the time evolution of the
pressure tensor can be obtained. It is easy to show that
all the elements of this tensor reach a stationary form
for any value of the shear rate [10]. The corresponding
nonzero stationary values of the reduced pressure tensor
P,' =P;~/p are

1+6o.*

1+ 2o.* (7)

P* =P.*. = 1+ 2o.* ' (8)

P*„=P„* (1+ 2m*)2
' (9)

Here p = —PA, A,
——nk~T is the hydrostatic pressure,

a* = a/v, and a* = n/v, v being an efFective collision
frequency given by

v = 3nA2,

where the numerical value of A2 is A2 ——1.3703/2$/m
[3]. Equations (7)—(9) provide information on the rele-
vant transport properties of the problem, i.e., the non-
linear shear viscosity and the viscometric functions. The
thermostat parameter o.* can be determined consistently
from the identity P* +P„*„+P,* = 3. This relation leads
to the cubic equation

3n*(1+2n*) = o,
*

whose real root is

n* =
3 sinh [s cosh '(1 + 9a* )] . (12)

It is interesting to remark that all these results are the
same as those derived from the BGK model [11].Beyond
the second-degree moments, it has been recently shown
that the Boltzmann and BGK equations yield quite dif-
ferent results [12].

As the third-degree moments decay to zero in the long-
time limit [12], the next nontrivial moments in the uni-
form shear flow problem are the fourth-degree moments.
The explicit knowledge of these moments is necessary to
get the shear-rate dependence of the thermal conductiv-
ity [4]. There are in principle nine independent fourth-
degree moments that do not vanish in the steady state.
Nevertheless, the symmetry of this problem restricts the
number of relevant moments to eight. As the set of di-
mensionless moments, we take

(M400) M0401M220) M202, M022( M3101 M130, M112) (13)

Recently, explicit expressions for the set (13) as functions
of the shear rate have been derived [10]. It has been
shown that a strict limitation on the shear rate appears
in the stationary solution to the fourth-degree moments.
Specifically, if the shear rate is larger than a certain crit-
ical value a, the fourth-degree moments do not reach
stationary values in the long time limit. Possible impli-
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cations of this singular behavior have been discussed in
Ref. [9]. For shear rates smaller than u,* 6.845, one may
obtain the steady-state values of these moments. Their
explicit forms as functions of the shear rate are given in
the Appendix.

Anyway, since the numerical value of a is rather
large, nonlinear shearing eÃects will still be significant for
a* & a*. In particular, the heat Aux must be noticeably
affected by the action of the shear How. The examination
of this point is the objective of the next section.

III. LINEAR ENERGY TRANSPORT
UNDER SHEAR FLOW

The phenomenological Fourier law establishes a lin-
ear relation between the heat Aux and the tempera-
ture gradient through the thermal conductivity coe%-
cient K, . This law is expected to hold in the limit of
small temperature gradients. In the case of a dilute
gas, the Chapman-Enskog method [13] provides micro-
scopic expressions for the Navier-Stokes transport coeK-
cients. In particular, the thermal conductivity coeKcient
for Maxwell molecules is given by

15 pk~
K =

4 mv
(14)

where v is defined by Eq. (10).
The problem we want to address is that of energy

transport in a dilute gas that is far from equilibrium. In
order to gain some insight into this rather general ques-
tion, we will consider specifically linear heat transport
under uniform shear Bow. In this situation, the shear rate
is arbitrary and the heat Aux may be disturbed by the
shearing motion. For small temperature gradients, one
expects that the heat Aux obeys a generalized Fourier law
where, due to the anisotropy of the problem, a thermal
conductivity tensor rather than a scalar can be identi-
fied. This tensor must be a nonlinear function of the
shear rate. The derivation of such an expression for the
so-called linear thermal conductivity tensor is the objec-
tive of this section.

