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Jump clustering, Shlesinger-Hughes stochastic renormalization, and interacting Levy Aights
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A continuous-time approach for Shlesinger-Hughes stochastic renormalization is used for investigat-
ing the cooperative behavior of interacting Levy Aights. We consider a set of m interacting random
flights and assume that each walker can exist either in an active state for which the clustering of jumps
can occur or in a passive state for which the jump clustering is impossible. We assme that the system has
a very strong cooperative behavior; the clustering of jumps occurs only if all walkers are in the active
state. The probability distribution

gin�„.

. . , n ) of the numbers n„. . . , n of jumps from a cluster
corresponding to the di6'erent walkers depends only on two parameters: the number m of walkers and a
fractal exponent H=F, /i, given by the ratio between the mean relaxation time ~„corresponding to an
individual clustering event and the mean time ~, of the clustering process as a whole. The very strong
cooperative behavior of the jump clustering is displayed by the asymptotic behavior of the probability
gin ,i. . . , n) for large n, , . . . , n: for n*=ni=ni= =n, g(n„. . . , n ) has a maximum value
that corresponds to a long tail of the inverse power law type gin *, . . . , n *)—n

* " ' as n *~~. If
the n& are different from each other gi n „.. . , n ) decreases exponentially to zero as n& ~ oo,
/=1, . . . , m. We identify a critical point that corresponds to mH=1; for H ) 1/m each walker per-
forms a Gaussian Aight, whereas for H & 1/m each walker performs a Levy Right with a fractal parame-
ter p=2mH The int. eraction among the walkers decreases the efficiency of jump clustering: for a set of
interacting Rights the Levy behavior occurs only if ~, )m~„; this threshold value for the average total
clustering time is m times larger than in the case of noninteracting Rights.

PACS number(s): 05.40.+j, 02.50.—r, 64.60.—i

I. INTRODUCTION

Random Aights of Levy type have been used in connec-
tion with the study of critical phenomena, dielectric re-
laxation, anomalous diffusion, turbulence, the interaction
of sound or light with a rough surface [1—4], etc. The
Levy Rights are intimately related to the theory of fractal
random processes and stochastic renormalization; their
mechanism of generation is relatively well understood if
the moving particles are noninteracting. In contrast,
very little is known about the interacting Levy Aights.

A useful method for the generation and analysis of
Levy Aights is the Shlesinger-Hughes stochastic renor-
malization (SHSR) [5]. By starting out from a classical
Gaussian random Aight SHSR leads to a Levy Aight by
assuming that the jumps are clustering into self-similar
blocks of random size. This method has been successfully
applied to a broad class of problems from condensed
matter physics, hydrodynamics, nonlinear optics, and
even economics (see [2—5] and references therein).

The purpose of this work is to investigate a particular
class of Levy Sights for which a fairly detailed analytical
study is possible. Our analysis is based on a continuous-
time description of jump clustering for noninteracting
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Levy (lights within the framework of SHSR [6]. First we
summarize the main results of the continuous-time ap-
proach to jurnp clustering for noninteracting Levy Bights
and then proceed to the study of interacting Aights.

II. NONINTERACTING LEVY FLIGHTS

We consider a symmetric Markovian random walk in
d, -dimensional Euclidean space and denote by p (r)dr the
probability that the displacement of a jurnp is between r
and r+dr. Denoting by g(n) the probability that a clus-
ter consists of n jumps, the renormalized jump probabili-
ty density p(r) is given by

p(r)=gg(n)[p(r)cg ]",
where [p (r)cg ]" is the n-fold convolution product ofp (r).
To compute the probability g(n) we make three assump-
tions [6].

(a) The jump clustering is a collection of independent
events.

