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Critical behavior of the randem-bund Ashkin-Teller model: A Monte Carlo study
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The critical behavior of a bond-disordered Ashkin- Teller model on a square lattice is investigated
by intensive Monte Carlo simulations. A duality transformation is used to locate a critical plane of
the disordered model. This critical plane corresponds to the line of critical points of the pure model,
along which critical exponents vary continuously. Along this line the scaling exponent corresponding
to randomness @ = (n/v) varies continuously and is positive so that randomness is relevant, and
diBerent critical behavior is expected for the disordered model. We use a cluster algorithm for
the Monte Carlo simulations based on the Wol8' embedding idea, and perform a finite size scaling
study of several critical models, extrapolating between the critical bond-disordered Ising and bond-
disordered four-state Potts models. The critical behavior of the disordered model is compared with
the critical behavior of an anisotropic Ashkin-Teller model, which is used as a reference pure model.
We find no essential change in the order parameters' critical exponents with respect to those of
the pure model. The divergence of the specific heat C is changed dramatically. Our results favor
a logarithmic type divergence at T„C log L for the random-bond Ashkin-Teller and four-state
Potts models and C log log I for the random-bond Ising model.

PACS number(s): 05.50.+q, 75.50.Lk, 75.40.Mg, 75.10.Nr

I. INTjR.ODU CTION

How is critical behavior aHected by the introduction
of disorder (usually dilution or bond randomness) into a
model? The Harris criterion [1—3] states that P, the scal-
ing index of the operator corresponding to randomness
at the pure system fixed point (also called the crossover
exponent) is equal to —(n and v are the specific-heat and
correlation length exponents of the pure model). Thus
the critical behavior of the pure system is unaltered by
disorder if o. & 0, and altered when o. & 0. If o. = 0 the
situation is marginal.

Renormalization-group methods (namely expansion in
the parameter e = 4 —d, where d is the dimension-
ality), applied to n-component continuous spin models
with weak quenched bond disorder [4], confirmed the
Harris criterion P = —. Moreover, it was found that
for n & n, = 4 —4e + O(e ) a new stable random fixed
point with new exponents appears. For the case n = 1
(Ising madel) the stability of an O(e r ) random fixed
point was shown by 3ayaprakash and Katz [5]. For the
d = 2 Ising model, o. = 0, and the operator corresponding
to randomness is expected to be marginally relevant.

Two partially conflicting theories by Dotsenko and
Dotsenko 6] (DD) and by Shalaev [7], Shankar [8], and
Ludwig [9 (SSL) were suggested for the d = 2 Ising
model with small randomness. While both theories
agreed on the divergence of the specific heat, e.g. ,
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conflicting predictions were made for other quantities like
the magnetization M and susceptibility y. Extensive
Monte Carlo (MC) simulations of dilute and random-
bond Ising models (see a review in Ref. [10] and refer-
ences therein) helped to confirm the prediction on the
specific heat. The other quantities were seen to behave
(as predicted by SSL), in essence, as in the pure model.
The disordered d = 3 Ising model has been studied by
means of MC simulations as well [10].

Less at tention has been paid in recent times to
other disordered systems such as random q-state Potts
models. Kinzel and Domany [3] used a real-space
Migdal-KadanofI' renormalization transformation for the
random-bond Potts model on the square lattice in two
dimensions and found (when crz„„) 0) a stable ran-
dom fixed point with a reduced (with respect to the
pure model) but positive n„g . Using methods of
the same spirit, Andelman and Berker [ll] also found
a random Axed point. For q = 4 their calculation sug-
gests a = —0.37 and v = 1.19. Other workers [12,13]
too have suggested a negative o. for q & 2 Potts models
in two dimensions. MC work on random q-state Potts
models has not been carried out, except for recent work
on the bond-random two dimensional eight-state Potts
model [14], where randomness was shown to change the
first order phase transition of the pure model into a sec-
ond order one [15]. Novotny and Landau (NL) [16] used
MC simulations to study the two dimensional site-dilute
Baxter-Wu [17] model which is of the same universality
class as the four-state Potts model. NL measured the ex-
ponents ci = 0.0(2), v = 1.00(7), and p = 1.95(8) which
did not seem to depend on the amount of dilution. They
could not determine whether the new stable fixed point

1063-651X/95/51(4)/3074(13)/$06. 00 3074 Qc1995 The American Physical Society



CRITICAL BEHAVIOR OF THE RANDOM-BOND ASHKIN-. . . 3075

is a d = 2 random Ising fixed point (which is very similar
to the pure Ising fixed point) or a new impure Baxter-Wu
fixed paint.

In this paper we address the effect of randomness on
a critical line which connects the critical points of the
d =two Ising and four-state Potts models. Such is the
critical line of the two dimensional Ashkin-Teller model
[18] on a square lattice.

A convenient representation of the pure Ashkin-Teller
(AT) model is in terms of two Ising spin variables, cr; and
r, , placed on every site of a lattice. Denoting by (i, j) a
pair of nearest neighbor sites, the Hamiltonian is given
by

'R = —) [Ko;o, +Kr;.r, +Ao;.o.
~ r;r,].

(i,j)
(2)

Here K is the strength of the interactions between neigh-
boring o and 7. spins, and. A is a four-spin coupling
(throughout this paper we absorb a factor of 1/k~T into
the coupling constants). The phase diagram of the fer-
romagnetic AT model is known in two dimensions from
duality transformations and renormalization group stud-
ies [19,20]. The three dimensional model has been stud-
ied as well [21]. The phase diagram which we reviewed
previously [22] includes a line of critical points which con-
nects the Ising critical point at one end to the four-state
Potts critical point at the other end. Along this line
the exponents vary continuously, and have been deter-
mined analytically [23,24], interpolating between their
Ising and four-state Potts values. For instance, the
crossover exponent connected with randomness P =
changes smoothly from 0 at the decoupled Ising point, to
1 at the four-state Potts point. Therefore, according to
the Harris criterion, we expect randomness to be a rele-
vant operator of varying strength in this regime of the AT
model, and expect the critical behavior of the disordered
model to differ from that of the pure model.