Let us consider a dilute gas of Maxwell molecules in a
stationary shear How state. We assume that we perturb
this state by introducing a weak thermal gradient. The
thermal gradient induces a density gradient so that n and
T are now inhomogeneous. Here, to parallel the results
derived from the BGK model [4], we assume that both
gradients are coupled to keep the pressure p constant.
Under these conditions, the Boltzmann equation can be
written as [8]

where F is the total external force acting on each par-
ticle. This force is introduced in the system to achieve
a steady state. In the ahsence of thermal gradient, F
is given by the conventional thermostat force (2) used

f —
/

—a;, V — '
I f + (V- + a', r,)J= J[f, f], -

c) c) ( E, & c)

Ot c)V, q' mJ
' ' Br,

in computer simulations. Nevertheless, when V'T is not
zero, additional external forces must be considered.

In order to get the velocity moments of the velocity
distribution function f, we shall use a perturbation ex-
pansion around the steady shear How state g by taking
the temperature gradient as the perturbation parameter.
The main feature of this scheme is that the different ap-
proximations to f retain all the hydrodynamic orders in
the shear rate. Therefore, we write

y y(0) + y(i) +. . . (16)

(oV;+ a;, V~) f(') + (V;+ u,,r, ) f( )

a f(0) J[f(1) f(0)] + J[f(0) f (1)] (18)
OV, m

where use has been made of Eq. (4) in the long time limit.
It is clear that our description is only valid a priori for
the range of shear rates below the critical value a„ in
which case the moments (13) reach steady values.

The mass balance equation associated with Eq. (18)
implies that u . Vn = 0 and consequently u VT = 0.
This means that the thermal gradient must be orthog-
onal to the direction of the How velocity. On the other
hand, from the momentum balance equation of Eq. (18)
it is easy to show that the simplest choice for F~ ~ is a
constant [4]:

(19)

Here the nonvanishing elements of P,.*. are given by Eqs.
(7)—(9) and the operator Tc)/DT for Maxwell molecules
reads

O ~1+2n O ~ O= 2n + a*
OT 1+6n* On' Oa* '

when one takes n* and a* as independent parameters.
The expression of F~ ~ is the same as the one obtained
from the BGK model [4]. This additional external force
(absent in the pure shear flow problem) has not been con-
sidered in the computer simulations performed in dense
gases [6). In the absence of F( ) the stationary veloc-
ity field is perturbed by the thermal gradient so that a

where f (") is of order A: in 9'T but preserves the full non-
linear dependence on the shear rate. The zeroth-order
approximation f( ) corresponds to the uniform shear flow
state but taking into account the local dependence of
g through the density and temperature. In this paper
we will restrict ourselves to first order in the expansion.
Consequently, at this level of approximation, the external
force can be written as

F = -mnV+ F~'~,

F~ ~ being determined from the corresponding balance
equations. Assuming that the system reaches a steady
state after a transient period, the distribution f ( ) verifies
the equation
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steady state does not exist. This is an important differ-
ence with respect to previous analyses [5,6]. The external
force F~ ~ exhibits the anisotropy originated in the sys-
tem by the presence of the shear Qow. For small shear
rates, their components behave as

m 3/2

No~ qy, =
I k I

dVY0~,~~(V)f (~)
n g2kIBT)

where

(26)

(i) (,2 140,4 1072,0),BT
9 27 ) By

(21)

Y2i;(V) = V V, , (27)

Y0~;~A, (V) = V V, Vk ——V (Vb~I + V, 8;a + Va8,~). (28)

Zl'l = --k~
~

1 —4a*'+ a—*'
~

a*'4 ( ., 92 ., I „,BT
3 ( 9 ) By' (22)

At this level of approximation, one needs to know their
corresponding collisional moments. They are given by [3]

= ——k~j 1 —4a* + —a* ~a*
4 /, 2 92,41,2 BT
3 ( 9 ) Bz

(23)

3/2

fd» i'(~)VIf" 1"I
n (2kaT)

We are interested in computing the heat Aux q~ ~

across the system. It is defined by + J[f~, f~ i]) = vN2i, —,
—(29)

dVV Vf~ i
2

(24)

