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Linear processes that produce 1/f or flicker noise
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1/f noise and flicker noises —i.e. , the class of 1/f noises with 0.5 & a & 0.5—are as ubiquitous
as they are mysterious. Several physical mechanisms to generate 1/f noise have been devised, and
most of them try to obtain a broad, nearly Hat distribution of relaxation times, which would then
yield a 1/f spectrum. However, they are all very specialized, and none of them addresses the
question of the apparent universality of this noise, while they all fail in some respect. I show here
that the power spectral density of a relaxing linear system driven by white noise is determined by the
eigenvalue density of the linear operator associated with the system. I also show that the eigenvalue
densities of linear operators that describe diffusion and transport lead to 1/ f or flicker noise. Using
the concepts developed in the paper and a rough approximation of transport in a resistor, I derive
the Hooge formula for the spectrum of conductance Huctuations.

PACS number(s): 02.50.Ey, 05.40.+j, 05.60.+w

I. INTRODUCTION

1/f noise appears again and again in many appar-
ently uncorrelated systems as diverse as metal-oxide-
semiconductor (MOS) devices and ocean currents [1—4].
Indeed there are models that justify the occurrence of 1/f
noise in some systems (see the reviews [5—7]), but they
are very specialized, in other words they do not have the
"universality" suggested by the ubiquity of 1/f noise. It
is generally accepted that the mechanism that leads to
1/ f noise is a system with an exponential response func-
tion driven by a shot noise source, and such that the re-
laxation times of the system are chosen at random from a
very broad, Bat distribution. The power spectral density
(PSD) of a simple relaxation process with characteristic
time r and rate A = 1/r is proportional to 1/(cd + A ) (cd

is the angular frequency), and if the rates are uniformly
distributed between the limits A;„and A, then the
PSD is given by the integral

S(~)oc
&max dA

Gd +Amin

1 (= —
~

arctan —arctan
Ct) Cd )

Then if A,„« cd « A „, S(cd) oc 1/td, and thus
a 8at distribution yields a 1/f spectrum. Furthermore
such a distribution gives a stationary Gaussian process if
the driving noise source is itself stationary and Gaussian,
and this agrees well with most experimental observations
of the statistical properties of 1/f noise, and also seems
to rule out all explanations that relate this noise to some
underlying nonlinear dynamics. However, as Press puts
it in his nice review paper [1], "it [is] hard to conceive. . .
physical mechanisms which contribute stretched pulses
with just the right frequency of occurrence over, say, six
orders of magnitude. Scale superposition just transfers

the mystery to the random 'stretching factor' process. "
I suggest here a fairly general explanation which depends
only on very weak assumptions: the PSD of a linear sys-
tem [8] driven by white Gaussian noise is uniquely deter-
mined by the eigenvalue density of the associated linear
operator, and the (linear) operators that describe several
systems that exhibit Bicker noise, and in particular dif-
fusion and transport, have densities that lead to 1/f or
flicker noise i.e. , to 1/f noises with 0.5 & o. & 1.5.
This is a purely mathematical device that does not de-
pend on the underlying physics, and there is no need
to introduce a "stretching factor. " Although the mathe-
matics developed here is applicable to many systems that
are totally unrelated to 1/f current noise, the main ap-
plication of a Bicker noise theory is the "explanation" of
1/f current noise. This requires a description of charge
transport and diffusion, and here I make an attempt to
go in this direction, but I do not develop a complete the-
ory of Bicker noise in resistors. It must be remarked that
difFusion processes have been repeatedly invoked as the
source of 1/ f noise in resistors, most notably by Voss and
Clark [9], who have introduced a diffusion model based
on temperature Buctuations. The model described in this
paper is based on number Buctuations and therefore
has a much wider applicability and goes further in the
analysis thanks to a considerably simpler mathematical
formalism.

Section II outlines the connection between diffusion,
transport, and systems of linear differential equations of
the relaxation type. The PSD is discussed in Sec. III,
while in Sec. IV I return to the description of Sec. II and
derive lower and upper bounds for the eigenvalues. Sec-
tion V exhibits classes of processes that actually convert
white noise to 1/f or flicker noise. A simple transport
channel that may roughly model a resistor is described
in Sec.VI, and it is shown that this model leads to the
Hooge formula for conductance Buctuations. Notice that
no special distinction is made, throughout the paper, be-
tween "equilibrium" and "transport" noise.
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II. DIFFUSION AND TRANSPORT PROCESSES
ON A DISCRETE SET OF SITES

Several measurements [5—7,9] indicate that 1/f noise
in resistors exists at equilibrium, and therefore that it
may be due to some sort of diffusion. Thus we start here
with pure diffusion and consider a population of N iden-
tical noninteracting random walkers distributed over n
sites, so that NI, (t) is the population of the kth site at
time t, and ak jest is the probability that a random walker
which is at site j jumps to site k during the (short) time
interval (t, t+At). At present no special topology is asso-
ciated with the n sites, however we make the additional
hypothesis N &) n; as we shall see later this is not a
serious restriction.

Then the number of random walkers that jump from
site j to site k during (t, t + At) is a random variable
with a binomial distribution, with average and variance
both equal to aI,~ N~ (t)At. It is well known from elemen-
tary probability theory [10] that if a~~A~(t)At is finite
and large then such a binomial distribution can be ap-
proximated by a Gaussian density with the same average
and variance. The total number of random walkers that
jump to k is then (in the limit of large N~ )a sum o. f in-
dependent Gaussian variates, and therefore it is itself a
Gaussian variate with average and variance both equal
to

) ak, N, (t)At, .

j=. 1 n

while the total number of random walkers that jump
azuay from site k during the same time interval is still
another Gaussian variate with average and variance both
equal to

) a, A,. NA, (t)At = NI, (t) ) a, I, dt = —NA, . (t)At,
&k

j=. l n j=l,n
jgk

thus the net change of the population Ng(t) during the
time interval (t, t+ At) is

(here ( ) denotes the ensemble average).
Notice that the global condition P& z AN~ = 0 should

also hold (i.e., the total number of random walkers is con-
served), therefore (5b) can be only approximately true.
However, this global condition becomes less and less im-
portant as n grows (because the residual correlation is
spread out over a very large number of variates), and
disappears in the more realistic models that we shall in-
troduce in Sec. IV, therefore we assume (5b) from the
outset. Another potential problem with vk's are the long
tails of its assumed Gaussian density, which may lead to
negative occupation numbers and thus to large negative
population changes, so that in practice one has to re-
quire the additional condition —ANI, & Nq. Since (5c)
defines a Gaussian density with o'I, /(NI, ) 1/v Ng, we
expect the tails to be negligible for large %k, and thus
we expect that the condition —LNk & Nk is obeyed by
the Gaussian density with a probability that approaches
1 for large Nk, so that the Gaussian hypothesis does not
adversely affect the PSD. In Sec. V, with the aid of com-
puter simulations, it will be shown that it is actually so
(see also note [11]).

