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For finite-ranged potentials the behavior of the total correlation function 4 (r) at large distances can
be of two different types. In three-dimensional systems at low densities the function r 4 (r) presents ex-
ponential decay whereas at high densities it presents exponentially damped oscillatory decay. The locus
of points on the phase diagram where a transition from exponential to oscillatory decay occurs is denot-
ed as the Fisher-Widom line after the work of these authors [M. E. Fisher and B. Widom, J. Chem. Phys.
50, 3756 (1969)]. These authors exactly computed the Fisher-Widom line for several one-dimensional
systems and conjectured that the same behavior could occur in three dimensions. In this work the
Fisher-Widom line is computed for a three-dimensional finite-range potential by using the structural in-
formation obtained from the reference hypernetted chain theory which is probably the most successful
theory of liquid structure available now. By combining these results with computer simulations of the
vapor-liquid equilibria of the considered model the Fisher-Widom line is located within the phase dia-
gram of the model. For the considered model the Fisher-Widom line cuts the liquid branch of the vapor
liquid equilibria at a reduced temperature of T/T,=0.88 and a reduced density of p/p.=2.07. The
effect of the range of the potential on the location of the Fisher-Widom line is also considered. Increas-
ing the range of the potential reduces the region of the phase diagram where oscillatory behavior of the
function r A (r) occurs. The long-range decay of a Lennard Jones fluid is also considered. Decay of 4 (7)
to zero at large distances is different for a Lennard-Jones potential and for a finite-ranged potential. Al-
though the Lennard Jones potential does not present a true Fisher-Widom line when the ultimate decay
of h(r) is considered it is shown that it exhibits a Fisher-Widom-like transition when an intermediate

range of distances is considered.

PACS number(s): 61.20.—p

I. INTRODUCTION

The local density around a central particle can be de-
scribed by introducing the pair correlation function [1]
g (r) which is just the ratio of the local number density at
a distance 7 to the bulk number density p. Another useful
function is the total correlation function A (r) which is
just A(r)=g(r)—1. For fluid phases (i.e., gas or liquid)
and excluding the critical point, the function 4 (r) tends
to zero at large distances. An interesting problem is the
asymptotic form of 4 (r) at large values of ». When the
particles of the system interact through a pair potential
u (r) which decays to zero more slowly than exponential-
ly (i.e., the Lennard-Jones potential) then the asymptotic
form of A (r) is known [2-4].

When the potential is short ranged or decays to zero
faster than an exponential, then a different behavior is ob-
tained. In this case two different behaviors are obtained
depending on the thermodynamic conditions (i.e., density
and temperature). In a certain region of the phase dia-
gram of the system the decay of r'* "1V/2h (r) to zero is
exponential. In other regions, r'“ "1/2h(r) decays to
zero in an exponentially damped oscillatory way. The
dimensionality of the fluid is represented by d. The locus
of points of the phase diagram where the transition from
exponential to oscillatory decay occurs is denoted as the
Fisher-Widom (FW) line after the work of these authors
[5]. Fisher and Widom [5] were the first to propose and

1063-651X/95/51(4)/3146(10)/$06.00 S1

analyze this problem. They considered one-dimensional
systems with nearest neighbor interactions (short-ranged
potential) and showed that a locus of points of the phase
diagram exists where the asymptotic behavior of 4 (r)
changes from exponential decay to damped oscillatory
decay. For one-dimensional systems, decay of h(r) at
large r is determined by the pole A; with the largest real
part of the Laplace transform of 4 (r). In case A, is real
then exponential decay occurs with decay length —1/A,
(A, is negative). If A, is complex then the complex conju-
gate A{ is also a pole and oscillatory damped decay is
found. Fisher and Widom determined the FW line for
several one-dimensional systems [5]. By using the mean
field approximation, these authors determined the vapor-
liquid equilibria of the studied one-dimensional systems.
These authors then combined the vapor-liquid equilibra
results with the computed FW line, showing the regions
of the phase diagram where exponential and oscillatory
decay should occur. Fisher and Widom [5] conjectured
that the FW line could also occur in three-dimensional
systems, provided that the potential is short ranged, and
that a similar plot to the one obtained by them for the
one-dimensional system should be obtained. However, in
their work [5] no result for a three-dimensional system
was reported.