The heat Hux is related to the third-degree moments of
the distribution f~ ~. There are ten independent mo-
ments. For computational purposes, we choose the fol-
lowing dimensionless moments [3]:

3/2

dVY0(, , I, (V) (J[f,f ]n (2kggT)

+ J[f&'~, f~'~]) = —-vN„,,„. (30)
2

3/2

N2, ———
i i

dVY2, (V)f~ i,
(2k T) 2)i (25) We consider the following set of ten independent mo-

ments:

(N2[z, 2[y, N2[z) NO[zzy~ NO[zzz~ NO[zyy, NO[yyz~ NO[zzz~ NO[yzz& NO[zyz).

Taking moments in Eq. (18), one gets a set of ten coupled algebraic equations for the third-degree moments (31). By
using matrix notation, it can be written as

A &A I =8 ey+C e, , a=1 . . . 10.

Here JV is the column matrix defined by the set (31), A is the matrix given by

5
0

8
25

0
0
0
0

——a*
25

7
5
Cy

0
0
0

8—a25
0
2——G25
0
0

0
0
0
0
0
0

1
5

2G

0
0

C2

0
7——G5
0
2——a5
0
0

0 0
0 2a*
0 0
0 —a*

5
c2 0
0 c2
0 0
0 0
0 ——a2

5
0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 —a*
c2 0 0
0 c2 a*
0 0 c2
a* 0 0

0

2G

0
8
5
0
2——a5
0
0

(33)
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where c1 = 3 + 3o! and c2 2 + 3o! ' an
—(2kgyT/m) ~ V ln 2 is the reduced thermal gradient.
The column matrix 8 is

+102 + +120 + +300
+012 + +030 + +210
+003 + +021 + +201

3 (4+210 +012 +030)

15
N2i; = ——A, .(a*)e,

where A,.~ is the reduced thermal conductivity tensor,
which depends on the shear rate. Its nonzero relevant
components can be identified from the explicit form of
the moments N2~, In terms of the matrices 8 and C, and

taking into account the symmetry of Mk k k, the above(o)

moments can be written as
3 (48201 +003 +021)

3 (4+120 +102 +300)

3 (4+021 +003 +201)

3 (4+102 +120 +300)

3 (4&012 —&030 —&210)
+111

(34)
1 3 2—(216n* + 151n" + 30)81

27o.*2 + 46o, * + 12 527, , 108o.* + 23o.* —6——(24n* + 7)a*82 + 4 a*84
5 1 + 2o.'

54o.* + 19+12(54n' + 19)n*80 + 8 n" a*Bg Eg,1+ 2o!

(40)

with

1 (o)—(ki + k2 + &3 —1) + T

(o) ~(0)+ 1 k1 —1 k2kp +y

1 54, 3
N2(y —— ——a*81 + —(216n*

27', *2 + 46o.* + 12 5 5

+151n* + 30)82 —24n*(1 + 9n*)84
9o.*+2—12 a*80 —24n*(9n* + 2)Bg ~„,1+ 2o, ' (41)

(0) *{0)+k2Mk, k, -1,k.T ~T +yy

while the column matrix C is given by an expression sim-
ilar to Eq. (34), but with Bk, i, y, replaced by

1 (o))+

(36

where the elements of P, are given by Eqs. (7)—(9) and

Mk k k refers to the fourth-degree moments of g. The(0) r

right-hand side of the matrix equation (32) also holds
for the BGK model equation, although the explicit shear-
rate dependence of the fourth-degree moments clearly dif-
fers f'rom the Boltzmann ones [12j.

The solution to Eq. (32) is

JV =(A ') (8 eg+C e, ) .