Introducing the vectors 1V = DNA)A, q „, v
(vA, )I, q and the matrix A = (a~y)z I, q, „with
ak~ ————,we can rewrite Eq. (4) in vector form:

&le '

Now assume that the sites 1, . . . , n are chained together
so that site A: is adjacent to sites A: —1 and &+1. Then or-
dinary diffusion due to the simple one-dimensional (1D)
unbiased random walk can be recovered if we let n —+ oo,
a~~ = ——,ag i, ~q ——z, and a~g = 0 if j P k, k+1. In fact
from definition (3), ry is given by rA,. = (ay q y+ap+q I, )
and therefore 7k ——7 is the same for all k's, and

1 1
dN~ = ——NI, (t)dt+ —[NA, +~(t) + NA, g(t)]dt+ vA. (t)dt.

27

Then taking the ensemble average, introducing the po-
sition variable x = kAx, and denoting N(x, t) = (Nk(t)),
where Ax is the (small) distance between adjacent sites,
we find

ANI, = ——NA, (t)At+ ) ag, N, (t)At+ vA,, (t)At. (4)
j=. 1 n
jgk

The previous considerations suggest that each vk can
be well approximated by a Gaussian noise process and in
addition we assume that the vk's are uncorrelated from
each other, so that these noises are completely described
by

1
dN(x, t) = N(x, t)dt——

1+—[N(x + Ax, t) + N(x —Ax, t)]dt.
27

Eventually, if Ax is very small we can write

82V 1 622V

Bt 2 Ot2 '

(vt, (t)) = 0,

(v'(t) v (t')) = ~'~.'~(t —t'),

). a~~~~(t)+ ). a~kNA:(t)
j=1,n 2=1,n
jgk jgk

) (aA,, (N, ) + a, „(NI,))
j=1,n
j.gk

(5)
(5b)

(5c)

where D = Ax /r is the diffusion constant, and this is
just the usual forward Fokker-Planck equation [for the
average values N(x, t)] for the simple random walk (see,
e.g. , [10]).

Similarly if we take the same topology and let ajj ——

——,ajj 1 ———,ajj+1 ———withp+q = 1, pq & 0,
and a~y = 0 if j g k + 1, we recover the forward Fokker-
Planck equation for diffusion + transport (i.e. , for the
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biased 1D simple random walk, see also Ref. [10]),

ON y O2N ON

Ot 2 Ot2 Ox
(io)

orthonorrnal basis of real eigenvectors (gI, )1,—q „such
that Agk ——Akgk. Using this basis we can write

with drift speed v = (p —q)Ax/7 and the same diffusion
constant D as before.

III. POWER SPECTRAL DENSITIES

We introduce now the spectral representations for the
populations and for the noise processes:

n

f(~) = ).&A:(~)n~,
k=1

and substituting in Eq. (13) we obtain

(2o)
+oo

Ng(t) = — e* 'IlI, (~)d(u,2' Because of the orthogonality of (g~), equality holds
for each component, i.e. ,

1
VA, (t) =-

27r
e* 'fI, ((u)der

Va(~)
rg((u) = (21)

Then, proceeding as in [12] and using Eq. (6), we can
write

and therefore
n

icuF(~) = AE'((d) + f(~), (13)
(22)

where E(~)=(Fq(~) }q q „and f (~)=
(fy(w))), —I are the vectors of Fourier transforms.
The last equation can be solved formally for E(w), and
we find

+(cu) = (i(oil —A) f((u) (14)

(IL is the identity matrix) so that, using the definition
given in [13], the PSD of the stochastic process Kk(t) is

(l&~(~) I')
T~ OO 27TT

The PSD is proportional to
2

I

h~~~')+ )
(

~ ~ )(
~

p )
(gj)L('9( )k&

(23)

and similarly

From the independence of the stochastic processes (vA. )
it follows that

(24)

where s~(w) is the power spectral density of v~, i.e.,

s, (~) = o2/2m.

Formally this solves the problem of ending the PSD.
To proceed further we must make assumptions on the
PSD's of the individual noise processes that drive the
system. Since we are mostly concerned with noise in uni-
form systems, we assume that all the PSD's are the same,
i.e., 0 - = cr for all j. We also assume that ajk ——akj
(i.e. , the interaction between different sites is symmetric)
and that the eigenvalues of A are not degenerate. Then
the eigenvalues (A), )I, j of A are real and there is an

We have already assumed that at each site a random
walker sees the same average environment, i.e. , crk ——0
for all k's. Then both the vector a and the vectors of
Fourier transforms f(ug) are distributed with spherical
symmetry in their n-dimensional spaces, and a rotation
does not change the symmetry properties of the distri-
butions. Therefore using (gl, ) as a basis the stochas-
tic processes (p), ) are still independent in the sense
that (p*. (w)pg(u')) = 0 if j f k and w g u', and

(lp~(w)l ) = (I fI, (u)l ) for all j, k. Now we make use
of the normalization conditions for the vectors, gk, i.e. ,
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i I(gg)~I = 1, and assume a uniform distribution of
the eigenvector directions so that f&'+ I[rl(A)]gI2dA =
AA/n. Then Eq. (23) becomes

A' „&maxi) a,'g )
k j=l

(I+(~)I')= (I+g(~)I') = ): .+ A21(&~)gI' = max&
k &min

1 ) ag&
7k

j=. l n
jgk

min Tmin
(3O)

where we have dropped the index A:, since now all the
spectral densities are the same, and where A;„and A

are the minimum and maximum eigenvalues, and f~(A)
is the eigenvalue density of the matrix A, normalized so
that f& "f~(A)dA = 1. Moreover s~(u) = cr2/2vr and
we get eventually