The critical behavior of the disordered AT model has
not been studied before, to our knowledge, apart from
a conjecture by Alcaraz and Tsallis [25] as to the lo-
cation of the critical manifold. of the bond dilute AT
model. Nonetheless the effect of disorder on the criti-
cal line of the Baxter (or symmetric eight-vertex) model
[26], which is isomorphic to the critical line of the AT
model [23,24], was considered. DD [27] extended their
study of the disordered Ising mod. el to the Baxter model,
and found. , for small disorder, the specific-heat diver-
gence to change from its pure form to the form of Eq.
(1). Matthews-Morgan, Landau, and Swendsen (MLS)
[28] studied the site-dilute Baxter model by means of
a MCRG (MC renormalization-group) method. MLS
found —= yT = 0.98(7) and ~ slightly below the Ising
value. Both studies indicate that continuous variation
of critical exponents of the pure model is substituted by
How to a random Ising fixed point.

In a previous paper [22] we described an efficient MC
cluster algorithm [29] for the AT model. In this work
we have used this algorithm to perform extensive MC
simulations [30] of the random-bond AT model. The im-
portance of using a cluster algorithm for the acquirement

&(t) - ltl (3)

where at different points of the critical surface of the
anisotropic AT model we measured different values of o..
On the other hand, the random-bond model seems to
exhibit a single type of behavior, i.e. , the specific heat
diverges as

(4)

This is identical to a pure Ising behavior and not to a
random Ising one. In Sec. V we summarize our results.

II. DEFINITION OF MODELS
AND LOCATION OF CRITICAL PLANES

The model we wish to study is the random-bond AT
model (RBAT) on a square lattice, which is deffned by
the Hamiltonian

The coupling constants K, ~ and A; ~ are chosen accord-
ing to

(Ki, Ai) with probability p
(K, A ) with probability 1 —p. (6)

It seems quite natural (the need for this comparison
will be made clear at the end of this section) to com-
pare the RBAT with the anisotropic AT model (AAT)
with the same Hamiltonian (5) but with the couplings
distributed as follows:

of reasonably accurate data cannot be overlooked. This
is especially true in the highly random regime where lo-
cal algorithms are extremely slow [31] while cluster algo-
rithms are most efficient [32,33]. The partial elimination
of critical slowing down allows us to go to large lattice
sizes (up to I=256) and obtain accurate results on the fi-
nite size scaling of the thermodynamic quantities at crit-
icality. Our results seem to favor an Ising-like critical
behavior.

This work is organized as follows. In Sec. II we define
the random-bond AT model and a related anisotropic AT
model. As will be explained, the anisotropic AT mod. el is
used as a nondisordered reference model for the random-
bond model. We use the duality transformation of the
AT model to locate exactly critical surfaces of the two
models, which are related to the line of critical points of
the pure mod. el. In Sec. III we describe the MC cluster
algorithm, give definitions of the measured quantities and
describe our choice of simulation points. We have per-
formed simulations of the anisotropic and random-bond
AT models at several points on their critical surface. In
Sec. IV we give our results, which consist of the finite
size dependence of thermodynamic quantities of the two
models at criticality. Analysis of our results shows that
the anisotropic model exhibits varying critical exponents,
i.e., the specific heat diverges as
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(K, A ) for bonds (i, j) in the horizontal direction
(K2, A ) for bonds (i, j) in the vertical direction .

Spatial anisotropy is usually known to be an irrelevant
operator, that is, the critical behavior of a model is unal-
tered by the introduction of anisotropy. Thus one expects
that continuous variation of critical exponents will con-
tinue to exist on some critical manifold of the AAT, as is
the case for the isotropic (or pure) model.

A duality transformation can be used to locate criti-
cal manifolds of the AAT and RBAT in a way we now
present.

A. Duality and location of a phase transition
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Consider an AT system on a square lattice with spa-
tially varying coupling constants (the spatial variation
can be due to anisotropy, or it can be due to randomness
as we consider below). The dual lattice D of the origi-
nal square lattice G is the square lattice whose sites are
at the centers of the plaquettes of the original lattice. In
Fig. 1, sites of G are denoted by dots, while sites of D are
denoted by crosses. Consider a bond of strength (K, A)
between two sites in G. Under duality it is mapped onto
a bond of strength (K, A) = D[(K, A)], where D is the
duality transformation of the AT model [34,20] which we
list in the Appendix. The dual bond lies in the dual lat-
tice D, intersecting the original bond. This situation is
depicted in Fig. 1. The original bond of strength (K, A)
is depicted by the solid line while its dual is depicted by
the dashed line.

Suppose the only spatial variation of the couplings is
one of anisotropy. Then an AT system with couplings of
strength (K, A ) in the horizontal direction and strength
(K, A ) in the vertical direction, transforms under du-
ality into an AT system on the dual lattice D with cou-

plings of strength (Ki, Ai) in the vertical direction and

strength (K2, Az) in the horizontal direction. The free
energies of the original system and its dual have the same
singular part, and therefore we can write

f [(Ki Ai) (K2 A&)] f [(K2 A2) (Kl Al)] (8)

where the first pair of couplings corresponds to the
horizontal bonds, and the second pair to the ver-
tical ones. The duality transformation D is self-
inverse. Thus an anisotropic AT system with couplings

[(K,A'), (K, A2)] such that (K2, A2) = (Ki, A'),
transforms under duality onto itself. So there exists a
two dimensional self-dual manifold (it would help the
reader to view the duality transformation as a mathemat-
ical mapping in the four dimensional space of couplings
[(K', A'), (K2, A2)]).