This relation provides an explicit expression for the third-
degree moments of the velocity distribution f~il as func-
tions of the shear rate and the thermal gradient. The
heat Aux across the system is determined from the first
three terms of JV . According to these expressions, it is
easy to show that the heat Aux can be cast into the form
of a generalized Fourier law

q,. = —KA;~ (a') BT
Op~

or, equivalently,

N2~, ——
1 3—(Sn* + 15)C3 + 24n*C7

23o.* + 6 5

a—12 C10 ~. (42)
1 + 2o.'

Equations (40)—(42) represent the major result of this
paper. They give the explicit expression of the thermal
conductivity tensor of a dilute gas of Maxwell molecules
under strong shear rates. The components of this tensor
provide all the information on the physical mechanisms
involved in the energy transport under shear How.

In the absence of shear field (a* = 0), %2~ = 0 and
N2[g/Ey = %2~ /e = —15/8, so that A;z

——8,~ and thus
one recovers the conventional expression of the thermal
conductivity coefFicient v given by the Chapman-Enskog
method [13I. Furthermore, according to Eqs. (40)—(42),
A = A» ——A y

——0, in agreement with the symme-
try of the problem. For small shear rates, the behaviors
of the nonzero components of the thermal conductivity
tensor are A» 1 + 3.04a*, A» 1 —1.18a*, and
A „=—3.90a'. The general shear-rate dependence of
these components is plotted in Figs. 1—3 for 0 & a* & l.
In this region the shear thinning is quite important. For
a* 1, for example, the shear viscosity is about 46%
smaller than its limiting zero shear rate value. We also
present the results obtained from the BGK equation.
Figure 1 shows that A» increases with a in the region
of shear rates considered. Consequently, the shear fIow
enhances the transport of energy along the direction of
the gradient of the How velocity (y axis). This conclu-
sion contrasts with the results derived from the BGK
model [4], where A„„decreases as a* increases, except
for very small shear rates. The shear-rate dependence
of the diagonal component A is shown in Fig. 2. It
always decreases as a* increases, so that the efI'ect of
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FIG. 1. Shear-rate dependence of A» for Maxwell
molecules. The solid line corresponds to the Boltzmann equa-
tion and the dashed line refers to the BGK model.

FIG. 3. Same as in Fig. 1, but for —A „.
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FIG. 2. Same as in Fig. 1, but for A

the shear flow on the heat flux is to inhibit the energy
transport along the direction orthogonal to the veloc-
ity gradient. This effect is also predicted by the BGK
approximation. Further, the BGK model gives a larger
deviation from equilibrium for A than the exact Boltz-
mann value. Anyway, the influence of the shear rate on
the zz component is less sensitive than the one observed
for the yy component. This may be due to the anisotropy
created in the system by the presence of the shear flow.
The ofF-diagonal component A „measures cross efFects in
the thermal conduction. It gives the transport of energy
along the x axis due to a thermal gradient parallel to
the y axis. This cross coupling does not appear in the
linear regime since the heat flux. q is at least of Bur-
nett order (proportional to a*e„). The absolute value
of A & is plotted in Fig. 3. This component is negative
and its absolute value increases with increasing the shear
rate. In the region considered, —A „behaves practically
as a linear function of the shear rate. The BGK model
underestimates the exact absolute value of A „.

The comparison carried out between the Boltzmann
and BGK equations for Maxwell molecules at the level of
the thermal conductivity tensor indicates that the BGK
predictions cannot be considered as reliable, especially
at Gnite shear rates. This is a direct consequence of the

difFerent behavior of the fourth-degree moments in the
pure shear flow state [12]. In fact, the discrepancies ob-
served here for A;~ are comparable to those observed in
Ref. [12] for the fourth-degree moments. In this sense,
and for the uniform shear flow state, the BGK model
can be used as a good approximation of the Boltzmann
equation when one considers the lower-degree moments
(related to rheological properties), although it becomes
less credible as the degree of the moments increases. A
direct consequence of this conclusion is that the BGK
distribution does not reproduce well the behavior of the
high-velocity population.