S((u) = 0 ~ 1

j=l 2

o.2 "-" f~ (A)
2K Cd2 + p2

(26)

(27)

IV. LOWER AND UPPER BOUNDS

We use now the Perron and the Gershgorin theorems to
derive lower and upper bounds for the eigenvalues of the
relaxation matrices introduced in Sec. II. These matrices
have the general form

Thus the shape of the spectrum S(u) is determined by
the eigenvalue density f~ (A) of the matrix A, and if it is
nearly constant in the interval (A, Ab) (with A « Ab),
then S(ur) has a 1/f dependence in the region A

Ab. (A difFerent derivation and an extension of these
results to the case of transport are given in Appendix
A. )

The inequality for the corresponding eigenvalues of A
becomes A „&0, so that all the eigenvalues of A are
nonpositive. While it is clear that the most relevant part
of the eigenvalue density lies near the origin, since it de-
termines the behavior of the PSD in the low-&equency
limit, it is interesting to notice that the same upper
bound and also a lower bound-can be found assuming
that A is symmetric and using the Gershgorin theorem
[14]. In this case the Gershgorin theorem states that ev-
ery eigenvalue A satisfies at least one of the inequalities:

) ag, &A—
j=l,n
jgk

1 ) ag, ,
7k

1in
jgk

(31)

i.e. , all the eigenvalues are contained in the range

min
&4&0.

Now a question arises: when is A singular, i.e. , when
is 0 its maximum eigenvalue? This is very important for
the PSD, since the sum (26) diverges quadratically when
u —+ 0 if 0 is an eigenvalue of A. The idealized systems
that we have studied so far look promising, insofar as
they give PSD s which are superpositions of many sim-
ple relaxation spectra, but they admit A „=0 and thus
they may have divergent PSD's. However in real-life sys-
tems there is usually a noisy input and an output, so that
Eqs. (4) should be modified accordingly:

Q21

Q31 G32

+23

T3

dNg = ——Ng (t)dt + ) ag~N& (t)dt
j=iin
jgk

+vp gdt+ vg(t)dt,

with negative diagonal elements, while all nondiagonal
elements are non-negative. We define first the matrix
A' = A+ IL, where ~;„=ming(wg), so that A' and
A share the same eigenvectors, while the eigenvalues are
shifted:

(
A'egg =

I
A+ k

I gg =
I

Ag +
I gg = A'gag.

'rnnn ) & Tnnn )

Now A' is a non-negative matrix and the Perron the-
orem applies [14], with the result that there is a real
eigenvalue A' „such that for any other eigenvalue o.' of
A' the inequality Io.'I & A' „holds, and A' „satisfies
the following inequality:

where vp —(vp g)g —i „ is a constant vector which is
the average value of the noisy input, and where

1—& ). ag
7k j=l,n

j.gk

(34)

Moreover (34) must be a strict inequality for at least
one site, so that there is at least one output site. The
requirement of uniform behavior is satisfied by assuming
that the transition probabilities to neighboring sites are
always the same.

Typically —for a given topology —we can iden-
tify an "inside" and a "boundary" for any set of sites.
Then the random walkers in the inside can usually jump
only to neighboring sites —and the equal sign holds in
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(34) while the random walkers on the boundary can
jump out of the system and (34) is a strict inequality.
We also assume that any site can be reached from any
other site with a finite sequence of jumps, and that the
reverse path is also physically possible. Then the matrix
A must be irreducible, and because of (34) it is diago-
nally dominant, therefore it must be invertible and 0 is
not an eigenvalue (see theorem 6.2.27 in [14]). Combin-
ing this result with the loose bounds from the Perron and
the Gershgorin theorem that we found above, we see that
all the eigenvalues are negative and that the PSD can no
longer diverge. We make once again the assumption that
the stochastic processes v are Gaussian uncorrelated pro-
cesses, such that the statistical descriptions (5a) and (5b)
are still valid.

The vector form of Eq. (33) is

eigenvalues of this (symmetric) matrix are

I t' arm )= ——
I

1 —cos n+ I) (m = I, . . . , n) . (42)

Therefore the corresponding density for n )) 1 is

I(-.' —I&I)

f 2 vr2 vr'
(43)

27 7l 27-n') '

which is dominated by the two large peaks near 0 and
near ——.The PSD can be computed directly from (26)
and the result is

dlV = A1Vdt+ vpdt+ vdt, (35)

d(1V) = A(N)dt+ vpdt,

and subtracting Eq. (36) from (3'5) we get

while the corresponding equation for the average values
1S

0 ~ 1

=1
2 2 1—1/n

27r

dx
Ld 'r + (1 —cos 7rx)

(44)

d (N —(N)) = A (N —(1V)) dt + vdt, (37)

(NI, ) = (Te T 1Vp)1, + (Ni, ) q,

=) ~I e' +(N~)

(3S)

(39)

where 1Vp is the vector of initial values, (Nk), q are the
equilibrium values

(N), = —(A v )„, (40)

D = diag(Ai, . . . , A ), and T is a matrix whose columns
are the eigenvectors of A. Equation (40) is useful in set-
ting up numerical simulations of these processes.

V. THE EIGENVALUE DENSITIES FOR SOME
DIFFUSION AND TRANSPORT OPERATORS

We turn now to a detailed analysis of the eigenvalue
densities of some linear operators. We take first the case
of diffusion along a linear chain of n sites with hopping
to nearest neighbors only (the process described at the
end of Sec. II), which is associated to the n x n matrix:

27
0

1
2T

1
T

1
2T

0 0

1
2T

1
T

27

0 0
0 0 0 0 0

1
2T

1
0 0 ~ ~

Using elementary methods it is easy to show that the

therefore the spectral results derived in the previous sec-
tion apply unchanged to the variates Ni, —(N~). Notice
that Eq. (36) can easily be solved and it is well known
that the general solution is [15]

From the integral expression (44), it is clear that if
~~ )) 1 then S(~) oc I/~, and if ~w && I/n then S(~) is
approximately constant. In the intermediate region 1 ))
ural )) I/n2 the PSD follows approximately the power law

1/f i 5 as shown in Fig. 1, where the PSD (44) is plotted
for different values of n. The complete integrated form of
(44) is quite lengthy, and it is difficult to use it to extract
the 1/ f i 5 power law. However, a derivation of the 1/ fi s

power law for n )) 1 is given in Appendix B.
Thus simple 1D diffusion yields a flicker noise, and

if n is sufBciently large the effect spans many orders
of magnitude. Figure 1 shows that for n = 500 the
1/f region sp'ans almost four decades, and for large
n the 1/f region spans approximately logip I &

2logip n decades. The PSD is well-behaved, and tKe cor-
relation function computed from the Wiener-Kintchine
theorem is free of divergences both at low and at high
frequency.