The line of critical points of the isotropic AT model lies
within the subspace Z, de6.ned by 0 & A & K. E is lo-
cated between a decoupled Ising model where A = 0 and
a four-state Potts model with A = K. Two subareas of E
which map onto each other under duality are separated
by a self-dual line [fulfilling (K, A) = (K, A)]. The as-
sumption that Z contains only two phases, with a single
phase transition between them (where f, is nonanalytic)
leads to the conclusion that this phase transition must
occur on the self-dual line. In 'this way the line of critical
points of the isotropic AT was located exactly [19].

Let us now consider the corresponding subspace Z~ of
the AAT& for which 0 ( Ax ( Kx and 0 & A2 ( K
Z~ lies between an anisotropic decoupled Ising subspace
where A = A = 0 and an anisotropic four-state Pot ts
subspace with A = K, A = K . E~ is invariant un-
der duality since for 0 & A & K we obtain (see the
Appendix) 0 & A & K. It follows also that the self-dual

plane 0 & A & K, (K, A ) = (Ki, Ai) is included
in the subspace we are considering. Thus, again assum-
ing that Z~ contains only two phases, with a single phase
transition between them, we conjecture that the self-dual
plane is a plane of phase transitions (this kind of argu-
ment was first used by Fisch [35] for the random-bond
Ising model, and later for Potts models by Kinzel and
Domany [3]). Since the space of couplings is four dimen-
sional, while the self-dual plane is only two dimensional,
the self-dual plane is only part of the three dimensional
critical manifold in E~. Notice that this is unlike the
case of the Potts model or any model with a single cou-
pling constant, where the self-dual line is identical to the
critical line.

FIG. 1. The original lattice G is denoted by solid lines,
while its sites are denoted by dots. The dual lattice D is
denoted by dashed lines, while its sites are denoted by crosses.
A bond of strength K is denoted by a thick solid line, while
its dual of strength K is denoted by a thick dashed line.

B A critical plane of the RBAT

The argument that leads to locating the correspond-
ing critical plane of the RBAT is very similar to the one
presented above, up to a subtle difference. Consider a
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specific realization of a RBAT on a square lattice with
couplings (K, A ), (K, A ) distributed at random with
probabilities p and 1 —p, respectively. Replacing each
bond by its dual we obtain (on the dual lattice) a sys-

tem with couplings (K~, A~) and (K2, A2), distributed at
random with probabilities p and 1 —p. This defines a one
to one mapping under duality from the ensemble of re-
alizations of [(K,A ), (K, A ),p] RBAT systems, onto

the ensemble of the dual systems [(K,A ), (K, A2), p].
Under duality each bond is mapped onto the bond on
the dual lattice which intersects the original bond (see
Fig. 1). Thus the spatial distribution of the two types
of bonds on the dual lattice is difFerent from that of the
original lattice. However, since all spatial distributions
have the same weight in their ensemble, there is a one
to one correspondence of bond configurations in the two
ensembles, and we can write

f, [(K', A'), (K', A'), p] = f, [(K', A'), (K', A'), p],

where it is understood that in calculating f, we aver-
age over all spatial bond distributions. Choosing p =

z
we find that there is a self-dual manifold at (K, A2) =
(K~, A~). Our ability to locate a self-dual manifold for
the case p =

2 makes this choice of p a convenient case
for studying the RBAT. Viewing the duality transforma-
tion as a mathematical mapping in the space of couplings
[(K,A~), (K, A ), 2], it is identical to the duality trans-
formation in the space of couplings [(K~, A ), (K, A )]
of the anisotropic AT model. Thus all conclusions which
were based on duality in Sec. II A apply here equally. Fol-
lowing the logic of Sec. II A, we conjecture that the sub-
space of the RBAT for which 0 & A & K, 0 & A & K
and p =

2 includes in it a critical plane defined by

0 ( Al ( Kl (K2 A2) (~1 g)
In order to study the effect of randomness on the

AT model we need a reference nondisordered system
for comparison. %'hen studying a specific RBAT model
with couplings [(K,A~), (K, A2), 2] it is not clear with
which specific nonrandom AT model with couplings
(K, A) one should compare. Nonetheless a compari-
son with the corresponding AAT model with couplings
[(K,A ), (K, A )] seems to be quite natural. Consider
the anisotropic model with bonds (K, A ) in the hor-
izontal direction and bonds (K, A ) in the vertical di-
rection. Next, consider as a perturbation, a change of a
small fraction p of the bonds in the horizontal direction
into bonds of strength (K, A ) and the same fraction
of bonds in the vertical direction into bonds of strength
(K, A ). When p increases all the way to p =

2 the
anisotropy disappears and the model is completely ran-
dom. So, in a sense, the perturbation of randomness
can take us continuously from the critical plane of the
anisotropic model to the critical plane of the random
model. In view of this simple picture we have performed
simulations of the anisotropic and random-bond AT mod-
els at several points on their self-dual planes described
above. We indeed find the two planes to be critical. In
Sec. III we give some details of the simulations.