IV. DISCUSSION

A linear energy transport problem in a dilute gas under
steady uniform shear flow has been analyzed. The sys-
tem is in a steady inhomogeneous state macroscopically
characterized by a constant pressure, a nonuniform tem-
perature, and a flow velocity along the x direction with a
constant gradient along the y direction. Since we want to
evaluate transport properties in a steady state, external
forces are also introduced to control viscous heating. The
system is driven out of equilibrium by the action of the
shear field as well as the thermal gradient. We are mainly
interested in the physical situation where a weak thermal
gradient simultaneously coexists with a strong shear flow.
Under these conditions, the shear rate modifies (but does
not create) the heat transport across the system. In a
previous paper [4] we used the BGK model kinetic equa-
tion to analyze such coupling and found that the energy
transport was noticeably disturbed by the presence of the
shear flow. Nevertheless, as the BGK equation is a sim-
plified version of the nonlinear Boltzmann equation, no
definitive conclusions about the shear-rate dependence
of the heat flux were obtained. For this reason the de-
scription has now been done &om the exact Boltzmann
equation in the special case of Maxwell molecules, so that
our results are exact to all orders in the shear rate.

By assuming that the temperature gradient is weak, a
perturbation expansion around the uniform shear flow
state with arbitrary shear rate has been carried out.
As a consequence, all the diferent approximations are
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nonlinear functions of the shear rate. In the case of
Maxwell molecules, the hierarchy of moment equations
of the Boltzmann equation can be in principle recursively
solved at each stage of approximation. Here we have re-
stricted ourselves to the first order in V'T. At this level of
description, the components of the heat Qux g( ~ can be
expressed as linear functions of the temperature gradient
(Fourier's law). Due to the anisotropy of the problem,
this law defines the so-called linear thermal conductiv-
ity tensor A;~ whose shear rate dependence we aimed at
determining. The symmetry of the problem implies that
A~z —Ay@ Azy 0 while no information for A~~ p Ay~ p

and A components can be obtained as the thermal gra-
dient must be necessarily orthogonal to the direction of
the flow velocity (x axis) to preserve the stationarity of
the state. Therefore, the components A~y~ Ayy~ and Azz
are the relevant transport coefFicients of the problem.

The knowledge of the fourth-degree moments of the
distribution function in the pure shear Bow state [10] en-
ables one to get an explicit expression for the thermal
conductivity tensor. While the diagonal components Ayy
and A are even functions of the shear rate, A „ is an
odd function. In general, they exhibit a highly nonlinear
dependence on the shear rate. The diagonal components
can be interpreted as generalizations of the usual ther-
mal conductivity coeKcient since they conjugate the ith
component of the heat flux vector with the ith compo-
nent of the temperature gradient. Cross couplings are
taken into account through the oK-diagonal component,
which is a generalization of a nonlinear Burnett coeK-
cient. In the limit of small shear rates, A» ——A = 1 and
A y

——3.90a'. From a physical point of view, one ex-
pects that the presence of the shear Qow does not change
the qualitative behavior of the heat flux. in the sense that
A» ) 0, A, ) 0, and A y ( 0. Otherwise, if there were
a critical shear rate for which the diagonal components
became negative, the heat would be transferred from the
cold wall to the hot wall and an instability would be gen-
erated in the system. The results presented in this paper
confirm that the transport coeKcients maintain the same
sign as the shear rate increases. These predictions agree
with results obtained in computer simulations [6]. With
respect to the quantitative dependence of the thermal
conductivity on the shear rate, we observe that the net
consequence of the action of the shear Qow on the heat
transport is to produce an enhancement of the energy
transport along the y direction and an inhibition along
the z direction. In the case of the x direction, —A „ in-
creases as a* increases. All these results clearly show
that heat conduction under shear Qow is a very complex
problem due basically to the anisotropy induced by the
shear field.