The problem of the determination of the FW line for
three-dimensional systems interacting through a short-
ranged potential has been recently considered [6,7]. In
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fact, Evans and co-workers [6,7] have shown how to ana-
lyze the long-range behavior of r h(r) for three-
dimensional systems interacting through a short-ranged
potential. Their approach to the problem is the use of
the Ornstein-Zernlike equation [1]. The Ornstein-
Zernlike equation is just a relation between h (r) and the
direct correlation function of the system c(r). The
analysis of Evans and co-workers [6,7] shows that the
asymptotic form of r h(r) at large r is dominated by the
pole (purely imaginary or complex) of the structure factor
S (g =a;+iay) with the smallest imaginary part. In case
this pole is purely imaginary then exponential decay
occurs with decay length 1/, whereas if it is complex
then exponentially damped oscillatory decay occurs with
a wavelength of 27 /a, and a decay length of 1/a, The
FW line is just the locus of points of the phase diagram
where the purely imaginary pole (a;=0) of S(g) and the
complex pole of S(g) with the smallest imaginary part
have the same inverse decay length a, Evans and co-
workers [6,7] showed that the knowledge of the direct
correlation function c (7) for every temperature and den-
sity of the phase diagram is enough for determining the
FW line. For the square well system, the Fisher-Widom
line has been computed [6,7] by using two different ex-
pressions for ¢ (r), namely the random phase approxima-
tion and c(r) arising from the WDA density functional
theory of Tarazona [8]. The vapor-liquid equilibria was
also determined within the context of the density func-
tional theory [6]. In this way the Fisher-Widom line was
located within the phase diagram of the studied model.
These works constitute the first reported determination
of the FW line for a three-dimensional fluid. The picture
emerging from those studies [6,7] is in agreement with
that proposed by Fisher and Widom for one-dimensional
systems [5]. Evans et al. [6] showed that the Fisher-
Widom line intersects the liquid branch of the vapor-
liquid equilibria at a reduced temperature of about
T/T.=0.9 where T, is the critical temperature. Conse-
quences of that on the density profile of vapor-liquid or
wall-fluid interfaces were also analyzed [6,9].

During the last two decades great progress has been
made on the statistical thermodynamics of spherical
fluids [1,10]. One of the most successful theories is the
reference hypernetted chain theory [11] (RHNC). In this
theory, the Ornstein-Zernlike equation is solved along
with the RHNC closure. The basic idea behind RHNC is
the insensitivity of the bridge function [1] (the sum of the
bridge diagrams) to the details of the potential. In this
work we shall apply the RHNC integral equation to the
determination of the Fisher-Widom line of a three-
dimensional fluid. Since the RHNC is the most success-
ful route to the thermodynamic and structural properties
of spherical fluids, it is expected that c(r) as determined
from the RHNC theory will be quite accurate, and that
will allow a very precise determination of the FW line.
The effect of the range of the potential on the FW line
will also be analyzed. In order to locate the FW line
within the phase diagram of the model, vapor-liquid
equilibria will be determined by computer simulation.
We believe that this combination of RHNC results for
determining the FW line and computer simulation to ob-
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tain the vapor-liquid envelope will provide a very precise
determination of the location of the FW line within the
phase diagram of the system. We expect qualitative
agreement with previous results but higher accuracy in
the location of the FW line.

The scheme of this work is as follows. In Sec. II the
determination of the FW line as well as details of the nu-
merical calculations are given. Section III presents the
results, and in Sec. IV the conclusions of this work are
given.

II. LOCATION OF THE FISHER-WIDOM LINE

We shall briefly outline the basic equations for the
determination of the Fisher-Widom line of a three-
dimensional system and we refer the reader to the origi-
nal papers [5—7] for further details.

The Ornstein-Zernike (OZ) equation for a spherical
fluid can be written as

h(rp)=c(rip)+p [clrih(ry)drs,, (1)

where p is the number density. The three-dimensional
liourier transform of a function f(r) will be denoted as
f(g) and is obtained from the relation

f(q)=fexp(iq-r)f(r)dr
=4 [ rf(rsin(qr)/qdr . )

Then by taking the Fourier transform of the Ornstein-
Zernike equation it can be rewritten as

h(q)=2¢(g)/[1—pe(g)] . (3)

By taking the inverse Fourier transform of h(q), then
h (r) can be obtained as

h(r)=[1/(2772)]f0wq’c‘(q)/[1-—p’c‘(q)]sin(qr)/rdq . @)
Hence we obtain
r h(r)=[l/(2772)]fowq’c‘(q)/[l—p’é(q)]sin(qr)dq . (5

Taking into account that h(q) is an even function of ¢
then Eq. (5) can be rewritten as

r h(n=[1/47*)] [~ q{e(q)/[1—pe(q)]}expligridg .
6)