(b) The jump clustering is described in terms of two
characteristic time scales: the time scale ~, in which the
clustering as a whole occurs (the characteristic time
necessary for the occurrence of a cluster of clusters) and
the time scale w„characteristic for the occurrence of an
individual clustering event (the characteristic time scale
necessary for the occurrence of a single cluster). The
clustering of jumps can be considered a stochastic renor-
malization procedure; through renormalization a cluster
of steps of random size is replaced by a single renormal-
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ized (overall) step. The characteristic time scales r„,T, .
for the clustering process and the characteristic time
scale attached to the random Aight itself are well separat-
ed; in the characteristic time scale of the random Aight
the clustering process is practically instantaneous.

(c) The time evolution of the clustering process is scale
invariant, i.e., the distribution functions of the two
characteristic times introduced above have the same form
for any initial time.

From these hypotheses we can express g(n) as [6]:

g(n)= f g, (r)[A,(r)]" '[1—A(r)]dr, (2)
0

p(k)= f e' 'p(r}dr, P(k)= f e'"'p(r)dr (7)

for the initial and renormalized Bights, respectively. For
a symmetric nonrenormalized Bight with a finite square
displacement ( r 0 ) = ( l

r
l ) the nonrenormalized struc-

ture function is analytic near k =0:
p(r) =1—

& r,' & lkl'/2d, +o (lkl') .

By taking the Fourier transform of Eq. (1) and using Eqs.
(5) and (7) we obtain [6,7]

p(k) = 1 H(r—o ) lkl /'[2d, (H —1)]+o ( lkl )

where g, (r)d~ is the probability density of the total clus-
tering time,

A, ( r ) —f t)„(r )d r
0

(9)

p(k)=1 —lkl' . +o(lkl'), H &I .
&ro& ~H
2d, sin(nH)

is the probability that the walker is in an "active" state,
i.e., the probability that a clustering event takes place in
the time interval of length r, and g„(r)dr is the probabili-
ty density of the time required for the occurrence of an
individual clustering event. In [6] it is shown that the as-
sumption (c) of scale invariance of the clustering process
requires that both rt, (r) and g„(~) be exponential func-
tions of time:

g, „(r)=r, „'exp( —sir, „), (4)

H =r„/r, .

We introduce the structure functions

(6)

where r, „=J o re, „(r)dr are average times. By com-

bining Eqs. (2)—(4) we get the following expression for
g(n):

g(n) =HI (1+H)(n —1)!/I (H +n + 1),
where I (x)= 1 o

t" 'exp( t)dt is th—e complete gamma

function and H is the ratio between the relaxation time ~„
and the clustering time ~„

(10)

By considering a succession of a large number of renor-
malized steps N ))1, from Eqs. (9) and (10) it follows that
the probability density for the position of a walker obeys
a Gaussian law for H) 1 and a Levy law for H & 1.

III. INTERACTING LEVY FLIGHTS

Now we can proceed to the analysis of the interacting
flights. In addition to the three hypotheses (a) —(c) intro-
duced above we have the following.

(d) If there are many walkers the jump clustering is not
an independent process that occurs for each of the walk-
ers separately; it is a cooperative e6ect that occurs only if
all the walkers are in their active state. Since all walkers
are equivalent, the jumps from a cluster are randomly
and uniformly distributed among the m walkers.

As the probability that all walkers are in an active state
is the product of the individual probabilities
A,(r, ), . . . , A,(r ), the probability that a cluster is made
up of n &, . . . , n jumps corresponding to the m walkers,
respectively, is given by

g(n) =
gn, —m !

(n( —1)!

Xg(r) . q(r )dr, d~

with

n=(n„. . . , n ) . (12)

and (4) to express A, (r&) and rt, (~&), l = 1, . . . , m, as func-
tions of time and introduce the integration variables

In Eq. (11) the factor in front of the integral is given by a
uniform multinomial distribution of the jumps among the
m walkers, whereas the multiple integral expresses the
probability of occurrence of a total number of jumps
equal to n&+ . +n

For evaluating the integrals in Eq. (11) we use Eqs. (3)

x( =exp( rt /r„), l = 1—, . . . , m . (13)

The expression (11) for g'(n) reduces to the dift'erence of
the products of two groups of identical definite integrals
multiplied by a multinomial probability law: by express-
ing the definite integrals in terms of the complete I func-
tion we obtain
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n, —m

g(n) —1)!
"'H . + f '(1 — )