III. METHOD AND DETAILS
OF SIMULATIONS

A. The method

'R = 'R, +'R, = —) (K;, + A;, r, ~, )o,a,
(i j)

—) K;,~~, .
(i,j)

(10)

'R2 represented by the second sum is a constant, and re-
membering that we are considering A,. j & K; j for all
(i,j), 'Rq is a ferromagnetic Ising model in the a vari-
ables with couplings Jzj:Kz j + Az j~z~j Simulating
this Ising model with any procedure that will maintain
detailed balance with respect to 'Ri and will not change
the value of 'R2, will also maintain detailed balance with
respect to 'R. So we can use, for example, the SW [38]
or Wolff [36] procedures for the Ising model. This by it-
self will maintain detailed balance but will not be ergodic
since the w variables will not be updated. Obviously, to
update the ~ variables the same process should be re-
peated, holding the o variables fixed and simulating an
Ising Hamiltonian with the ~ variables. To summarize,
our procedure goes as follows: Choose at random whether
to embed into the AT Hamiltonian an Ising Hamiltonian
in the o (or r) spins. Pick a random site in the lattice,
grow a cluster of cr (or r) spins, using the Wolff single
cluster procedure with the Ising Hamiltonian [(10) or the
opposite one in case of a 7 embedding], and flip it.

B. Choice of simulation points

All our simulations were performed at the critical plane
defined by

~[(K', A'), (K', A'), p = -', ]: (K', A') = (K&, A~),

0 (A' (K'), (11)

as explained in Sec. II (for the anisotropic model just
omit the p = 2). For convenience we also use the follow-

ing notation for the coupling constants:

Z = exp( —4K), X = exp[—2(K + A)],

X = (X,Z). (12)

In Ref. [22] we described a cluster algorithm for the
AT model and tested its performance (on the isotropic
model). As explained there, the algorithm can be re-
garded from two diferent points of view. The conceptu-
ally simpler and faster ( though less general ) one is that
of the Wolff embedding idea [36,37]. It is faster in the
sense that its implementation on the computer runs faster
since the freeze-delete procedure is less complicated. The
main idea is to embed into the AT model an Ising model
of space dependent couplings Jjk and simulate it using
the SW [38] or Wolff [36] procedures for the Ising model.
To be explicit, consider the Hamiltonian (5), and take
the w variables as fixed, so we can write
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The first series of measurements were performed at
five points (Xi, , X2,), i = 0, . . . , 4, which we label as
C, , i = 0, . . . , 4. These were chosen so as to interpolate
between (Xoi, Xo2), which is an ainsotropic (or random-

bond) decoupled Ising critical point, and (X4i, X42), which
is an anisotropic (or random-bond) four-state Potts crit-
ical point. The points C, interpolate in a similar man-
ner to the way in which the critical line of the pure AT
connects the pure decoupled Ising critical point with the
pure four-state Potts critical point. Thus we chose the
five points X,- to lie equidistantly on the line

2
Ising

X' 4Ising

for the series B0 4. Though we defined here ten addi-
tional points we actually performed measurements only
at the points A2 and B'2. The points A2, B2, and C2
represent three RBAT ( or AAT ) models with coupling
ratios ———and — — — and —respectively.A ~ 1 K ~ 1 1 1

K1 2 Ki 2' 4' 10

C. MC simulations

We calculated the energy [40] per site:

= K1
Ising Ising Ising10 (14)

The slope —2 was chosen so that line (13) lies parallel
(in the XZ plane) to the critical line of the pure AT
model, Z = 1 —2X. Note that once (X,Z ) are defined,
(X', Z ) are defined through (ll) and (12).

We clearly have some freedom in our choice of
(Xii„„,ZI„„), the decoupled Ising couplings; setting
Ai = 0 in (ll) one obtains A = Ai = 0 as well. The
remaining parameter Ki is chosen so that [see (11)]

E = [(E)] = — ) (K, , (o,o, + ~;v;)
1

)

+As ~ os'rs Oj Tj )

where I is the linear lattice size, and the angular brackets
denote the usual thermal MC average, whereas the square
brackets denote the quenched. average over random-bond
configurations. The specific heat per site follows from
the energy fluctuations

Since the extent of deviation from pure behavior is obvi-
ously determined not only by p but also by the diR'erence
between the two sets of couplings, the ratio of 10 was
chosen so that randomness will be pronounced [32,39].

While (14) defines the first simulation point Xti

XI„.„,the fifth simulation point X 4 = X putts is cho-
sen to be a four-state Potts point lying at the intersection
of line (13) with the four-state Potts line Zi = X (or

The other three simulation points %12 3 lie equidis-

tantly on the line (13) between Xii„„and Xpi «,

C = q" = L'[(E') —(&)'1.

We define

1m 1m7 LQ T$)
1I, —E, g 07

(2o)

M = —[(Im I
+ lm I)]

To compute the magnetization per site, M, we used

1 1 1 1Xi (XPntts XIsing) + Ising)

Z,' = Z„,„„—2(X; —XI„.„) i = 0, . . . ,

taking advantage of the symmetry between the o. and w

spins to increase accuracy. Another order parameter of
the transition plane we are considering is the polarization
[23] P, defined as

P = [(lm-I)] (22)

2
Ising

K1
Ising

(16)

for the series A0 4, and with

Thus the first series of points C; at which we made rnea-
surements Co 4 is defined through Eqs. (11), (12), (14),
and (15) and the definition of Xp tt, .

Two additional measurement points were intended to
monitor the efFect of varying the amount of randomness
in the model on the critical behaviour. In order to define
these two points we define two series of five points each,
A0 4 and B0 4. Similarly to the series C0 4, these two
series are defined through Eqs. (11), (12), and (15). But
in contrast with the series Co 4, Eq. (14) is substituted
with

which measures the magnetization of the o7 spins. We
calculated the magnetic susceptibility of the o spins using
[4o]

(23)

and also measured c, the size of the cluster flipped at each
step, and calculated (c). There is a connection betw'een
the size of the clusters and the susceptibility [41] which is
common for all algorithms that generate noninteracting
clusters of spins (if all spins in a cluster have the same
value). For the Wolff single cluster procedure it has the
simple form [36]

(24)
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Finally we measured the susceptibility of the 07 spins,
xp-

y„= L'[(m..'.)].