From a physical point of view only real positive values
of g have a physical meaning. From a mathematical
point of view complex values of g are also allowed.
Therefore, we shall consider complex values of g of the
form

g=a,tiay . (7)

By performing a contour integration in Eq. (6) on an
infinite radius semicircle in the upper-half plane one ob-
tains [7]

rh(r)=[1/(27)]3 explig,r)R, , (8)

where g, is the nth pole and R, the residue of
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q¢(q)/[1—pec(q)] at qg=gq,. Poles of the function
q¢(q)/[1—pe(q)]) are obtained by solving the equation

1—pe(q)=0 . 9)

By equating imaginary and real parts in Eq. (9) the fol-
lowing equations are obtained:

ap=4mp [ re(r)sinh(agr)cos(a,r)dr , (10a)

a1=477pfrc(r)cosh(aor)sin(alr)dr . (10b)

Solving Eq. (9) is therefore equivalent to solving the pair
of Egs. (10). Two kinds of solutions to Egs. (10) can be
found [6,7]. The first kind of solution has a;=0,a,70
and yields an exponential decay contribution to » h(r)
[see Eq. (8)]. A second kind of solution is obtained with
a,70 and a,70. In that case poles occur in conjugate
pairs g =*a;+ia, The contribution of a conjugate pair
to r h (r) is that of an exponentially damped (with inverse
decay length «) oscillatory (sinusoidal) function. There-
fore the behavior of r 4 () at large values of r is dominat-
ed by the solution of Egs. (10) with the smallest value of
a,. The FW line is just the locus of points on the phase
diagram where the purely imaginary solution and the
complex solution with the smallest imaginary part have
the same value of . It is clear from Egs. (10) that deter-
mination of the FW line requires only the knowledge of
¢ (r) at every temperature and density.

In order to obtain the FW line we shall solve the OZ
equation [Eq. (1)] along with the RHNC closure. The
RHNC closure [11] is given by

c(r)=h(r)—In{[h(r)+1]exp[u (r)/(kKT)]} +By(r), (11)

where B, is the bridge function [1] of the reference sys-
tem. In this work we shall take the hard sphere (HS) as
the reference system so that

By(r,p, T)=Bygs(r,p;dys) . (12)

The diameter of the equivalent hard sphere is obtained by
solving the condition [11]

pf[g(r’PT)_gHS(r:p;st)][dBHs(r)/d(st)]dr=O .
(13)

If the diameter of the hard sphere dyg is obtained from
the solution of Eq. (13) then pressures obtained from the
virial theorem and from derivation of the free energy are
identical [11]. Therefore the use of Eq. (13) to obtain dyg
provides thermodynamic consistency between these two
routes. In order to solve Eq. (13) the bridge function of
hard spheres is needed. We shall use the parametric form
proposed by Labik and Malijevsky [12,13]. This parame-
trization has proved to be quite accurate in a number of
works involving different kinds of potentials [14-17].
Equation (1) along with Egs. (11)-(13) constitute the
RHNC theory. The RHNC integral equation is solved
by using the algorithm proposed by Labik, Malijevsky,
and Vonka [18]. We typically used a grid with N =4096
points, M =250 points, and Ar =0.01lc. By solving the
RHNC integral equation the direct correlation function
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c(r) is obtained at every density and temperature. Once
¢ (r) is known from the RHNC theory then we looked for
solutions of Egs. (10). We typically solve the RHNC
equation for about 20 densities at every temperature. In
this way the density of the FW line for the considered
temperature was obtained. Ten different temperatures
were considered.

In this work we shall consider a short-ranged potential
hereinafter denoted as SLJ. The pair potential ug ; for
the SLJ model is given by

ugiy(r)=4¢[(a /r)*—(o /r)¥160(r —r,) , (14)
_ W/{14expl—x/(x*—AN]}, Ixl<a (15)
0)=11, x<—A, 6(x)=0, x=A. (16)

The value of A was set to 0.50. Most of the calculations
were performed with r,=2.5¢. However some calcula-
tions for r.=50, r.=17.50, r.=100, and r,=200 were
also performed. The potential given by Eqgs. (14)—(16)
vanish at 7, +A as well as all its derivatives. The range of
the potential is r,+A. The potential described by Eqgs.
(14)-(16) can be considered as a modified Lennard-Jones
(LJ) potential with finite range and continuous derivatives
at any value of r.

