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Dynamic front transitions and spiral-vortex. nucleation
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This is a study of front dynamics in reaction diffusion systems near nonequilibrium Ising-Bloch
bifurcations. We find that the relation between front velocity and perturbative factors, such as
external fields and curvature, is typically multivalued. This unusual form allows small perturbations
to induce dynamic transitions between counterpropagating fronts and to nucleate spiral vortices.
We use these findings to propose explanations for a few numerical and experimental observations,
including spiral breakup driven by advective fields, and spot splitting.

PACS number(s): 05.45.+b, 82.20.Mj

I. INTRODUCTION

Nonequilibrium Ising-Bloch (NIB) transitions [1] have
been identified. recently as important mechanisms of
pattern formation in reaction-difFusion [2,3] and liquid
crystal [4] systems. Mathematically, a NIB transition
amounts to a pitchfork bifurcation where a station-
ary (Ising) front loses stability to a pair of counter-
propagating (Bloch) fronts. The coexistence of two Bloch
fronts far beyond the bifurcation allows the formation of
regular patterns such as periodic traveling domains and
rotating spiral waves.

In this paper we show that near a NIB bifurcation
spontaneous transitions between the two Bloch fronts be-
come feasible and that a number of apparently unrelated
phenomena can be understood in terms of these transi-
tions. Front transitions of this kind can be induced by
extrinsic perturbations, such as advective Gelds, or in-
trinsic perturbations, such as &ont interactions and. cur-
vature. They may occur uniformly along the front, re-
versing its direction of propagation, or locally, nucleat-
ing spiral-vortex pairs. We study the mechanism of such
transitions and suggest explanations for two experimen-
tal observations: spiral breakup induced by the onset of
convection in chemical reactions [5], and spot splitting
[6]. We suggest that these experiments, the transition
&om labyrinthine patterns to spiral turbulence found nu-
rnerically in [7], and possibly other breakup phenomena
[8,9] are all realizations of the same mechanism.

The key feature underlying front transitions is a mul-
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tivalued dependence of &ont velocity on extrinsic and
intrinsic perturbations close to a NIB bifurcation. Fig-
ure 1 shows a typical form of such a relation. The up-
per and lower branches correspond to the two counter-
propagating Bloch &onts. At least one of them termi-
nates at a realizable perturbation strength. A perturba-
tion that drives the system to the end of a given Bloch
&ont branch induces a transition to the other branch as
indicated by the arrow.

We consider an activator-inhibitor reaction-diffusion
system exhibiting a NIB bifurcation [3]:
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FIG. 1. A typical front-velocity vs perturbation graph near
a NIB bifurcation. The figure is a plot of V vs I according to
the stationary form of (13) with no = —2.0 and az ——5.0.
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where J represents an advective vector field. In the con-
text of chemical reactions u and v represent concentra-
tions of two key chemical species, and J may stand for
a convective flow Geld. We note that there is no a pn-
ori reason to assume that both species are advected dif-
ferently by the flow field. However, chemical reactions
normally involve many more than two chemical species.
Two-variable models like (1) are obtained by adiabatic
elimination of fast reacting species, and in this process
transport terms are renormalized. As shown by Dawson
et al. [10] this can lead to an efFective difFerential flow as
assumed in (1). The external field J may also stand for
an electric field which advects ionic species [8,11].

In Sec. II we use Eqs. (1), simplified by setting b = 0,
to derive an evolution equation for the front velocity near
a NIB bifurcation. We obtain a multivalued relation be-
tween the &ont velocity and the advective perturbation
J, and show that transitions between the difFerent &ont
velocity branches follow from the gradient nature of the
evolution equation. In Sec. III we study the relation be-
tween the front velocity and the advective perturbation
for 8/e )) 1 and at arbitrary distance from the NIB bi-
furcation. The multivalued nature of this relation near
the NIB bifurcation is used to demonstrate how spiral
breakup can be induced by an advective Geld. The re-
lation to convection induced disorder in the Belousov-
Zhabotinsky (BZ) reaction [5] is discussed. In Sec. IV
we show that multivalued relations between the front ve-
locity and intrinsic curvature perturbations near a NIB
bifurcation can be used to explain spot splitting [6] and
transitions from labyrinthine patterns to spiral turbu-
lence [7]. We conclude in Sec. V with a discussion of
further possible implications of this work.