For each sample we estimated the efFective autocorre-
lation times [42] of the energy, 7g and the magnetization
wgP using the method outlined in Ref. [36]. The length
of an individual run was often too short for a precise
estimate, but averaging over all samples gave a rough es-
timate of [r& ~]. These estimates of 7' allowed us to
verify that all samples were equilibrated well enough be-
fore we started collecting data. Typically we discarded
at least 5%-& spin configurations.

The fluctuations in the random-bond configurations
introduce, in addition to the usual MC error, another
source of statistical error. Thus the total error for the
specific heat, bC, for example, is given by

2 2

($C) 2 Tl T
n nTMc/~

' n, TMc lai'ge, (26)

where n is the number of random-bond samples, TMg is
the length of the MC runs and w is the autocorrelation
time of the algorithm (which we can estimate by 7' ).
o& is the variance of C within a given sample and is due
to thermal fluctuations, while 0 is the variance of the
exact (C) within the ensemble of random-bond samples.
Thus both the thermal fluctuations and sample to sample
fluctuations contribute to the error.

We found that both terms in (26) imply that simula-
tions of the AT models and the Potts model are much
more expensive in computer time than simulations of the
Ising model. First there is an increase in w in consistence
with our findings in the pure models [22]. That is, at
L = 256 for the random Ising model we find r& 3.1(1)
compared with wP 11.3(3) for the random four-state
Potts model. Second we found that for all thermody-
namic quantities P the relative variance a /P2 was larger
for the random four-state Potts model than for the ran-
dom Ising model. This efI'ect was strongest for the spe-
cific heat, e.g. , for L = 256, cr2 c/C of the random four-
state Potts model was approximately an order of mag-
nitude larger than that of the random Ising model. In
accordance with these findings, the number of samples
simulated for the Ising model varied between n = 1000
for L = 4 and n = 150 for L = 256, while for the four-
state Potts model it varied between n = 2000 for L = 4
and n = 330 for L = 256.

vary continuously along the critical line of the pure AT
model between —= 0 at the decoupled Ising critical point
and —= 1 at the four-state Potts critical point. One ex-
pects the same variation to hold for the corresponding
critical manifold of the AAT at which the simulations
were performed. In Fig. 2 we plot the critical specific
heat C as a function of ln L for the five critical AAT mod-
els Cp 4. Fits are made to form (27), and the estimated
values of rr/v are listed in Table I. Since model Cp is an
anisotropic Ising model, its specific heat dues not fullow
form (27), but rather C —A + H lnL. The anisotropic
four-state Potts model C4 should have n/v = 1 with a

logarithmic correction [44] to scaling C L/ln ~ L. In
the range of L considered, the logarithmic correction re-
sults in an estimate for n/v which is too low. The results
for the specific heat of the AAT models clearly demon-
strate a variation of n/v from its Ising value (a/v = 0),
to its four state Potts value. As will be seen shortly this
is quite diBerent from the results for the RBAT models.

In order to analyze the specific-heat results of the
RBAT we first tried to fit the results to (27), but un-
like the specific heat of the AAT this was not possible for
the full lattice size range 4 & L & 256. Thus in Fig. 3
we show the specific heat as a function of ln L for the five
critical RBAT models Co 4 along with fi.tting curves to
(27), where only data for L & 24 were used to fit. The
estimated exponents n/v obtained from these fits are 0
within errors, indicating a possible logarithmic behavior.
In addition, Fig. 3 indicates a crossover of the efFective
exponents (the slope between every two successive data
points) from higher to lower values. Physically we ex-
pect that this is due to a crossover from the pure models'
exponents to some alternative random critical behavior.
We are thus led to the following Gnite size scaling ansatz
for the specific heat

C = ap + bp in[1 + cp(L ~ —1)]

where (n/v)„ is the critical exponent ratio of the cor-

C

C 1
&C

co

IV. MONTE CARLO RESULTS

A. Speci6c heat
1 O I OO

We expect the critical specific heat of the AAT to fol-
low the finite size scaling [43] form of (3),

C=~, +b, L /" (27)

The exponent ratio —is predicted analytically [23,24] to

FIG. 2. Specific heat C as a function of ln L for five critical
models CO, ,4, of the AAT. Nate that Co is an anisotropic de-
coupled Ising model and C4 is an anisotropic four-state Potts
model. The curves are fits to (27), yielding estimates for-
which are listed in Table I.
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TABLE I. Critical exponents ratios and fitting parameters
from the 6rst series of simulations C0, ..., 4 and the second series
A, B', and C2 of the Anisotropic AT model. The exponent
ratios and parameters are defined in the text.

CX z P Pz

Cp 0.0001(150) 1.7511(7) 0.1244(4) 1.501(1) 0.2494(6)
Ci 0.171(5) 1.751(l) 0.1242(5) 1.554(1) 0.2231(5)
C2 0.375(5) 1.755(1) 0.1223(7) 1.608(2) 0.197(l)
Cs 0.549(8) 1.759(4) 0.1199(27) 1.667(5) 0.169(3)
C4 0.630(8) 1.749(4) 0.1238(21) 1.750(4) 0.1237(26)
H2 0.371(5) 1.753(1) 0.1233(7) 1.608(2) 0.197(1)
A2 0.40 (1) 1.750(1) 0.1254(8) 1.603(2) 0.199(1)

responding pure model and cp ——
~ & ~

. An important
point to note is that for each random-bond AT model,
following the discussion at the end of Sec. IIB, (o./v)„
is taken from our results (listed in Table I) for the cor-
responding anisotropic AT model. g is a measure of the
randomness, and is related through the relation

(L( /~i~ (29)

to a crossover length L, at which crossover from the pure
model's power law behavior to the random logarithmic
behavior occurs. Thus for L « L, our Eq. (28) reduces

to (27) while for L » L and L„" » 1 a logarithmic
behavior is attained:

C = a+6 lnL. (30)

Apart from crossing over to the correct pure result (27)
when co —+ 0, Eq. (28) was constructed so that in the
Ising model limit, (n/v)~ + 0 it becomes

C = a+ bin(1+ gin I) .