The key features of this 1D diffusion model are shared
by all the relaxation operators introduced in Sec. IV.
We have shown that all the eigenvalues are contained
in a range A;„& A & A ( 0, and therefore the
PSD always approaches the (finite) value i

P& —„, as
k

u approaches 0. At the same time the derivative also
approaches 0, therefore every PSD Battens to a constant
value near the origin. Moreover the eigenvalue range is
bounded, therefore for w large enough, the PSD has a
1/ f behavior, and there must be an intermediate region
that interpolates between these behaviors. We have just
seen that it may span several orders of magnitude, and it
is on this intermediate region that we shall focus our at-
tention from now on. Another important feature shared
by these processes is that they are all Gaussian, because
they are linear and the driving noise sources are station-
ary and Gaussian. Furthermore the deterministic part of
each process has a simple attractor (since the eigenvalues
of A are all negative), therefore the process has a finite
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FIG. 1. PSD's for 1D chains
of diferent lengths n calculated
using (27). The solid lines
show the PSD's for chains with

20, (b) n = 100,
and (c) n = 500. The
straight lines are for refer-
ence and represent 1/ f spec-
tra with a = 1 (dashed),

1.5 (dashed-dotted), and
a = 2 (dotted).

0.01' 0.001 0.1 10.

variance [16], and it is stationary. This agrees well with
past experimental observations of the statistical proper-
ties of 1/f noise (see the references in the reviews [5—7]).
As an independent check of the analytical calculations,
I have set up a Monte Carlo program to simulate a 1D
chain. At each time step the program loops over all sites,
and at each site the populations are updated in parallel
according to

ANy m ) aI ~N, At+ vp I,At+ ogRg,
j=1

NA, mNk+LNk,

(45a)

(45b)

~' = $.Ia~. (N )&tl + lv, &tl.
j=1

(46)

where the BA. 's are Gaussian pseudorandom numbers
with zero mean and unit standard deviation, and the
actual standard deviation O.

A, of each LNk is computed
from the formula

The Gaussian pseudorandom numbers have been gen-
erated with the routine gasdev described in [17], and
modified. to use the uniform pseudorandom number gen-
erator ran2 instead of the faster but less safe ran1 (they
are both in the program library [17]).

The simulation included an external noise source at
each end of the chain, and the sites have been initial-
ized with the resulting equilibrium values (40). Figure 2
shows a small part of the simulated signal, while Fig. 3
shows the PSD of the simulated process, which provides
a nice confirmation of the theoretical result.

In Sec. II, I mentioned that the actual noise statistics
cannot be Gaussian, but I concluded that there should be
no visible consequence of non-Gaussianity for aNAt && l.
In order to check this conclusion I have run the simula-
tion program for the 1D chain with "truncated" Gaussian
noise, i.e. , with noise such that —ZNy(t) ( Nk(t) for all
A. "s. In this case the relevant parameter is the average
population change 2aNAt (1/w) (N) At. I went down
to (1/w) (N)At = 1 without detecting any deviation from
the PSD obtained with pure Gaussian noise.

200-

0 I

-200

~ W~ -400

-600

FIG. 2. A small portion
(4096 samples) of the simulated
signal for a 1D chain with 100
sites and with a noise source
at each end of the chain. The
signal is the population Quc-
tuation of the middle element
(site 50). The relaxation time is
7 = 0.5 and the simulation step
is At = 0.02 (arbitrary time
units).

50 75 100
time (units of x)

125 150



LINEAR PROCESSES THAT PRODUCE I/f OR FLICKER NOISE 3093

10000.

1000.

100.

S
10.

0. 1
I

0. 5 10. 50. 100.

FIG. 3. PSD of the population fluctuations of the middle site (site 50) of a 1D chain of 100 sites and with a noise source
at each end of the chain. 2 samples have been generated and each point is the average of 256 PSD estimates obtained from
records of 2048 samples each. The relaxation time is r = 0.5 and the simulation step is At = 0.02 (arbitrary time units).
The solid curve is the theoretical curve (b), shown in Fig. 1. The dashed line shows the slope of a 1/f spectrum, while the
dashed-dotted line shows the slope of a 1/f spectrum. The departure from the 1/f behavior at high frequency is due both
to the comparatively large time step and to aliasing.

We change now the lattice connectivity either by al-
lowing jumps to more distant sites, or stepping up in
the number of dimensions. Let us start with a 1D dif-
fusion process with a probability of jumping from site
j to site A; that decreases quadratically with the dis-
tance [g

—k[, i.e. , we take matrix elements a~i, —
~,

akI, ———————maxI, .
&& a~I, . The associated relax-

ation matrix is

IC

4
IC

9

9

4

16
K
9
IC

4 (47)

2
with —= 2r, P o —,——— "s . We can still find the eigen-

0.8-

0.6-

0.4-

0.2-

4t

4 t

FIG. 4. Eigenvalue density
for the 1D chain with matrix
elements a~g = 1/[j —

k~ if
g A:, ai, g = —1/7- = m /3,

and n = 50. The dots show
the numerical result (obtained
with the Jacobi algorithm, see
[14,17]), while the dotted line
shows the approximate theoret-
ical curve.

—2
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values of this matrix by elementary methods, and they
are

( m

i,n+ 1

m2

2(n+ 1)'p (m =1, . . . , n).