II. THE DYNAMICS OF FRONT TRANSITIONS

To study &ont transitions we consider the simpler case
of a nondiffusive v field, b = 0, in one space dimension,
x, and assume first a symmetric system, ap ——0, with no
external field, J = 0. We choose ai such that Eqs. (1) de-
scribe a bistable medium having two linearly stable, sta-
tionary homogeneous states: an up state, (u+, v+), and

a down state, (u, v ), where u+ ———u = (1 —ai ),
and v+ ———v = ai u+. In Ref. [3] we studied one-
dimensional f'ront solutions of (1) propagating at constant
speeds. The following is a summary of the main findings.
The system (1) has a stationary Ising front solution,

(positive speed) and to a down state invading the up state
(negative speed). Their leading-order forms for ici (( 1
are

u(x, t) = up(x —ct), v(x, t) = a, 'up(x —et+ca, ), (4)

u(z, T) = up(z) + ) c"u„(z, T),
n=1

v(z, T) = vp(z) + ) c v (z, T),
n=1

(5b)

n
C (5c)

where z = x —((T) and T = c t In terms . of the front
position, (, the normalized velocity is given by V(T) =
c (q ——c(z. We use these expansions in (1) and solve
for the corrections, ui, u2, ... and vi, v2, ..., to the fields.
At order c we obtain

(6)

where

0~i + 1 —3up
ep

Since the adjoint operator, l:~, has the null vec-
tor (up„—ep vp, ), a solvability condition leads to

ai . Solving (6) we find

[3]. To that order, the Bloch front structure difFers from
the Ising front structure in that the v Geld is translated
with respect to the u field by an amount proportional to
C.

Our objective is to derive an evolution equation for
the front velocity, C(t), near the NIB bifurcation, whose
solutions describe dynamic transitions between the two
Bloch fronts. We introduce a normalized front velocity,
V(t), such that V = 0 corresponds to the Ising front and
V = +1 to the Bloch fronts. The actual front velocity
is given by C = cV, where c is a positive constant to
be identiGed with the absolute value of the Bloch front
velocity given by (3). We derive an evolution equation
for V using asymptotic expansions in the small positive
parameter c and demanding uniform validity. We write

up(x) = —u+ tanh(u+x/K2), vp(x) = ai up(x), (2) ui ——0, v1 ——Vup . (8)

5C=+ 2 (e, —E)
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They correspond to an up state invading the down state

connecting the up state at x = —oo to the down state
at x = oo. This front solution exists for all e ) 0. For
e ( e, = a1 two additional Bloch &ont solutions appear,
propagating at velocities

At order c we obtain

( v2 j (—6'iaivi —Vvi

Solvability of (9) yields ei ——0 and the solutions

1 2 1 2 2
u2 ———aiV zup„v2 ———V zup + aiU up, . (10)
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Finally, at order c

~
l

us —Vu2,
g v3 v1 1' Vv2 + o1 E2v1 )

Solvability of (ll) gives the evolution equation for the
front velocity;

V~ = pV(l —V ), Ec) (12)

where p, = ail~2l and e2 = f: up up 2z/ f u2p, —
—2u+/5. Equation (12) reproduces the Ising and the
Bloch front solutions of (1) as constant speed solutions
with V = 0 and V = +1, respectively. Since ~ = e

le2lc +O(c ), the Bloch front velocities, C = +c, coincide
with (3). Equation (12) also contains information about
the stability of these solutions (for e & e, ) with respect
to Galilean boosts; the Ising front is unstable and the
Bloch &onts are stable.