Recently, Daivis and Evans [6] performed computer
simulations in a strongly shearing Lennard-Jones Quid to
compute the shear-rate-dependent thermal conductivity
tensor. Although the Lennard-Jones Quid has an attrac-
tive tail (absent in Maxwell molecules), to our knowledge
this is the only system for which heat transport under
shear flow has been studied. In general, their conclusions
agree qualitatively well with our predictions. Neverthe-
less, as far as quantitative e8'ects are concerned, they
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APPENDIX: EXPRESSIONS OF THE
FOURTH-DEC B.EE MOMENTS

In this appendix we give the explicit expressions of the
set of dimensionless moments defined in Eq. (13). They
can be written as [10]

3 1 Ai(n*)
4 (1+2n*)' A(n*) (A1)

3 1 A2(n*)
4 (1+2n*) A(n*) (A2)

1 1 As(n*)
4 (1+2n*)2 A(n*)

1 1 A4(n*)
4 (1+2n*)' A(n*) (A4)

1 1 As(n*)
4 (1+2n*)2 A(n*) (A5)

3 a* As (n*)
4 (1+2n*)s A(n*) (A6)

3 a* Ap(n*)
4 (1 + 2n*)s A(n*) (A7)

observed an influence of a* on A,~ less noticeable than
the one obtained here, especially in the case of the di-
agonal components. For instance, Daivis and Evans [6]
state that the diagonal components are independent of
the shear rate up to a certain (finite) value of a*. Per-
haps these quantitative discrepancies are due to the fact
that the shear rates considered in the simulation are not
large enough to clearly observe nonlinear eKects. In fact,
by extrapolating our definition of the collision frequency
v = (15j4)(pk~/mr) to dense Huids [14], one can esti-
mate that the range of shear rates in Ref. [6] is much
smaller than the one considered here.

Finally, we expect that the results presented in this
paper will stimulate the performance of simulations in
the low-density limit where larger shear rates are possibly
not dificult to achieve. In this context, the Monte Carlo
simulation method [15] provides a useful tool to obtain
numerical solutions of the Boltzmann equation.
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where

a* A, (n*)
4 (1+2n*)s A(n*) (A8)

(A13)

A4(n*) = 1 + 25.380n* + 281.36n' + 1780.5n*

+7085a* + 18461a* + 31913n*
+36521n* + 27501n* + 13436a*
+3615.1n* + 0.0305o.*

A(n') = 1 + 18.372n* + 142.83n* + 608.68n*

+1524.ln* + 2166.5a* + 1310.1n*
—625.09n* —1433.9n' —644.27n*

(A14)

As(n*) = 1 + 20.548n* + 199.81n* + 1226.1n*

+5259.7n* + 16291a* + 36364n*
+57464n* + 62824a* + 46488n*
+22550n* + 5964.1n*

Az (n*) = 1 + 19.631n* + 168.85n* + 831.27n*s

+2568.6n* + 5142.3n* + 6669.6n*

+5464.5n* + 2669.8a* + 644.14n*
—0.0701n* —0.1204n* (A11)

As(n*) = 1+32.444n* + 416.36n* + 2903.9n*

+12404n* + 34191n* + 62004n*

+74036a* + 57759n* + 28795n*

+7731.5a* + 0.0706n* (A12)

Ai(n*) = 1 + 31.631n* + 452.08n* + 3723.5n*

+19401n* + 66969n* + 156525a*
+249212n* + 269214n* + 19537ln*
+92180a* + 23194a* (A

As(n*) = 1 + 26.696n* + 302.6n* + 1929.0n*

+7679.5n* + 19983n* + 34554n*
+39717n* + 30128n*
+14719n* + 3865.6n*

A7(n*) = 1+ 19.449n* + 164.78n* + 794.47n'
+2391n* + 4647n* + 5864.6n*

+4757.7a* + 2410.2n*

+644.28n* —0.0037n* (A16)

As(n*) = 1+ 19.315n" + 162.54n* + 777.86n'
+2321.1n* + 4464n* + 5555n*

+4413.7a* + 2169.3a*
+560.76a* + 0.0110n* (A17)

Prom these expressions the shear-rate dependence of the
elements of the matrices 8 and C can be obtained.
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