(48)

This expression is exact for n ~ oo, however it gives a
fairly good approximation of the eigenvalues of matrices
like (47) even when their dimension is not too large: Fig.
4 shows that the eigenvalue density obtained from the
eigenvalues computed with the numerical Jacobi method
[17] for n = 50 is practically indistinguishable —at the
scale of the plot —from the density derived from (48).
The eigenvalue density in Fig. 4 is nearly flat in a large
region near the origin, therefore we expect to find a large
1/f region in the PSD. Indeed, using (26) and the eigen-

values obtained numerically, we obtain the curve shown
in Fig. 5 for n = 50 and r = 1, where an extended 1/ f
region is clearly visible. This nice 1/f behavior is the ex-
ception rather than the rule for one-dimensional systems,
which seem to be more prone to follow the behavior dis-
played by the nearest neighbor interactions described at
the beginning of this section (see Figs. 6 and 7).

We consider now two- and three-dimensional lattices
with hopping to nearest neighbors only. Take, e.g. , a
3 x 3, 2D lattice with the sites labeled

1 2 3
4 5 6
7 8 9

so that the associated matrix is

1
4r
0
1

4w

0
0
0
0

( 0

0 4 0
1 1 1047 4v

1 1 1 047- 47-
1 1 10 47 4v

1 ~ 1 1
4~ 4r

0 0 0
0 0 0 0

0 0 0
0 0

1 104r 4v
1 1 04~

1 1 1
4w ~ 4r

1 10 4r T
1 0 1

4r 47-

0
0
0
1

4r
0

4v

0 0 0 0

(49)

such that the probability of jumping to any given neigh-
boring site is always the same, the relaxation time is also
the same for all sites, and the random walkers can leave
the lattice from all the (2n +2n„—4) sites on the bound-
ary. Once again it is easy to show that for a rectangular
lattice of n x n„sites the eigenvalues are

7rk
Azk = ——

i
2 —cos —cos

2w ( n~+ 1 ns+ 1)

(j = 1, . . . , n; k = 1, . . . , n„). (50)

10000 '

1000 . .-

100 . .-

S
10.

FIG. 5. PSD obtained an-
alytically from the eigenvalue
density of Fig. 4 and from (27).
The straight lines are for refer-
ence and represent 1/ f spec-
tra with n = 1 (dashed) and
n = 2 (dotted).

0.1 10.
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FIG. 6. PSD for the 1D
chain with long range v
couplings (here ~ = 0.6,
n = 50). The straight lines
are for reference and repre-
sent 1/f spectra with n = 1
(dashed) and n = 2 (dotted).
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Similarly for a 3D lattice of n x n„x n sites the
eigenvalues are

( 7U 7rk ~l
A~1, E

= ——
i

3 —cos —cos —cos
3r i n + 1 n& + 1 n + lp

(j = 1, . . . , n; k = 1, . . . , n„; l =1, . . . , n, ). (51)

These expressions are very similar to (42), but yield
substantially different eigenvalue densities. As it is shown
in Appendix B, the 2D square lattice leads to an eigen-
value density which is very nearly Hat near the origin,
and therefore the resulting PSD has a 1/f shape, while
the PSD for the 3D cubic lattice has a 1/f shape,
and thus models with nearest neighbor interactions yield
difFerent behaviors for different lattice dimensions. It is
also clear that as one of the sides of, e.g. , the 3D lattice is
reduced, the eigenvalue density changes and approaches
the eigenvalue density of the 2D lattice (the new density,

1( arm i= ——
i

1 —/4pq cos n+ I) (m = 1, . . . , n).

(52)

The product 4pq attains its maximum value 1 when

p = q = 1/2 and decreases whenever there is drift, there-
fore transport has the effect of "compressing" the whole
eigenvalue distribution about its middle value I/r, and

though, is only proportional to, and not equal to, the
density for the 2D lattice, because the limiting form of
the 3D lattice allows the random walkers to jump out
of the lattice at each lattice site, and not just along the
sides of the 2D lattice). Therefore lattices with arbitrary
sides interpolate between the 1D, 2D, and 3D lattices.

Before concluding this Sec. I wish to discuss the role of
transport in a model with nearest neighbor interactions,
as it was introduced at the end of Sec. II. It is easy to
show that instead of (42) we have

10000.

1000 . .-

2
100 . .-

10 . .-

FIG. 7. PSD for the 1I3
chain with long range 1/~ j—k~

couplings (here n = 50). The
straight lines are for refer-
ence and represent 1/ f spec-
tra with o. = 1 (dashed),
o = 1.3 (dotted), and o. = 2
(dashed-dot ted) .

0.1
0 F 01 0.05 0.1 0 ' 5
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as either p or q increases the PSD changes more and more
to the simple 1/(cu + A ) shape. It seems that transport
does more harm than good and takes us away from a 1/ f
shape, however the physical systems that are known to
display 1/f noise usually are not one dimensional. So
it makes sense to consider again the 2D and 3D lattices
introduced above, and after some straightforward but te-
dious calculations one finds that the eigenvalues are

1
Ajk ————2 —cos

2T

7r2 —/4pq cosn~+1
mk

ny + 1

(~ = l, . . . , n. ; k= 1, . . . , n„) (53)

for the 2D lattice with transport along y, and

channel are very similar). The eigenvalues corresponding
to these matrices are

1
Ajk = ——2 —cos

27

7r2 —+4pq cos
7rk

ny + 1

1 K2
Ajk~ = — 3 —cos ——cos

37- nx ny
—/4pq cos

n +1

(~=0, . . . , n. —1; k=1, . . . , n„) (56)

for the 2D transport channel with transport along y, and

1 ~2
Ajki ———3 —cos —cos2 3T n +1 ny+1

(j =O, . . . , n. —1; k =O, . . . , n„—1; I =1, . . . , n, )

(57)

—/4pq cos
ml

n+1
(j=l, . . . , n; k=1, . . . , n„; l=1, . . . , n ) (54)

for the 3D lattice with transport along z, so that in these
cases the PSD should have a 1/f shape with n between
1 and 1.5 for the 2D lattice and between 0.5 and 1 for
the 3D lattice.