This is the finite size scaling form of (1) which was shown
by Wang et al. [32] to fit the random-bond Ising model
well. This form will be examined below as another can-

1L. -B (32)

where P = (n/v)„ is the crossover exponent and B (B &
K'

1, R ~, ) is a measure of the randomness. For the
RBAT models considered here (n/v)~ —0.37, while for
the random-bond Ising models randomness is marginal
[(n/v)~ = 0], so that the much smaller crossover lengths
that we find are consistent with the Harris criterion.

Since there is no theoretical prediction for the critical
behavior of the RBAT model, we examined possible scal-
ing forms for the specific heat other than (28). A natural
candidate is a double logarithmic behavior as in Eq. (1).
This form was predicted by DD for the disordered Baxter
[27] and Ising [10,32] models, and confirmed for the lat-
ter model. In its asymptotic limit, the finite size scaling
form of (1) is

didate for describing the RBAT models.
In Fig. 4 the specific heat of the five critical RBAT

models Co 4 are plotted again but with fits to (28) using
the full lattice size range 4 & L & 256, on a semilogarith-
mic scale. The fitting parameters are listed in Table II.

KFor these points (with large randomness ~, —), the
crossover lengths L are found to be 1.

In Fig. 5 the specific heats of three critical RBAT mod-
els A2, B2, and C2 are plotted with the fitting functions of
(28). (n/v)„ is taken from the corresponding anisotropic
models and the fitting parameters are listed in Table II.
(o./v)„of the three models A2, B2, and C2 is very similar
(0.40, 0.37, 0.37, respectively), but they difFer in their
amount of randomness, K, —2, 4, and 1p respectively.K 1 1 1

Form (28) seems to describe all three models adequately
with the main change being in the crossover length L
which decreases as randomness increases. The estimates
for L can be compared with results from random-bond
Ising models [10,32] with the same coupling ratios. For

p4 and we obtain L 14+04, »dL
51+7 compared with I = 2+1, L = 16+4, and
L 1000 for the respective Ising models. According to
the Harris criterion, one expects the crossover length to
scale roughly as

C~ 0

C~

Cz
x

Co C)
C

1 0 1 OO

1 O I OO

FIG. 3. Specific heat C as a function of ln I for five critical
models C0, ,4, of the RBAT. Note that Co is a random-bond
decoupled Ising model, and C4 is a random-bond four-state
Potts model. The curves are fits to form (27) for lattice sizes
L&24.

FIG. 4. Specific heat C as a function of ln I for five criti-
cal models Co, ,4, of the RBAT. The curves are fits to form
(28), yielding estimates for the coefficients of (28) which are
listed in Table II.
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Cp
Cg
Cg
C3
C4
B2
A.2

ap
-o.s7(12)
-4.6
-4.1
-3.9
-4.1
-0.09(5)
-o.o7(6)

bp

0.58(1)
0.51(2)
0.46 (127)
0.43 (4)
O.42(1)
2.00(4)
9.35(as)

Cp

5.2E4(1.5E4)
1.5E6
5.5E4
5.5E4
1.0E5
1.47(10)
0.26(2)

Lc
1.0
1.0
1.0
1.0
1.0
4.0 (4)
51(7)

Co

I

1 OO

C = a+ 61nlnL . (33) FIG. 6. Specific heat C as
critical models B

as a function of lnn o nL for the RBAT
p, ...,4 with fittin c'

h ing curves of (ao).
We compare this form with

tot' d dn o not i ss
ese form s are

over from th
we again plot ou

e models te
our specific-hea

s ested except for A
ue to its lar e c

or 2, which is n

y (30) i . an y (33) in Fig. 7

ang et al, for the ran o — sin
i h(33'i

agreement
F

wit ~33~

with
sis. For m

tth b

3 the quality of both fi
i e or — on four-state

th 900 sample~ f I
or = 256

or & 128 a
), and the result is

Last we c

esu t is conclusive}esut is . y in

considered the osspo

lowed at e

e oss e crossover

a even larger I b
ari mic behavi ior is fol-

ing the specific-
ing to (31). Though the

C - in[1+ b(t 1)j, (34)

A possibility wh' hic we tend to ruo rule out is that ba oth types

fits were of good qualit ty, e estimat d

B
mic ehavior

ic actuall iy imp}ies a

e compared with
ssi e values of L.

for th
ae -4

nd g g
4 we find th

t e Ising mod 1m a y romt o
at L. increases

onc u e that o
mlc dlv

our results ar
f h

o a ogarith-

bond I
t}1 RBAT d 1

dl Th
the best a

g gives

wi weak rando
or a models inc

size range 4 &
omness and f

) clud-
or the fu

g oi m
or (t) we d' ewe predict the

x

A& o

C)

Co

1 0
I

1 OO
I

1 OO

FIG. 5. Specific heat C as a
l C of th do b

g

he curves
f th offi

a e II.
events of FIG. 7. Speci6c heat C as a f

critical models B
as a function of ln L f

4 wit fitting curves of (aa).