One of the aims of this work is to locate the position of
the FW line within the phase diagram of the considered
model. We would like to plot the FW line reduced by the
critical magnitudes of the model. Although solution of
the RHNC is always found at the densities where the FW
line occurs, there is a region of the phase diagram where
no solution of the RHNC is found (see the next section).
The problem of the existence of a region where no solu-
tion of the OZ integral equation is found has been recent-
ly discussed in a number of papers [16,19-23]. For the
LJ potential Lomba found that the region of no solution
of the RHNC integral equation includes the critical point
[16]. That precludes the determination of the critical
point of the fluid within the RHNC theory. Similar con-
clusions were obtained in this work for the SLJ potential.
Therefore determination of the critical point within the
RHNC theory is not possible. To overcome this problem
we have performed Gibbs ensemble simulations [24,25] of
the considered ug; y potential. We refer the reader to the
original papers of Panagiotopoulos and co-workers
[24,25] for an explanation of the Gibbs ensemble simula-
tion methodology. Details of the simulations are similar
to those used in our previous work [26,27]. A total num-
ber of 512 particles were used. After 5000 cycles for
equilibrium, 10000 additional cycles were performed to
compute thermodynamic averages. In this way the
vapor-liquid equilibria of the SLJ model have been calcu-
lated. The critical point can be estimated from the coex-
istence envelope by using the rectilinear diameters law
[28] (including a second order term in temperature) and
the critical exponent B=1. In this way a reliable estima-
tion of the critical point was obtained.

In order to assess the quality of the structural data pro-
vided by the RHNC theory we have performed some ad-
ditional NVT Monte Carlo (MC) simulations of the SLJ
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potential for the isotherm T*=T/(e/k)=1.40 and the
densities p*=pc>=0.20, 0.65. These runs will also be
useful to validate the predictions of the RHNC theory
concerning the determination of the FW line. In these
MC runs we used 864 particles for p* =0.20 and 1372 for
p*=0.65. This rather large number of particles was used
in order to analyze the behavior of 4 (r) at large values of
r. In the next section results for the different considered
models are presented.

III. RESULTS

We shall start presenting the results for the SLY model
with r,=2.50. In Fig. 1 the values of @, for the imagi-
nary pole and for the complex pole with the smallest
value of a, are presented as a function of the density for
the reduced temperature T*=1.4. For the reduced den-
sity pgw=0.562 the value a; of both poles is the same
and, therefore, this state is on the FW line. For densities
larger than pfw exponentially damped oscillatory decay
occurs. For densities less than pfw the imaginary pole
has the smallest value of a, and therefore r h (r) presents
exponential decay. In Fig. 2 the function r* h(r) is plot-
ted for a density below the FW line and for a density
above the FW line. The reduced distance r* is defined as
r*=r/o. In the first case exponential decay is clearly
visible, whereas in the second case oscillatory damped de-
cay is observed. Therefore, our determination of the FW
line is consistent with the structural data presented in
Fig. 2. In Fig. 3 the function In[r*h(r)] is plotted as a
function of r* for p*=0.20 and T*=1.40, which is a
state below the FW line. Linear behavior is obtained at
large values of r and that indicates exponential decay of
r*h(r) at large r. A least squares fit to the values of
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FIG. 1. Imaginary part o, for the purely imaginary pole
(dashed line) and for the complex pole with the smallest value of
ay (solid line) as a function of the reduced density p* for the SLJ
model with r,=2.50 and A=0.50. Results correspond to the
isotherm T*=1.40.
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In[r*h(r)] at large values yields a slope of —0.7812.
This is in excellent agreement with the value o of the
imaginary pole computed from the solution of Egs. (10)
which is @;=0.7809. This further shows how the
behavior of r*h (7) at large distances is given by the solu-
tion of Egs. (10).

To assess the quality of the structural data provided by
RHNC we compare in Fig. 4 the radial distribution g (7)
obtained from the solution of the integral equation with
g (r) obtained from NVT MC simulations. Two densities
were chosen for this comparison. One below the FW line
and another above the FW line. The agreement between

0.20
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1.00
0.75
r h(r)
0.50
0.25 -

0.00 + — —

-0.25 4

-0.50 , . :

.