VI. CONDUCTANCE FLUCTUATIONS

&'jk ijk=
+ljk;1jk-
+ilk;ilk-
+11k;llk—

&'j,k+1 jk=
+i+1,jk;ijk-

+ijk, v st=

—lj~; (1&i &n, l& j&n„)
a„jk„,k= —5/67. .;

. (1 & j & n„)
a,„„k,,„k = —5/6r; (1 & i & n )

„k;1 „k —+ lk; lk

(55)
p/ ~ ij,k 1;ijk 'q/—

ai, j+1,k:ijk = 1/67 I

0; (all remaining matrix elements),

where p and q have the same meaning as in Sec. II.
These matrix elements mean that the transition rates to
neighbors are the same for every site of the lattice, and
that the relaxation times are also the same for all sites in
the bulk and on the interfaces, while they change slightly
for sites on the boundary (the matrix elements for the 2D

If we aim at explaining 1/ f noise in resistors, then the
overall picture is satisfactory but still incomplete, be-
cause the lattices described above do not really represent
reasonable transport channels. Now I de6ne a 3D trans-
port channel as a simple cubic lattice of n = n x ny x n,
sites (so that each site is labeled by three indices i, j, k),
with drift along the z direction, and with two "interfaces"
at k = 1 and k = n,, (1D and 2D channels, i.e. , "wires"
and "strips" are obtained by setting n&: ny: 1 and
n„= 1, respectively). Charge is exchanged only at these
interfaces, and here the transport channel may both lose
and gain charge. With the labeling defined above, the
matrix elements of A for a 3D transport channel are

1
Ajk~ = — 3 —cos

37
—cos —cos

vol

nz-

(~ =O, . . . , n. —1; k 0) ~ ~ ~ ) ny 1 I

l = O, . . . , n —1) (58)

and ~A „~ = 0. This is something that we already knew
from Sec. IV, however Eqs. (57) and (58) show that the
eigenvalues do not change appreciably when one shuts
down the channel, while the diffusion time ~A „~ be-

2 Dcomes much larger than the previously estimated &&&, ,
thereby increasing the range of the 1/f region.

The PSD's can be computed from (56) and (57) and
they have the same general behavior as the 2D and 3D
lattices discussed in the previous section: examples are
shown in Figs. 8 and 9. Figure 10 shows a simulated
signal for the 2D channel.

I assume a noisy source of charge at each end of the
transport channel, and for given noise rates, it is easy
to compute the equilibrium values (1V,jk),q: if the noise
source at the "entrance" of the transport channel has an
average rate pvo and the noise source at the "exit" has
an average rate qvo, then all the sites have the same
equlhbrlum population (K) q —(K jk) q

—Tvp, and the
environment is uniform (Fig. 11 illustrates this point for a

for the 3D transport channel with transport along z.
Notice that if d is the lattice dimension, b is the lat-

tice spacing, p = q 0.5, and I = n b is the channel
length, the smallest eigenfrequency is ~A

$2 2 Dand since w = D, then ~A „~ z&&, . The difFusion
time ~A „~ is approximately the average lifetime of
the longest lived transient in (39), therefore if there is no
source, this is also the average time needed to empty the
transport channel. However, it is also clear that if the
contacts to the "outside" have a cross-section which is
smaller than the cross-section of the transport channel,
then ~A „~ becomes smaller (i.e. , it takes longer to empty
the channel). Indeed the limiting case of a transport
channel with no input-output (and no drift) has eigen-
values
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FIG. 8. PSD for the 2D
transport channel (n = 20,
n, = 45). The straight lines
are for reference and repre-
sent 1/f spectra with n = 1
(dashed) and o = 2 (dotted).
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1D chain). This is especially important if the model is to
represent a resistor, because it means that on the average
the charge density is the same over the whole transport
channel, i.e. , there are no (averaged) space charge efFects.
At the same time this requirement satisfies the uniformity

hypothesis that was used to 6nd the PSD.
A simple approximation of the current PSD can now

be obtained as follows. The net How of charge carriers
across any section of the transport channel (number of
carriers per unit time) is given by

Aow across kth section (particles that move to +ve z) —(particles that move to —ve z)

) ( Ãg, g
— %—;, g) = — ) N;, g

i=1,rt ~ i =l, n~
j=l)ny j=l, ray

and therefore the average electric current is speed, A = n n&b is the cross-section of the transport
channel, and e is the charge of each carrier. Now let Sl
be the PSD of the electric current I. Then

where h is the lattice spacing, v = (p —q) — is the drift
Sl (w) = lim ) I", k(ur), (61.)

(p —q)'e' . 1

t= 1 ) n~
Z=l, ny

100000.

10000.
~ W
C

1000 . .-

100 . .-

Og 0 ~ O~ ~ ~
~e 0 ~ ~ ~ O~

Oy 0 ~
0 ~ ~ g

FIG. 9. PSD for the 3D
transport channel (n = 15,
n„= 15,n, = 15). The
straight lines are for refer-
ence and represent 1/f spec-
tra with cI = 1 (dashed),
n = 0.5 (dotted), and cI = 2

(dashed-dotted).

10. ~ I

1 10.
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FIG. 10. A small portion
(4096 samples) of the simulated
signal for a 2D transport chan-
nel (n = 20, n, = 45) with a
noise source at each end of the
channel (the signal is the popu-
lation Huctuation at the center
of the channel). The relaxation
time is 7. = 0.25 and the simu-
lation step is Kt = 0.02 (arbi-
trary time units).
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(p —q) 2e2 . 1
'T T~~ 2&T
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2

(62)

SI(~) s

(I)' 2~m(N) qlA I' ( ~ )
p2 ) 1 f'lA

2vr7 IA „I ) N (66)

p'(I)'
2~r (N), q

f (IAI)

(I)' ' " -' f (IAI) d A
(N) 2m ~g .

~

cu +IAI

(63)

(64)

(65)

where Nq q ——n(N), q is the total number of charge car-
riers in the channel. Now remember that if G is the
conductance then Si(w)/(I) = S~(w)/(G) and there-
fore Eq. (66) gives the PSD of conductance Auctuations
as well, and corresponds to the Hooge formula [18]. In
view of the previous discussion on A, it is clear that
the coefFicient in front of the N~ ~ u dependence has
no fundamental significance (and therefore it is useless
to compute p).

where o2 = 2(N), q/r has been used. The cross-
correlation terms that appear in (62) have the same fre-
quency dependence as the PSD (see Appendix C), and
p is a lattice-specific constant. The coefFicient p can be
computed (see Appendix C), but here we do not need to
carry out this calculation, as we shall shortly see.