"' "-'d, —+ f '(1 — )~n™+I,-'d,
J J

gn, —m !
m — n=H m

Q(n) —1)!

gn) —m !I (H)

I gn& —m +1+H

m

gn& —m +11—
gn& —m +1+H

m

(14)

The Levy flights are generated by very large clusters,
which is why we investigate the asymptotic behavior of
g(n) as n&~ ~, I =1, . . . , m. By using the Stirling ap-
proximation for the I function we get

mH[I (H + 1)] ( H+1)
g Il n —m

)m
—1

p (r„.. . , r )

gg(n)[p(r))e] '. [p(r )e]
n& "m

The Fourier transform ofp (r), . . . , r ),

+ oo

P (k„. . . , k )= . f exp igk& r&

(21)

where

X exp — g((p) + 1)ln(y) + 1)

n, ~, I=&, . . . , m, (15)

Xp (r, , . . . , r )

Xdr) . dr, (22)

and

qr, = [n, —(n/m)]/[(n/m) —1]

n=n +. +n1 m

(16)

(17)

is a renormalized m-particle structure function. From
Eqs. (21) and (22) we have

1 "m

is the total number of jumps from a cluster. From Eq.
(15) it follows that for a constant total number of jumps
n ))1 the probability g(n) has a very sharp maximum for

n =n = - =n =n =n jm2 m (18)

a situation that corresponds to

0~ I 1, . . . , m (19)

This shows that the interacting flights have a very strong
cooperative behavior. For the direction in the n space
defined by the conditions (18), g(n) has a long tail of the
inverse power law type that corresponds to a statistical
fractal behavior:

g[n —(no n e )] (n m)
—(mH+1) n

—(mH+I)

(23)

By expressing in Eq. (23) the probability g(n) in terms of
multiple integrals over x„.. . , x [Eq. (14)] and evaluat-
ing the sums over n „.. . , n we obtain

P (k„. . . , k )

1 —+(1—x, ) +x,
fo fo 1+u(k„. . . , k ) —+(1—x, )

1

+p(k()
Xdx( ' dxm

gp(k) )

(24)
n~~, n))m . (20)

where
If at least two of the numbers of jumps n, , . . . , n are
diff'erent then the asymptotic behavior of g(n) changes: it
decreases exponentially to zero; this decrease is much fas-
ter than that in the case of the inverse power law given by
Eq. (20).

Although on the hypersurface g=g(n) there is only
one direction for which the statistical fractal behavior
occurs, it is enough to generate renormalized flights of '

the Levy type. By analogy to Eq. (1) we introduce a re-
normalized joint jump probability density p (r„.. . , r
given by

u(k„. . . , k )=m Qp«) )

(u +y) '= f e "'e «'dt,
0

T

H
H —1

dx dx 11'

and rewrite Eq. (24) in the form

Now we use the integral identities

(26)

(27)



51 JUMP CLUSTERING, SHLESINGER-HUGHES STOCHASTIC. . . 3123

P (k, , . . . , k ) H —1

m gp(kt )

gp(k( )
1 —u(k„. . . , k )H

X f exp[ t—u (kl, , k )]
0

r

X exp —t 1 —+( I —xI )

Xdxi dxm (29)

where

Xg (t)dt (28)
We are interested in the behavior of the renormalized
jump probability density p (rl, . . . , r ) for large values
of ~r& ~

~ ~, l = 1, . . . , m, which in k space corresponds
to k„.. . , k —+0, u ~0 and in terms of the t variable to
t +co. A—s t ~ ao the multiple integral in Eq. (29) may be
approximated by

g(t)= f f rex
H —i

exp t —gx, —ggx, x, + . dx, dx

H —i
m

x 'exp( —tx)dx = t [I—(H) ], t »0,
0

(30)

which leads to the following approximate expression for p(k„. . . , k ):

p (k, , . . . , l )—= Il —[u(k„. . . , k )] r(1 —mH)[r(H+1)] ], 1&mH, k„.. . , k 0.m~I- k,

gp(k, )
(31)