SHAI %'ISEMAN AND EYTAN DOMANY 51

of critical behaviors [that is, (34) and (1)]occur, and that
there is some bifurcation plane which separates the two
types of behaviors.

B. Susceptibility and magnetization

1. Susceptibility

C~ 0

C~

C&

Co

According to finite size scaling theory one expects that
the critical susceptibility diverges as

(35)

for large enough I . The exponents' ratio 1/v is predicted
analytically [23,24] to be constant, 1/v = 4, all along
the critical line of the pure AT model. This is expected
also to hold for the corresponding critical manifold of the
AAT. Figure 8 shows results for the critical susceptibility
as a function of lnL for the five critical models, Cp 4,
of the AAT. So that the points do not fall on top of each
other, y for the model C; has been multiplied by 2'. The
solid lines are linear fits to form (35) for L & 24, yield-
ing estimates for critical exponents — which are listed
in Table I. All results seem to be consistent with the
analytic prediction, giving a combined best estimate of
1/v = 1.7512(6). An effective exponent analysis (or a
trend analysis) shows that, as ln L increases, ( —),~ ap-
proaches the value 4 &om above.

The finite size scaling form (35) and the value of ~ =
4

have been predicted [7—9) for the disordered decoupled
Ising model and confirmed in MC simulations [10,32].
Figure 9 shows results for the critical susceptibility as a
function of ln L for the five random critical models Cp 4,
of the RBAT. The same analysis has been carried out
as for the AAT, and the estimated critical exponents ~

are listed in Table III. The estimates for the decoupled
Ising critical point Cp and for models Ci 2 are consistent
with ~ = 4. On the other hand for the model C3 and

1 OO

FIG. 9. Susceptibility as a function of ln L for five critical
models C0, ,4 of the RBAT. For the sake of clarity y for model
C,. has been multiplied by 2'. The solid lines are linear fits to
form (35) for L & 24, yielding estimates for critical exponents
& which are listed in Table III.

y = AxI 4 (lnL) (36)

for L & 24. The obtained estimate for p~ is listed in
Table III. for the random-bond four state Potts model
we find px = 0.148(21) while for the models Co 2 the
error in p~ is at least of the same order as the estimate
for p~ itself.

2. Magnetization

The critical magnetization of the five anisotropic mod-
els is expected [23,24] to follow the form

the random-bond four-state Potts model C4 we obtain
1.736(3) and — = 1.714(5) respectively. We also

tried fitting the results with the form

PM~L (37)

C

Co

x

with —= 8. Applying straightforward finite size scal-
ing analysis, as described above for the susceptibility, to
the magnetization results, we obtained estimates for ~

TABLE III. Critical exponents ratios and fitting parame-
ters from the first series of simulations Co, 4 and the second
series A, B,and C2 of the random-bond AT. These exponents
and parameters related to the scaling of the order parameters
are defined in the text.

1 O 1 OO

FIG. 8. Susceptibility as a function of lnL for five critical
models C0, ,4 of the AAT. For the sake of clarity, y for model
C, has been multiplied by O'. The solid lines are linear fits to
form (35) for L & 24, yielding estimates for critical exponents
& which are listed in Table I.

z P
IJ J'x 1/

Cp 1.751(5) -0.007(20) 0.125(3)
Ci 1.751(6) -0.008(19) 0.124(3)
C2 1.743(5) 0.026(22) 0.129(3)
Cs 1.736(3) 0.057(14) 0.133(2)
C4 1.714(5) 0.148(21) 0.145(3)
B2 1.738(4) -0.049(17) 0.132(3)
A2 1.739(5) -0.042(22) 0.132(3)

-0.003(12) 1.549(9) 0.227(5)
-0.004(11) 1.575(8) 0.214(5)
0.015(14) 1.597(9) 0.205(5)
0.032(9) 1.638(5) 0.185(3)
0.082(13) 1.714(5) 0.145(3)
0.029(10) 1.586(6) 0.209(4)
0.027(13) 1.590(8) 0.208(5)
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C~ 0

C~
0

Lc) C ~ EI
D

C x
Elx
C)

C~ 0

LEO 2

x

0
CD

co Co

1 OO 1 O 1 OO

FIG. 12. Polarization P as a function of ln L for five crit-
ical models Co .,4 of the AAT. The solid lines are linear fits
to the form (39a) for L ) 24, yielding estimates for critical

exponents ~ which are listed in Table I.

FIG. 14. Polarization P as a function of lnL for five crit-
ical models, C0, ,4, of the RBAT. The solid lines are linear
fits to form (39a) for I ) 24, yielding estimates for critical
exponents ~ which are listed in Table IV.

to forms (39) for L ) 24, yielding estimates for critical
exponents ~ and ~ which are listed in Table I. As ex-
pected, we find that s varies between e = 1.501(l) for
the decoupled Ising model and e = 1.750(4) ~ for the

four-state Potts model. ~ varies accordingly fulfilling
the scaling relation ( 42 ).

Figures 13 and 14 show the critical yz and polarization
P, respectively, as a function of lnL for the five critical
models, Co 4, of the RBAT. The same analysis has been
carried out as for the AAT and the estimated critical ex-
ponents ~ and ~ are listed in Table III. The results for
the random-bond four-state Potts model C4 agree with
P = M and y„= y to a high precision and thus need no
further explanation.