Notice that the integral in (65) approaches the value
as ~ --IA „I, and

iffy�

)) 1, IA „I is

the range IA;„I & w & IA „I, the integral in (65) is

approximately equal to
~& ~,

",and thenI&

VII. CONCLUSIONS

I have described a mathematical mechanism whereby
fiicker noise appears as a natural feature of a collection
of identical interacting relaxing systems driven by white
noise. In the Introduction I have already mentioned the
diffusion model of Voss and Clark [9]. Similar studies

to cite just a few —are those of Liu, Jensen, and
Grinstein, Hwa, and Jensen [19]. However, the authors
of these papers obtain only rough approximations of the
Green s functions of the linear diffusion problems, while

Ngqkt /7

N, pht /~

NI

N, qat /~

N, pd« /&

N, qht /z

N, &p~t /~

N„qht /7

N n

N„pht /~

FIG. 11. Schematic representation of the average population exchanges between sites of a 1D chain during a time interval of
duration At. When the external sources have the average rates shown in the figure, every site has the same average equilibrium
population, i.e. , (hlq) = (N2) = . . = (N ) = var
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here I have carried out a mathematical procedure that
amounts to an exact calculation of the Green's function,
and I have explicitly displayed the properties of some
lattices with both diffusion and transport. I wish also
to stress the importance of having 1/f noise from linear
processes: this agrees well with most experimental ob-
servations of 1/f noise statistics, and entails a consider-
able mathematical simplification. This is not to say that
nonlinear approaches such as [20] are to be discounted,
but it is certainly harder to fit the observed Gaussianity
to these processes and it is also harder to identify the
relevant macroscopic parameters (see the discussion on
nonlinear Langevin equations in [21]). Other features of
the mechanism studied in this paper are as follows:

All the eigenvalues are negative and lie in a finite range
as a consequence of boundary effects and finite system
size, and therefore the PSD is quite regular and there are
no disturbing infinite quantities: this is quite reassuring
in view of the paradoxical consequences of "true" 1/f
noise discussed in [22].

Generic PSD's for diffusion processes should be of the
form 1/f with 0.5 ( n ( 1.5 and a = 1 has no special
significance, apart from the fact that nearly all the ob-
served systems are approximately two-dimensional, and
n = 1 is exactly what one should expect from the sim-
ple diffusion model for a 2D system (indeed experiments
observe a whole range of values of o. in the vicinity of 1;
see the list of n values in [5]).

Given the probabilistic nature of the interaction be-
tween different sites, noise is self-generated by the sys-
tem, and there is no real need for an external noise source.

The thermal difFusion theory of Voss and Clark [9] was
troubled after its appearance by several problems (listed
in [18]),and especially by the lack of spatial correlations.
Though at the beginning there appeared to be some cor-
relations, they were not found by later experiments (see,
e.g. , [23]). As in any diffusion theory, spatial correla-
tion must be present also in the treatment of this paper.
However, none of the experiments that ruled out the Voss
and Clark model applies here. This important point is
discussed in Appendix C.

The model of a transport channel also explains, at least
qualitatively, some other facts like the steepening of the
PSD observed at low temperatures by Voss and Clark [9]
and by Eberhard and Horn [24]. In fact the difFerence

(p —q) is related to the current flowing in the sample by

I~
A(eN/bs)b

(e%/P is the charge density), therefore, if the current is
held fixed while the temperature is lowered, the difference

(p —q) increases since the relaxation time 7 also increases.
Then the factor /4pq = gl —(p —q) 2 decreases and the
eigenvalues (whatever the dimensionality of the lattice)
are compressed about their average value, and the PSD
becomes steeper.

I also wish to point out that this mechanism applies
whenever there are relaxing linear systems, and diffusion
and transport are just special cases. The PSD's obtained
for some 1D systems with long-range interactions sug-
gest that it might be an explanation for 1/f noise in
many systems other than resistors. And indeed I have
generated random matrices and have found hints of a
"universality" that goes beyond simple transport chan-
nels. In one instance I have taken symmetric random
matrices A = (any) such that the ofF-diagonal elements
are almost everywhere zero, apart &om two randomly
chosen elements in each row (these elements may also
coincide). The nonzero off-diagonal elements are them-
selves random numbers with a uniform density between
0 and 1. Then, row by row, the diagonal elements are the
negative of the sum of the off-diagonal elements in each
row, minus a number much smaller than 1, so that (34)
is a strict inequality. These random matrices have the
same average number of nonzero off-diagonal terms as
the 1D chain of Sec. II, however they are not granted to
be irreducible. Figure 12 shows that "on average" these
matrices have the same PSD as the 1D chain.

91x10

71x 10

C
100000. r

S
1000. r

10. r

0.1 0.0001 0.001 0.01 0.1 10.

FIG. 12. PSD's for ten
random relaxation matrices
with approximately two
nonzero off-diagonal elements
in each row. The matrices have
dimension 100 and the eigen-
values have been computed nu-

merically, then the PSD's have
been computed using Eq. (26).
The dotted straight lines have
slopes 1, 1.5, and 2: notice that
the computed PSD's closely fol-
low the 1/ f line over four or-
ders of magnitude.
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APPENDIX A

If all the random-walkers see the same average environ-
ment we may define an average (IFI ), and use formula
(16) to obtain

(A1)

(A2)

1 fl (i~1 —A)
' (i'll —A) ' f),n

(A3)

(A4)

(A5)

From the independence of the noise processes and from
the assumed uniformity of the average environment:

(~iP~i ) = —) ( (i'll —A) ' [(i~1 —A) ') )
j,l

gl

&4(lf~ I') (A6)
1= —(~f~*)Tr( (iwll —A)

' (i~a —A) ' ).n
(A7)

The relaxation matrices A that we consider in this pa-
per are real matrices. Since they are nonsingular they
are certainly diagonalizable, unless there are degenerate
eigenvalues such that they can only be put in a Jordan
quasidiagonal form. However, in a physical environment
the degeneracy is likely to be removed by any small ran-
domness in the matrix elements. This does not affect
substantially the shape of the PSD, because the eigen-
value spectrum is stable against small perturbations (see
Sec. 6.3 in [14]). Now let g be an eigenvector of A, so
that Ag = Ag, then g+ is a left eigenvector of A with
eigenvalue A*, i.e. , g+A = A*vy (see [14] for the algebra
of left and right eigenvectors). If we take normalized left
and right eigenvectors, i.e. , rI+. ri~ = h~k, Eq. (A7) can
also be written as

(A8)

n
= -(Ifl') ).—z~ —A*. z~ —A.

j=1 2 2

(A9)

(A1O)

which is the same as (25) (see also theorem 4.4.3 in [14]).
Some information has been lost in this proof. We have
not found the individual PSD's for the populations at
each site, but rather an average PSD. However, some-
thing else has been gained. Now the proof has been
extended to incorporate nonsymmetrical matrices; this
means that the results of Sec. III hold for the symmet-
rical case of diffusion as well as for the nonsymmetrical
case of transport.