FIG. 2. Behavior of r*h(r) as a function of r* for a density
below the FW line and for a density above the FW line. The re-
duced r* is defined as r*=r/o. The h(r) function was ob-
tained from the solution of the RHNC integral equation for the
SLJ model with r,=2.5¢ and A=0.50. The considered tem-
perature in both cases is T*=1.4. (a) Density below the FW
line, p*=0.20. (b) Density above the FW line p* =0.65.
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FIG. 3. The function In[7*A(r)] from RHNC versus r for
the SLJ model with r,=2.50 and A=0.50. Results correspond
top*=0.20and T*=1.4.

theoretical and simulation results presented in Fig. 4 is
excellent. That gives us some confidence in our estima-
tion of the FW line for the considered model. Moreover,
the MC data are consistent with the theoretical predic-
tions. MC results presented in Fig. 4(a) present exponen-
tial decay and in Fig. 4(b) present exponentially damped
oscillatory decay. The FW line must be between these
two densities which is consistent with our calculated
value pfw. It should be mentioned that since we used
NVT simulations, the asymptotic value of g(r) from
simulations is not one but 1—1/N, where N, is the num-
ber of particles used in the simulations (864 at the small-
est density and 1372 at the highest density).

In Table I densities of the FW line at several tempera-
tures are given for the SLJ model with r.,=2.50. Note
that for the SLJ model with . =2.50 densities along the
FW line decrease as the temperature increases.

In Table IT vapor-liquid equilibria for the SLJ system
with 7, =2.50 obtained from Gibbs ensemble simulations
are shown. Note that pressure computed via the virial
theorem in the gas and liquid phases is almost the same
which constitutes a cross checking of the calculations.
The estimated critical point obtained from the Gibbs en-
semble results is 7 =1.178 and p}=0.298. In Fig. 5(a)
the coexistence densities for that model are presented
along with the computed value of the FW line. The FW
line intersects the liquid branch of the coexistence curve.
The critical point belongs to the region of purely ex-
ponential decay. Results presented in Fig. 5(a) are con-
sistent with the previous work of Fisher and Widom [5]
and of Evans et al. [6]. In Fig. 5(b) a corresponding
states plot of the vapor-liquid equilibria and of the FW
line is presented. The FW line cuts the liquid branch of
the vapor-liquid equilibria at the reduced temperature of
T/T.=0.88 and the reduced density of p/p, =2.07. Our
corresponding states plot presented in Fig. 5(b) is in
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agreement with the previous results of Evans et al. [6]
for the square well potential obtained by using a less ac-
curate approximation of c(r). Results presented so far
give further support to the existence of the FW line for
short-ranged three-dimensional potentials having both
repulsive and attractive forces. Our results confirm pre-
vious predictions [5,6] of the fact that the FW lines cuts
the liquid branch of the vapor-liquid equilibria at a tem-
perature relatively close to the critical temperature. Note
that according to the results presented in Fig. 5(b) that
for temperatures less than 7'/T,=0.88, gas and liquid at
coexistence present different behaviors of the function r
h(r) at large distances. Exponential decay is found for
the gas whereas exponentially damped oscillatory decay
is found for the liquid. According to Evans et al. [6], an
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FIG. 4. Simulation and theoretical results for g(r) at two
different densities below and above the FW line. Results corre-
spond to the SLJ model with r,=2.50 and A=0.50 at
T*=1.40. Solid line, RHNC results; points, MC results. (a)
Reduced density p* =0.20. (b) Reduced density p* =0.65.
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TABLE 1. Fisher-Widom line for the SLJ model with several
values of r, as obtained from the solution of Egs. (10). Direct
correlation function c(r) was taken from the RHNC theory.
The value of A was of A=0.5¢.

T* r.=250 r.=5 r.=1.5 r.=100 r.=200
5.0 0.39 0.60 0.74 0.83
2.0 0.50 0.61 0.67 0.74 0.90
1.90 0.51 0.61 0.68 0.74 0.88
1.80 0.52 0.62 0.68 0.74 0.87
1.70 0.53 0.63 0.68 0.73 0.87
1.60 0.54 0.63 0.67 0.73 0.85
1.50 0.55 0.63 0.68 0.73 0.85
1.40 0.56 0.64 0.68 0.73 0.84
1.30 0.58 0.65 0.68 0.72

1.20 0.59 0.653 0.686 0.73 0.83
1.10 0.61 0.666 0.693 0.72

1.00 0.62 0.675 0.694 0.72 0.813
0.90 0.688 0.73
0.80 0.7031

important consequence of that is that for T/T, less than
0.88 the density profile of a vapor-liquid interface should
have oscillations on the liquid branch.

In Fig. 5 the region where no solution of the RHNC
equation is found is presented. Note that this region in-
cludes the critical point of the model. The same problem
was previously found by Lomba [16] for the full LY po-
tential and seems to be a general failure of the RHNC
theory. However, the FW line is located in the region
where solution of the RHNC equation exists so that it
can be readily computed by using the structural output of
the integral equation.