There is a clear mismatch between the estimated values
of ~ and ~ and their expected values for the random-
bond Ising model Co. Even the left-hand side of the
relation (40), P = M2, which implied e = 2~, is far
from being met, but rather we And P ) M both for

C~ 0

C~

C

x

the anisotropic and for the random-bond Ising models.
This is probably connected to the fact that we are mea-
suring, as is usual in a MC calculation, (~M~) and (~P~)
which are larger than limh~o(M) and limh ~o(P) re-
spectively. Both in the random-bond and anisotropic
Ising models the relative variance of P is larger than the
relative variance of M. This makes (~P~) a worse esti-
mator of limp, ~o(P) than (~M~) is of limg~o(M). The
discrepancy is a finite size effect [30] and should decay
as L increases. Indeed if we estimate ~ from lattices of
size L & 96 we obtain ~ = 0.266(22) which is consistent

with the exact value ~ = —. An estimate of ~ from
lattices of size L & 64 yields —" = 1.524(23) which is

consistent with the exact value ~
The results for y„and P seem to favor a continuous

variation of ~ and ~ for the RBAT models as is the
case for the AAT models. As explained above, for sym-
metry reasons one expects that if Pi„„s ——Pp tt, then

P„ i»„s g P„p~tt, . This is consistent with the variation
of exponents we And. Nonetheless since we found the
specific heat of all models to diverge logarithmically one
could expect the RBAT models to be more universal. A
possible scenario to expect could be P„= P„p~«, for
all RBAT models but the Ising model. Then assuming
(P/v)i„„s = 1/8 with (42) would imply ~ = 3/2 for the
Ising model and ~ = 7/4 for all the other RBAT mod-
els. Such a behavior would of course be masqueraded
by crossover, but nonetheless we do not find evidence for
such a behavior in our results. Further investigation of
this problem is clearly needed.

V. SUMMARY AND DISCUS SION

1 OO

FIG. 13. y„as a function of lnL for five critical models
CO, ,4, of the RBAT. The solid lines are linear fits to form
(39b) for L ) 24, yielding estimates for critical exponents ~
which are listed in Table III.

We have examined the efFect of bond disorder on the
line of critical points of the AT model. A duality trans-
formation was used in order to locate a critical manifold
of the random-bond AT model which corresponds to the
line of critical points of the pure model. An anisotropic
AT model was used as a convenient pure reference
model. Our results consist of the finite size dependence of
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C, M, P, y, and y„at criticality of several random-bond
and anisotropic AT models. The models Co 4 interpo-
late between Ising and four-state Potts models with large
disorder, thus also monitoring the effect of changing the
crossover exponent (n/v)z. The models Az, Bz, and Cz
serve to monitor the effect of changing the amount of
disorder while keeping the crossover exponent approxi-
mately the same [0.37 ( (n/v)„& 0.40].

The results of the critical specific heat of all the RBAT
models agree very well with the crossover behavior (28),
according to which for L & I, C diverges with the
same exponent (n/v)„as the corresponding AAT model,
while for L & L, C grows as ln L. Our estimates
for the crossover lengths of the models A.2 and B~ are
much smaller than the estimates of Wang et al. for
random-bond. Ising models with the same amount of dis-
order. This is consistent with the Harris criterion and
the crossover exponent (n/v)z 0.4 of the former mod-
els, and the crossover exponent (n/v)z ——0 for the latter
models. For the random-bond Ising model we find the
double logarithmic divergence (31), or (33) asymptoti-
cally, as was found by Wang et at. We view the ade-
quacy of (28) for all the RBAT models [with difFerent
(n/v)„and difFerent amounts of randomness) for the full
lattice range & L & 256, together with the consistency of
the crossover lengths with physical understanding (Harris
criterion), as a strong indication that the RBAT models
(including the four-state Potts model) exhibit a logarith-
mic divergence of C. We tend to rule out the possibility
of a double logarithmic divergence of C as predicted by
DD [27] for the Baxter model, for reasons explained in
Sec. IV.

Although P/v and p/v do not vary for the pure model,
our results indicate a possibility that P/v and p/v do vary
for the random models. Nonetheless this very small vari-
ation might be an artifact of a correction to scaling, e.g. ,
of a logarithmic type. The exponents connected with the
polarization P and the susceptibilities g„,P„/v, and p„/v
which vary continuously for the pure AT model seem also
to do so for the RBAT model. However, on the basis of
universality the possibility that these exponents are ac-
tually the same (with some nonuniversal corrections to
scaling and a crossover effect) for all RBAT models ex-
cluding the Ising model, seems to be a plausible scenario
in need of further investigation.

Very recently an experimental study of a two dimen-
sional four-state Potts system with quenched impurities

was done [45], and values of v = 1.03(8), P = 0.135(1),
and p = 1.68(15) were obtained. These are consistent
with our findings for the four-state Potts system C4 but
with a value of P which is smaller than ours.
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APPENDIX: THE DUALITY
TRANSFORMATION OF THE AT MODEL

We list here the duality transformation D[K, A] of the
AT model and a few of its properties. For convenience,
instead of (K, A) we use difFerent variables for the cou-
pling constants, (X, Z);

Z = exp, X = exp z(~++), X = (X, Z). (Al)

X = (1 —Z)/6,
Z = (1 —2X + Z)/A,
4 = 1+2X+Z.

(A2)

We list several properties of the transformation. It is
self-inverse, i.e. , D[D(X)] = X. It maps the zero tem-
perature point [X = (0, 0)] onto T = oo [X = (1, 1)]
and vice versa. The Ising subspace Z = X and the
four-state Potts subspace Z = X are invariant under D.
The subspace Z, defined by X ) Z ) X (or K & A) 0), is also invariant under D. The line Z = 1 —2X
is a self-dual line, and its intersection with E is the line
of critical points of the AT model. It is also true that if
Z & 1 —2X then Z & 1 —2X and vice versa.

Under a duality transformation D, a bond of strength
X = (X, Z) transforms into a bond on the dual lattice of

strength X = (X, Z) = D(X) given by [34,20]
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