Next, we consider the nonsymmetric case, ap g 0, with
constant advective perturbation 3 = Jx. For simplicity
we take o,p ——c o;p and J = c I, where np and I are of
order unity. The order parameter equation now reads

In a range of I values, I;„(ap) & I & I „(ap), M(V)
is a double well potential. The wells at V = V ( 0
and V = V+ ) 0 pertain to Bloch &onts propagating
to the left and to the right, respectively. Decreasing I
below I;„causes the well at V+, or the Bloch front that
propagates to the right, to vanish. Since the dynamics are
gradient, convergence to the well at V = V follows. This
amounts to a transition from a Bloch front propagating
to the right (upper branch in Fig. 1) to a Bloch front
propagating to the left (lower branch in Fig. 1), induced
by the advective perturbation J.

We have considered the case b = 0, which is simpler for
analysis, and showed that a perturbation driving a given
Bloch front branch past its end point induces a transi-
tion to the other Bloch front branch. In the following
sections we consider the more general case, h g 0, by
studying constant speed &ont solutions for parameters
satisfying h/e )) 1. The analysis culminates in velocity-
perturbation relations valid both near and far from the
NIB bifurcation, but does not contain the information
about the dynamics of &ont transitions derived in this
section. Numerical results, however, indicate that the
same dynamical behavior holds for 8' j 0 as well; a front
transition is induced when a given front reaches the end
point of a velocity branch.

Vz ——pV(l —V ) + vo.p+ I, —2 1

Gi

where v = ~ . One immediate result from (13)~2a1(a1 —jL)
'

is a multivalued relation, of the form shown in Fig. 1,
between the constant velocity of a &ont and the advective
perturbation I (or J). Additionally, Eq. (13) describes
a gradient flow [despite the nongradient nature of (1)]
derivable &om the potential

III. SPIRAL BREAKUP INDUCED BY AN
ADVECTIVE FIELD

Cp

q'(Cp + 4g'q')'~'
Qp

g2

Eliminating vy we get the following implicit relation for
the front velocity [3,12]:

Cp ——E(Cp, g),

E(X,Y) = 3X +C~2q2(~2+ 4q2y2)i)2 (14)

where q2 = e8, q2 = ai+1/2, and C = ~', . A graph of
Cp vs q (or Cp vs e at constant 8) yields a NIB bifurcation
diagram valid at any distance from the bifurcation point
as long as b/e )) l.

Equations (14) can be used to find a relation for the
front velocity C in the presence of a constant pertur-
bation j. Consider a planar front solution of (1), with
3 = Jk, propagating at a constant velocity C in the x
direction. It satisfies the equations

(15a)

The earliest observations of spiral breakup in chem-
ical reactions occurred in open cells containing the BZ
reagents [5]. Convection in the form of Benard cells,
induced by evaporative cooling of the free surface, ini-
tiated processes of spiral breakup and spiral wave nucle-
ation that destroyed the order of the preexisting chemical
pattern. We do not attempt a complete description of
this system. Instead we use a simplified model, including
what we believe are the essential ingredients responsible
for this behavior (see discussion at the end of the sec-
tion). We consider Eqs. (1) in two space dimensions near
the NIB bifurcation, assume b/e )) 1, a condition nor-
mally met in experiments on the BZ reaction, and take a
time independent advective Geld with hexagonal spatial
structure (to model the convective Benard cells).

Before simulating Eqs. (1) with a hexagonal advective
Geld, we derive the relation between the front velocity
and a constant advective field J for b/c )) 1. This rela-
tion will help us to identify conditions leading to spiral
breakup. In Refs. [3,12] we studied the NIB bifurca-
tion for b/e )) 1 in the absence of an advective field
(J = 0), using a singular perturbation approach (see also
Ref. [13]). In this parameter range the spatial variation
of the v Geld is on a scale much longer than that of u. In
the narrow front region where the variation of u is of or-
der unity, v is approximately constant. Solving (1) (with
J = 0) in this inner region yields the relation

3
Cp ——— vy)

2

between the front velocity, Cp, and the (small) constant
value, vy, of the v field at the front position. Away from
the narrow front region the u field is enslaved to the v
field, u = u~(v), where u~(v) solve u3 —u —v = 0.
Solving (1) (with 3 = 0) in the outer regions on both
sides of the front and matching the solutions at the front
position yield another relation between Cp and vy,
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FIG. 3. The relation between the front velocity and the
advective Beld for the parameters used in the spiral breakup
simulation shown in Figs. 4 and 5.