Finally, the effect of the range of the potential on the
FW line will be analyzed. For that purpose the FW line
has been computed for the SLJ model with r,=50,
r.=100, and r, =200. Results are given in Table I. It is
observed that as the value of r, increases the FW line
moves to higher densities. For r,=200, T*=35, and
p*=0.90 exponential decay is found. We fail to find a
solution of the RHNC equation for this model and tem-

TABLE II. Gibbs ensemble results for the SLJ with r,=2.5¢0
and A=0.50. Digits in parentheses show the uncertainty of the
last reported digits. Pressures are given in units of €/0°.
Reduces densities p* are defined as p* =po’. Reduced tempera-
ture is given by T*=T/(e/k). The subindices g and ! refer to
gas and liquid phase results, respectively.

T* P Py p! pi
0.85 0.018(2) 0.0137(9) 0.741(9) 0.011(5)
0.90 0.026(1) 0.020(1) 0.710(19) 0.018(130)
1.00 0.056(5) 0.041(3) 0.650(16) 0.035(55)
1.03 0.066(5) 0.049(3) 0.627(17) 0.045(50)
1.05 0.071(6) 0.052(4) 0.604(23) 0.052(49)
1.08 0.098(11) 0.066(5) 0.582(23) 0.063(50)
1.10 0.105(8) 0.071(5) 0.560(26) 0.067(38)
1.14 0.141(21) 0.087(8) 0.490(45) 0.088(36)
1.15 0.154(21) 0.092(8) 0.451(80) 0.094(35)
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perature at higher densities. We have not computed the
vapor-liquid equilibria of the SLJ models with r, =50,
r.=100, or r.,=20c0. However, it is expected that for
these rather large values of the range of the potential,
namely 5.50, 10.50, and 20.50, respectively, the vapor-
liquid equilibria of the SLJ models will be very close to
that of a Lennard-Jones system. The vapor-liquid equili-
bria of the Lennard-Jones potential is well known from

1.6

0.7 -

0.6 T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

P/ Pe

FIG. 5. FW line and vapor-liquid equilibria of the SLY model
with r,=2.50 and A=0.50. The FW line (short dashed line)
was obtained from the structural results of the RHNC equation.
Coexistence densities (open circles) were obtained from Gibbs
ensemble simulation. The solid line is a fit to the Gibbs ensem-
ble results. In the region labeled as E exponential decay of
r h(r) occurs whereas in the region labeled as 0 damped oscilla-
tory decay occurs. The dashed line indicates the region of the
phase diagram where no solution of the RHNC is found. (a)
Reduced temperature versus reduced density. (b) Correspond-
ing states plot of the results presented in (a).
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computer simulations [29]. The same is true for the
fluid-solid equilibria of this model [30]. In Fig. 6(a) the
FW lines for r,=50, r,=100, and r, =200 are plotted
along with the vapor-liquid equilibria of the full LJ sys-
tem. In Fig. 6(b) the same results are presented but are
reduced by the critical properties of the LJ system. The
slope of the FW line is negative for r, less than 7.50 and
positive for larger values. Figure 6 shows that the region
of the phase diagram where exponential decay occurs in-
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FIG. 6. FW line and vapor-liquid equilibria of the SLJ model
with r.=50 (long dashed), ro=100 (dashed), and r.=200
(short dashed line) determined from the RHNC theory. In all
cases, the value A=0.50 was used. Vapor-liquid coexistence
densities (solid line) were taken from computer simulations of
Ref. [29] for the full LY potential. Liquid-solid coexistence den-
sities from Monte Carlo results of Ref. [30] for the full LJ sys-
tem are also included (solid lines on the right-hand side). Re-
gions with exponential and oscillatory damped decay are labeled
as E and O, respectively. (a) Reduced temperature versus re-
duced density. (b) Corresponding states plot of the results
presented in (a).
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creases considerably with the range of the potential. In
order to understand this behavior we shall briefly consid-
er the case of a full LJ potential without any truncation.