APPENDIX B
Take a set of eigenvalues (A ) t such that A (x

m2 for small m, so that for large n, A(t) —at and one
has to compute the integral

&max dt
~2 + O, 2t4 (»)

to find the PSD. The result of the indefinite integration
ls

2
I
a

I
l 1 e

I

a It' + t v'2
I
a

I
~ + ~ ~

arctan 1 + t
~

—arctan 1 —t + ln1P (&2)
2/2lal~sf2 ( ~ ) 4V'2lal~" ( lait' —t+2lal~+ ~)
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and thus for A;„« ~ « A

msx dt ~ 1
Cd + cl'

(B3)

min

dt 1

(d + A (d
(B4)

In the case of the 1D chain discussed in Sec. V, A
2 2

1 —cos +1 2 form « n, n)) 1, and
indeed integrating the full expression one finds that

dt

/~2 ~2 + (~ ) t2
(B8)

where ~ +x, —" ~ y, r =x +y, and(is a number
between 1 and 2 (and therefore ( )) —,). The integral

S

(B8) is just the integral (1) that leads to a 1/f PSD.
All this can be repeated for the 3D lattice using (51),

2 k2 2 l2and one finds that ~A~. k~~
—

s ~, + s ", + s, , and if
n = n„= n = n„n, )) 1, and j, k, l « n„ then the
sum in (26) becomes

1 "'- 1
2+)2 )~ 2+)2

m=1 m ) J jk
(B5)

for A;„« u « A . Similarly, for the 2D lattice one
finds that the eigenvalues (50) can. be approximated by

2 '2 ~2 I 2
the expression ~Aii,

~ 4 ~, + 4, , and if n = n„= n„
n, )) 1, and j, k (( n„ then the sum in (26) becomes

1

m=1 m

1

, k, l=1 jkl
1—1/n, 1—1/n, 1—1/n,

/n, /n,
dxdydz

'+ ("."') (B10)

1—1/n, 1—1/n,
(B6)-'+( '

) 97

27t

r2dr

ws/ . (u2+ ( —,') r4
(Bl1)

(B12)

rdr
2 + (m~v~)

where, once again, —~ x, —„—+ y, —„+z, r2 k l 2

z + y +z, 1 ( ( ( 3, and A,„((~ (( A „.The sum
(B9) thus gives a 1/f PSD.

APPENDIX C

The space correlation function is easily computed using the formalism of Sec. III,

((~,*(t) —P").*.)(~.(t) —(~.).,)) =, d(udku'e 'l" l'(E,*((u)I"I,(~')) (Cl)

so that, using (22) and (pi*(ur)p (w')) = 0 bi h(ur —w'),

(+,*(~)+~(~')) = ~') . ,' ' ~, ~(~ —~')
l=1

(C2)

and thus the integral (Cl) becomes

2((, (t) —( ).,)( (t) —( ) )) = „)"-(«*)'(«)~ ~' )"- («*)'(«)~
- ~2 —/&i[2 &~, /&g/

(C3)

In general the sum (C3) is difFerent from zero, however
this space correlation is not ruled out by past experi-
ments. I review now the arguments of a few of them
[25-27,23].

The experiment reported in [25] simply does not apply
here, since it ruled out correlations in two gold Alms that
were in thermal contact but electrically disconnected.
The authors of [26] tried to measure voltage cross cor-
relations in a thin wire that was etched, together with

the contact pads, from a thin metal film. I argue here
that they did not observe Auctuations in the mire but
rather in each pad separately. In fact, whatever the (mi-
croscopic) origin of the fluctuations it must act in the
pads as well as in the wire. If the explanation proposed
in this paper has any validity at all, one should then ex-
pect the whole "wire + pads" system to behave —more
or less —like a 2D system, and indeed what they ob-
serve is not the 1/f spectrum that was expected from



3102 EDOARDO MILOTTI 51

the Voss and Clark theory, but a I/f spectrum which is
characteristic of a 2D system (see Fig. 2 in [26]).

Again, the experiments reported in [27,23] test ther-
mal Buctuations and do not apply here. Furthermore the
observed dependence of noise power on sample width,
which the authors of those papers used to argue that the
noise arises from fluctuations in the local sheet resistiv-
ity, does not apply to number Huctuations and can be
used instead to support formula (66), which does predict
the observed dependence.

The averages (C2) are also proportional to the cross-
spectra that appear in Eq. (62). I show here for the
1D chain described at the beginning of Sec. V that
these terms have the same frequency dependence as the
PSD.

The eigenvalues are given by Eq. (42), while the nor-
malized eigenvectors are

cos [(j —k) x] —cos [(j + k) x]
dx

0 (ter) + (1 —cos x)

4 2 oo cos [(j —k) x] —cos [(j + k) x]
dx

(2(ur)' + x

for x (( 1. The last integral can be evaluated with the
help of formula (3.727.1) in [28], so that

g - (~i*)'(«)A. v
cu2 —IA( [2 2l=1

Introducing the auxiliary variable x =
+& and as-

suming n )) 1, the sum (C5) can be approximated by
the integral

(n )~= 2 . vrmk
sinn+1 n+1' (C4)

x (cos Ij k
I

v'~r +»n
Ij —k

I &~~)
(C6)

therefore the sum in (C2) becomes

(C5)

and therefore for sites that are not too far apart the cross
terms (C2) have the same frequency dependence as the
PSD (on the other hand the exponential terms "kill" the
very contributions due to sites that are very far apart),
so that the cross spectra have the same frequency depen-
dence as the PSD.
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