lower branch. These local transitions nucleate a spiral-
vortex pair for each hexagon (Benard cell) the stripe
crosses. These nucleation processes are evident in Figs.
5 (crossings of the u and v zero contour lines) which pro-
vide closer looks at the processes occurring in Figs. 4.
Portions of the leading front that undergo front transi-
tions eventually annihilate with the trailing front, break-

ing the stripe into disjoint pieces. Note that the trailing
front does not undergo front transitions because the ad-
vective Geld is not strong enough to drive fronts on the
lower velocity branch to its end point.

The actual experimental situation is more complex.
The system is three dimensional (the flow at the bot-
tom is in the opposite direction to the flow at the top)
and we have ignored possible feedback e8'ects of the re-
action on the advective field. The mechanism described
above can therefore account only for the initial spiral
breakup behavior and not for the asymptotic state. We
have also considered a bistable medium while the exper-
imental system is excitable, but we expect excitable sys-
tems to exhibit similar qualitative behaviors. The front
structures that appear in excitable systems coincide with
those in bistable systems, to leading order in e (( 1, and
we may expect them to undergo an instability analogous
to the NIB bifurcation. Since single front structures do
not exist in excitable systems we should rather look at
the behavior of front pairs or pulses. Indeed, the NIB bi-
furcation in bistable systems leads to a pulse instability
that has a close analog in excitable systems; depending
on the value of b, traveling pulses in both systems either
collapse or develop into breathers as e is increased past
a critical value [3,14,15].

IV. VORTEX NUCLEATION AND DOMAIN
SPLITTING INDUCED BY CURVATURE

So far we studied the efFects of an extrinsic perturba-
tion in the form of an advective field. Even without ex-

—,gl

FIG. 4. Breakup of a spiral wave induced by a hexagonal
advective pattern. The light and dark regions correspond to
down and up states, respectively. The dotted curves denote
contours of constant advection speed. The convection Bow
direction is outward from the centers of the hexagons. Frame
a is the unperturbed spiral wave and frames b, c, d are taken
at times t = 100, 140, 220 from the onset of the advective
pattern. Parameters used: ao ———0.1, aq ——2.0, e = 0.032,
b = 0.9, A = 1.59, and Q = 0.062 83.

FIG. 5. A closer look at a typical breakup process in Fig.
4. The thick (thin) lines are contours of u = 0 (v = 0).
The direction of front propagation follows from the rule that
the v = 0 contour always lags behind the n = 0 contour. The
frames a, b, e, d pertain to times t = 140, 160, 180, 200. They
show a local front transition, accompanied by the nucleation
of a vortex pair (the crossing points of the contour lines), and
the breakup of the up state domain. Parameters are the same
as in Fig. 4.
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0
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FIG. 6. The relation between front velocity and curvature
for the parameters used in the spot splitting simulation shown
in Figs. 7.

trinsic perturbations there exist intrinsic factors, such as
curvature and f'ront interactions, that affect planar front
propagation. We now address the effect of curvature near
a NIB bifurcation. In Ref. [7] we have found the follow-
ing relation between the normal velocity of a front, C,
and its curvature, K:

FIG. 7. Spot splitting induced by curvature variations.
The frames a, 6, c, d pertain to times t = 80, 240, 280, 340.
Local front transitions occur at the Hatter portions of the
expanding front. They are accompanied by nucleation of vor-
tex pairs, and followed by spot splitting. Parameters used:
ao ———0.15, aq ——2.0, e = 0.014, b = 3.5.

C = F(C+8K, q) —K,

where F is given by (14). Graphs of C vs K deep in
the Bloch regime, near a NIB bifurcation, and deep in
the Ising regime, are shown in Figs. 2(d), 2(e), and 2(f),
respectively. A comparison of these figures with Figs.
2(a)—2(c) indicates that the multivalued dependence de-
picted in Fig. 1 is a general feature of front dynamics
near a NIB bifurcation. Perturbations of difj'erent na
ture, curvature, and an advective field in this case, can
have the same eject of inducing front transitions.