The LJ potential can be obtained from Eq. (14) by re-
moving the function 6(r —r.). It is generally accepted
that for a LJ potential the behavior of c(7) at large dis-
tances is given by [4,10]

c(r)=4e(o)/(kT ) . (17)

A consequence of Eq. (17) is that the asymptotic behavior
of h (r) must be given by [3]

r*h(r)=4[S(0)]2/(T*r*%), (18)
where S (0) is the structure factor at ¢ =0

S(O=1+4mp [ “h(rirdr . (19)

By taking logarithms on both sides of Eq. (18) it can be
rewritten as

In[#*h (r)]={21n[S(0)]+In(4/T*)} —5In(r*) . (20)

We have solved the RHNC equation for the full LJ po-
tential. For the LJ model we used a grid of N =16384
points, M =1500 points, and Ar=0.025¢0. Our purpose
is to check if the solutions of the RHNC equation satisfy
Egs. (17)-(18). For a few selected states we plot In(c)
versus In(r*) for large values of r and found linear
behavior with a slope very close to —6. At large dis-
tances, the function 4 (7) obtained from the RHNC equa-
tion was fitted to the expression

In[r*h(r)]=c,+c,In(r*) . 21

In Table III the coefficients of the fit ¢; and ¢, for the LJ
model at several thermodynamic states obtained from the
RHNC equation are presented. The slope of the fit, ¢, is

TABLE III. Structural results of the solution of the RHNC
for the LJ potential. At large values of r we fitted our results of
r*h(r) to the expression of Eq. (21) where r*=r/o. Values of
c; and c, are shown. We also computed the expression 2
In[S(0)]+In(4/T*) which according to Eq. (20) should be
equal to ¢;. S(0) is the calculated structure factor.

21n[S(0)]

p* T*  S(0) +1n(4/T*) ¢ ¢

010 15 1739 2.088 2.116  —5.00
015 15 2358 2.697 2751  —5.00
020 15  3.126 3.260 3335  —5.01
025 15  3.636 3.562 3726 —5.02
030 15 3313 3.377 3936  —5.10
035 15 2536 2.842 3.643 —5.16
040 15 1572 1.886 2137 —5.03
045 15 0916 0.804 0958  —5.02
050 15  0.588 —0.082 0053  —5.02
055 15 0344 —1.153 —1.084  —5.01
060 15 0234 —1.924 —1.633  —5.07
040 30 0453 —1.295 —1275  —5.00
040 25 0519 —0.840 —0.783  —5.00
040 20  0.687 —0.057 —0.043  —5.01
040 15 1572 1.886 2137 —5.03
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in all the cases very close to —5 as suggested by Eq. (20).
The coefficient ¢, is in general close to the term in brack-
ets of Eq. (20) except for the density p* =0.30 which is
very close to the critical density of the LJ system. Re-
sults presented in Table III show that the long-range de-
cay of h (r) for a LJ fluid is of the form of Eq. (18).

We have so far discussed results for the finite-range po-
tential ug;; with several values of r, and for the full LJ
potential. It is obvious that there should be a connection
between the structure of these two models since the ug;
tends to a LJ potential when 7, of the SLJ model goes to
infinity. How is such a link made? To answer this ques-
tion we considered the ug ; model with a relatively large
value of r,. We chose r,=200. We shall analyze the re-
sults of this model obtained from the solution of the
RHNC equation. Two different densities, p*=0.10 and
p*=0.60, are considered within the isotherm T*=2. In
Fig. 7(a) In[r*h (r)] is plotted versus r* for the two con-
sidered densities. In Fig. 7(b) In[r*h(r)] is plotted versus
In(r*). Let us first consider the results for the smallest
density [dashed lines in Figs. 7(a) and 7(b)]. For this den-
sity two different regimes in the behavior of h(r) are
clearly visible. From r*=13 up to r*=20 the decay of
h (r) approximately follows a power law given by Eq. (18)
and that explains the linear region found in Fig. 7(b). For
larger values of » decay of 7 h (r) is exponential and that
explains the linear region found in Fig. 7(a) for r* >27.
For the largest density (solid line in Fig. 7) the same
behavior is found, although the linear region in Fig. 7(b)
is found only between r*=12 and r*=15 and in Fig. 7(a)
for r*>30. For both densities the ultimate decay of r
h (r) follows an exponential law. Figure 7 describes how
the transition from a SLJ to a LJ model occurs. For a
SLJ model with a large value of r, the following sequence
in the structure is expected. For large values of 7 but less
than r, the behavior of » h(7) should be approximately
given by Eq. (18). For values of » much larger than 7,
exponential decay or exponentially damped oscillatory
decay will occur depending on the location of the FW
line for the considered SLJ model. In Fig. 6 it was shown
that the FW line of the SLJ potential moves to higher
densities as r, increases and its slope becomes positive.
Note that the slope of the fluid-solid coexistence curve
presented in Fig. 6 is also positive. It seems reasonable to
assume that for a sufficiently large value of r, the FW line
will be located within the fluid-solid coexistence region.
In that case the whole phase diagram of the SLJ model
will fall within the exponential decay region. In other
words, for sufficiently large values of r, decay of r h(r)
will follow a power law for r less than r, and exponential
decay for larger values. Therefore there should be a
crossover from power law decay to exponential decay at
large distances. Note that both the power law and the
exponential decay go to zero through positive values. It
may look surprising that for the SLJ system with a large
value of r, a range of distances exist where the decay of r
h(r) follows a power law. It has recently been shown
[31] that the number of complex poles of a finite-ranged
potential significantly increases with the range of the po-
tential. All these poles present similar values of a, and
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therefore of the exponential decay length oy !. Hence, al-
though Eq. (8) is valid it is necessary to include a large
number of terms in order to describe the behavior of & (7)
at distances less than the range of the potential. The
power law decay appearing for distances less than r,
arises from the combination of a large number of ex-
ponentially damped sinusoidal functions. From a
mathematical point of view it is possible to fit the func-
tion > in a finite interval as a combination of a large
number of exponentially damped sinusoidal functions.
When considering the ultimate decay of & (r) we con-
clude that the SLJ potential with very large r, presents
exponential decay through the whole fluid phase. The
full LJ presents power law decay through the whole fluid
phase. None of these models present a true FW line. In