This approximation is valid only for H ( 1/m; by using
expression (8) for the asymptotic behavior of the non-
renormalized structure function p(k) as k —+0 Eqs. (25)
and (31) lead to

on the total number of walkers. In this case the m-
particle structure function has an analytic behavior as
ki, . . . , k —+0:

P (k„.. . , k )=—1— ( 2) 'Ill

r(1 —mH)[I (H+1)]
2md

'mH

2d.

ki . . km +0, mH)1. (35)

X gk,

kI, . . . , k —+0, 1&mH . (32)

Now we introduce the renormalized marginal jump
probability density for one walker from a set of m walk-
ers,

For 1)mH the renormalized joint jump structure func-
tion P (k„. . . , k ) has a nonanalytic behavior as
ki, . . . , k ~0; it is easy to check that in this case the
average values of the numbers of jumps from a cluster
corresponding to the different walkers are all infinite

p' '(r)= f . fp (r, r2, . . . , r )dr2 . . dr (36)

and the corresponding renormalized marginal structure
function

(nI ) = g g n(g(n) = oo .
n1 nm

(33) P' '(k)= f exp(ik r)p' '(r)dr=P (k, O, . . . , 0); (37)

This divergence of ( n I ), . . . , ( n ) is due to the very
slow decay of g(n) in the direction given by Eq. (18).

For 1 & mH the probability g(n) decreases sufficiently
fast as ni, . . . , n ~~ and thus the average values of
the numbers of jumps are finite

&n, &= . =&n )=(n, )(m) .

we have

(m)
P (k)—= 1—

and

(r20 &

2mds
I (1—mH)[I (H+1)]

k~O, H & 1/m, (38)

Due to the symmetry of g(n) with respect to n „.. . , n
all average values ( n, ), . . . , ( n ) are equal to each oth-
er; the cooperative character of the clustering process
leads to a dependence of the average numbers of jumps

P '-'(k) =-1—
2d

k~O, H & 1/m . (39)

Note that due to the cooperative behavior of the jump
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P z '(r)dr with fP~™(r)dr=1 (40)

the probability density of the position of one of the I
walkers after X steps, thus giving

clustering the marginal structure function P{ '(k) de-
pends on the total number m of walkers. We consider a
succession X of renormalized steps and denote by

where

/3= 2mH,

(45)

(44)

( 2) 1/2

b =[Nr(1 —mH)]' " '[r(H+1)]' '
2' 4

P '„'(r)dr= [p
' }(r)S]"dr . (41) and

and

P{m}(r)
N

d 4, /2
S

2N~(r ) ( n, )(m)

Xexp
2N&r,' & &n, &(m)

H ) 1/m, N~ae, (43)

To evaluate the asymptotic behavior of P ~ '(r) as N ~ 00

we take the Fourier transform of Eq. (41), insert into the
resulting equation expressions (38) and (39) for the mar-
ginal structure function, and return to the real space vari-
ables by means of an inverse Fourier transformation.
After some algebra we arrive at

P~ '(r)-(b ) 'X&' (iriIb ), H (1/m, N~ &x

(42)

(8, ) —Ej,Lp' =(2~) ' f exp( —ik r —ski~)dk

is the d, -dimensional symmetric stable Levy law with a
fractal exponent 2 )/3) 0.

IV. DISCUSSIu~

In order to clarify the notions of "active state, " "clus-
tering, " and "time scales" for noninteracting and in-
teracting Bights we make a comparison between the two
renormalized approaches. Table I shows the main
features of the renormalized approaches for noninteract-
ing and interacting Aights, respectively. By examining it
we notice that the interaction among walkers decreases
the efficiency of the clustering process. For interacting
Aights the passage from the Gaussian to the Levy
behavior corresponds to a critical point given by mH=1.
Expressed in terms of the average clustering and relaxa-
tion times ~„~„this critical condition is given by

TABLE I. The probability of occurrence of the active state, the distribution of the cluster size, the critical relation between the
characteristic time scales, and the fractal Levy exponents for noninteracting and interacting Levy fiights, respectively.