Recently, an intriguing pattern formation phenomenon
has been observed in numerical and laboratory experi-
ments [6,16]. An expanding chemical spot was found to
lose its circular shape and split into two spots. New-
born spots followed the same course of events eventually
filling the reaction domain. We suggest that spot or do-
main splitting can result from dynamic front transitions
induced by curvature variations. Imagine a C vs K re-
lation in which the upper branch terminates at a small
positive curvature value, K ) 0, as depicted in Fig. 6.
The leading front of an expanding disklike domain cor-
responds to the upper branch (an up state invading a
down state). As the domain expands the front curvature
decreases. When it falls below K+, the critical curva-
ture pertaining to the edge of the upper branch, a front
transition occurs. As a result the domain stops expand-
ing and begins shrinking. We have verified this scenario
numerically using a circularly symmetric version of (1)
(with J = 0). Two-dimensional realizations of disklike
domains are never perfect; there are always Batter parts

of the front which undergo the transition erst. Like in
the case of advective perturbation, these local front tran-
sitions nucleate spiral vortex pairs and lead to domain
splitting as shown in Fig. 7 for an initially oval-shaped
d.omain.

The transition from labyrinthine patterns to spiral
turbulence found in [7] follows from a similar velocity-
curvature relation except that the upper branch termi-
nates near zero or at negative curvature values. In that
case the mechanism that drives the lead. ing front past
the end point is the transverse instability which produces
segments with negative curvature.

V. CONCLVSION

We have shown a few examples of local front transi-
tions induced by extrinsic or intrinsic perturbations near
a NIB bifurcation. Such transitions are accompanied by
the nucleation of spiral vortex pairs, bounding the front
segments that underwent the transitions. The spiral vor-
tices can be viewed as "front" structures along the front
line where the v field goes from a positive value (pertain-
ing to one Bloch front) to a negative value (pertaining to
the other Bloch front), and vice versa. The nucleation of
spiral vortices is followed by domain splitting or breakup
as Figs. 5(c) and 5(d) and 7(b)—7(d) show. We note that
domain breakup is not a necessary outcome of spiral vor-
tex nucleation. It occurs when the speed at which two
fronts approach one another is high enough relative to the
rate of diffusive dissipation of v in the region bounded by
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the fronts. Then, the &onts can approach one another to
within a distance of ord.er unity where diffusive dissipa-
tion of u becomes effective and can annihilate the fronts.
This is usually the case near the NIB bifurcation and
beyond it (i.e., in the Bloch regime).

The ideas presented in this paper may explain many
more observations. Most recently Taboada et al. re-
ported experimental observations, in the BZ reaction, of
circular wave breakup phenomena induced by an electric
field [8]. They also studied the two-variable Oregona-
tor model with an advective term and numerically repro-
duced the experimental results. Among their findings is
a monotonically increasing relation between the critical
electric current amplitude (the advective field) needed
for wave breakup and the "excitability, " 1/e. This find-
ing can be understood once we consider the change in
the C — J relation near the NIB bifurcation as 1/e
is increased. As Figs. 2(a)—2(c) imply, the critical J
value, J+(e) ( 0, at which the upper velocity branch
terminates, increases in absolute value as we go farther
into the Bloch regime or increase 1/e. In other words,
a stronger field J is needed to cause front transitions
(and consequently breakup) as the excitability (I/e) is
increased.

The onset of breathing motion in pulses near the NIB
bifurcation [3,14,17] can also possibly be interpreted in

terms of dynamic front transitions. In this case the tran-
sitions are induced by intrinsic &ont interactions that
become significant as two fronts approach one another.
A multivalued front velocity relation as depicted in Fig.
6 with the horizontal axis replaced by the reciprocal dis-
tance between the fronts can account for a breathing mo-
tion. Such a relation has not been derived yet.

We have studied an activator-inhibitor type reaction
diffusion model but we expect the basic results to be ap-
plicable to other systems undergoing a NIB bifurcation.
These include periodically forced oscillatory reactions [1]
and liquid crystal systems [4].
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