In[r'h(r)],“%
720_

— 25+

— 30

—-354

FIG. 7. Structure of the SLJ with r, =200 as obtained from
the RHNC equation. The considered temperature is 7*=2.
Dashed line, p*=0.10, solid line, p*=0.60. For the largest
density the horizontal lines represent regions where h (r) takes
negative values. (a) Plot of In[r*A(r)] versus r*. (b) Plot of
In[r*h (r)] versus In (r*).
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the SLJ model this is due to the fact that the FW line
falls at densities beyond the freezing transition. However
when considering the intermediate behavior of A (#) then
the SLJ model and the full LT model behave quite simi-
larly. Evans et al. [7] have pointed out that for an
infinite-range potential as the LJ system there can be a
FW-like line when the behavior of r h (7) at intermediate
range is considered. This was illustrated by Sung and
Chandler [32] by presenting the results of 4 (r) at the in-
termediate range obtained from application of the opti-
mized cluster theory. Our results also support the ap-
pearance of a FW-like line for the SLJ system with very
large r, when the intermediate range of the potential is
considered. In fact, in Fig. 7(a) it is shown that although
the ultimate decay of r & (r) is exponential in both cases,
when considering the intermediate range, it could be said
that the lower density p*=0.10 has intermediate ex-
ponential decay whereas the highest density p*=0.60
presents exponentially damped oscillatory decay. In a re-
cent paper, Carvalho et al. [31] have analyzed this point
in detail. In this paper, however, we focused in the
behavior of the ultimate decay of 4 (r) and therefore it
must be concluded that in that respect the SLJ model and
the LJ model behave in a different way.

IV, SUMMARY AND CONCLUSIONS

The FW line has been determined for a finite-range po-
tential (SLJ) by using the direct correlation function c(r)
as obtained from the RHNC integral equation. In addi-
tion, the vapor-liquid equilibria for the same potential
have been computed by using Gibbs ensemble simula-
tions. For the SLJ model with r,=2.50, the FW line
cuts the vapor-liquid equilibria when 7T /T,=0.88.
Structural information obtained from computer simula-
tion is consistent with the existence of a transition in the
behavior of the function r /4 (7) at large distances. At low
densities exponential decay of the function r A(r) is
found, whereas at large densities exponentially damped

oscillatory decay occurs. All our results give further sup-
port to the presence of a FW line in three dimensions for
finite-range potentials, provided that the pair potential
has repulsive and attractive forces. In addition to that,
results of this work probably provide the most accurate
determination of the FW line so far presented for a three
dimensional system. This previous statement is support-
ed by the excellent agreement found between computer
simulation and RHNC theory for the function A (r) at
several densities.

When the range of the potential increases while
remaining finite, the region of the phase diagram present-
ing exponential decay significantly increases. Our results
strongly suggest that for potentials with a finite but very
long range, the FW line occurs at densities beyond the
freezing transition. Therefore, in that case the whole
fluid presents exponential decay at very large distances.
For these systems the following sequence in the decay of »
h(r) is observed. For large distances but less than the
range of the potential, the decay of r h (r) follows a power
law. For distances much larger than the range of the po-
tential, exponential decay occurs.

Neither the LJ potential nor the SLJ potential with
very large r, have a FW line within the fluid phase re-
gion. The explanation of that is different in each case.
However, when the intermediate range of distances is
considered, then, the LJ model and the SLJ model with
large r, present a FW-like line.
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