Property

probability of occurrence
of the active state

of a walker

Noninteracting Levy
Rights

r
X{r}=I rI, (r}dr

0

Interacting Levy
Rights

7

A{r}=I r)„{r}dr
0

Comparison

the probability of activation
of an individual walker

is the same in both cases

distribution of
the cluster size n

for each walker there
is a probability g(n}
of the cluster size n

given by Eq. (2)

for a set of m walkers there
is a single joint probability
({n,, . . . , n ) of the
sizes nl, . . . , n

of the clusters attached to
the different walkers [Eq. (11)]

for noninteracting Sights
the clustering of jumps
for a walker is independent of
the clustering of other walkers
for interacting flights
the clustering is strongly
cooperative —it occurs if all walkers
are in their active state

renormalization
equations

p{r}=+gin}[p(r)S]" p (r„. . . , r }=+ gg(n}
X[p(r, )S] ' [p(r )S]

critical condition between
the time scales ~„and ~,
characteristic for the transi-
tion from the Gaussian
to the Levy regime

'T —7c r

for interacting flights the total
clustering time should be m
tixnes larger than for
noninteracting Rights
this time is necessary for the
activation of all walkers
the interaction decreases the
efficiency of clustering.

the fractal Levy exponent /3=2H =2r, /i-, /3=2mH =2m%„/7,
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~, =m~„; (47)

for w, & m ~, the random Bights are Gaussian, whereas for
~, )m~„ they are of the Levy type. The threshold value
for the clustering time 7, is m times larger than the
threshold value ~, =~„characteristic for noninteracting
random flights [6]. The physical significance of this re-
sult is clear. For m interacting Bights the clustering pro-
cess leads to infinite averages ( n& ) = ~, l = 1, . . . , m,
only if the clustering time is at least equal to the sum
z„+ . . +z, =m v.„of the individual average times
necessary for the activation of all walkers; if 7, & mF, the
average clustering time is too small and the average
values of the numbers of jumps n „.. . , n are finite.

The above analysis outlines another feature of our re-
normalized approach. Unlike the case of the classical
Shlesinger-Hughes renormalization approach [5], in this
paper the basic random variable is the number of jumps
from a cluster rather than the corresponding displace-
ment vector. The divergence of the mean square dis-
placement for a Levy Aight is due to the divergence of the
mean number of jumps from a cluster.

The model presented in this paper is a system with in-
teracting Levy Bights. The type of interaction discussed
here is related to the mechanism of jump clustering. It is
not clear whether this type of interaction is related in a
simple way to the interactions analyzed in the literature
for non-Levy Bights, for instance, to the problem of self-
avoiding random walks from polymer physics [8] or to
the "true" self-avoiding random walks [9].

Our approach is of interest in connection with the

theory of fractal random processes. Furthermore, there
are general possibilities of application of the model intro-
duced in this paper, for instance, in the study of space-
dependent supercritical branching processes [10]or in the
description of multifragmentation processes [11]. In the
latter case we have in mind a fragmentation mechanism
in which particles of different compositions are broken
into pieces as a result of interparticle collisions. For this
process the jump clustering has a simple physical
significance: it corresponds to an individual fragmenta-
tion event. A similar physical interpretation is possible
for space-dependent branched chain processes. The de-
tailed mathematical models for these two concrete prob-
lems are more complicated than the general abstract
scheme considered here; however, they all share the same
basic features. Work on the above mentioned problems is
in progress and the main results will be presented else-
where.

Note added in proof Rece.ntly, we have learned that
Fogedby, Bohr, and Jensen [12] have discussed the densi-
ty Auctuations of an ideal Browian gas of noninteracting
Levy Aights. It would be interesting to generalize their
approach to the case of interacting Levy Aights con-
sidered here.
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