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Role of initial conditions in the classification of the rule space of
cellular automata dynamics
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In the qualitative classification of cellular automata (CA) rules by Wolfram [Rev. Mod. Phys. 55,
601 (1983)],there exists a class of CA rules (called class 4) which exhibit complex pattern formation
and long-lived dynamical activity (long transients). These properties of class 4 CA s has led to the
conjecture that class 4 rules are universal Turing machines, i.e., they are bases for computational
universality. We describe the embedding of a "small" universal turing machine, due to Minsky
[Computation: Finite and Infinite Machines (Prentice Hall, Englewood ClifFs, NJ, 1967)], into a
cellular automaton rule table. This produces a collection of (k = 18, r = 1) cellular automata, all
of which are computationally universal. However, we observe that these rules are distributed among
the various Wolfram classes. More precisely, we show that the identification of the Wolfram class
depends crucially on the set of initial conditions used to simulate the given CA. This work, among
others, indicates that a description of complex systems and information dynamics may need a new
framework for nonequilibrium statistical mechanics.

PACS number(s): 05.20.—y

I. INTRODUCTION II. THE %WOLFRAM CLASSES

Recently, cellular automata have become paradigms
for complex "lifelike" systems. Among other things, they
provide an ideal substratum to simulate artificial, biolog-
ical environments [1]. In this sense, they might provide
a suitable, abstract setting for discussions of biological
complexity.

In this paper we investigate the connection between a
certain class of cellular automata (CA) (technically called
class 4) and the notion of uiuversal computation. Our
main result is that the CA rule-based classification pro-
posed by Wolfram seems to be inadequate. Any quantita-
tive classification scheme would have to take into account
the space of initial configurations. We believe that this
phenomenon may have implications for nonequilibrium
statistical mechanics.

Our paper is organized as follows. In Sec. II we collect
for completeness the definiton of a cellular automaton
and the Wolfram classes. In Sec. III, we briefly review
the studies of Langton et al. on the connection between
cellular automata and phase transitions in statistical me-
chanics. Section IV contains a brief review of universal
Turing machines (UTM) as well the construction of Min-
sky's "small UTM. " Section V contains the main result.
We then conclude with some observations and remarks.

Cellular automata (CA) are discrete (both in space and
time) dynamical systems. More formally, consider vari-
ables sitting at the sites of a one-dimensional lattice. The
variables take values &om a finite set S. The evolution of
the CA proceeds through discrete time steps by a local
rule, which is specified by the function

t+1 gf t t tz, = f(z, .. .z, , . . . , z+„),
where x,. denotes the value of the variable at the lattice-
site i at time t. A CA whose lattice variables take one
of k possible values and whose evolution rule depends on
at most r neighbors of a given site is called a (k, r) CA.
Moreover, one isolates a special state 8 in S, called the
quiescent or stable state, as the one that is preserved by
the evolution, i.e. , f(s, . . . , s) = s. All CA's considered
here have a stable state The fu. nction f specifying the
CA rule is conventionally called the rule table, the (2r +
1)-tuple (z, „.. . , z;+, ) is called a template.

The qualitative features of the space of CA rules can
be studied by observing their space-time histories ob-
tained by the evolution of cellular automata on a com-
puter. Such studies were made by many authors, in par-
ticular, by Toffoli [2], Wolfram [3, 4], Margolus [5], and
Vichniac [6]. Wolfram isolated four qualitative classes of
behavior (now known as the Wolfram classes). They are
as follows.
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(1) Class 1 evolution leads to a homogeneous (sta-
ble) configuration.

(2) Class 2 evolution leads to periodically repeating
patterns, in a largely quiescent background.
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(3) Class 3 evolution leads to "chaotic" patterns,
created by rapidly changing states of any given lattice
site.

(4) Class 4 evolution leads to complex patterns,
generated by mobile interacting structures which are rel-
atively long lived.

To obtain a feel for the qualitative aspects of the clas-
sification we suggest that the reader consult the large
number of space-time histories given in [3, 4]. It is im-
portant to note that this classification is based on the
evolution of a given rule from a randomly chosen ini-
tial configuration. Wolfram further conjectured that the
rules belonging to class 4 possess the capacity to perform
universal computation [4]. For a precise definition of the
notion of universal computation see Sec IV.

III. PHASE TRANSITIONS AND CLASS 4

There have been numerous attempts in the past few
years either to provide a quantitative basis for Wol-
&am's classification or to propose alternative classifica-
tion schemes. We note two such attempts. The first
is due to Cullick and Yu [7, 8], who have tried to use
a computation theoretic approach as a basis for classi-
fication. It is a remarkable fact that their classification
coincides with Wolfram's for the (k = 2, r = 2) totalistic
CA's [7]. An important fact, which is of relevance to our
discussion, is that in this classification all CA s which are
computationally universal belong to class 4. In this clas-
sification, the diferent classes are statements about all
initial conditions for the given rule.

The other attempt at trying to provide a quantitative
understanding of the Wolfram classes that we would like
to discuss is due to Langton and co-workers [9, 10], who
made a statistical study of the rule spaces of various (k, r)
CA rules. They used various information theoretic quan-
tities like the Shannon entropy and mutual information.
For definitions of Shannon entropy and mutual informa-
tion see, for example, [11]. In what follows, we briefly
describe this work. For details, we refer the reader to the
original sources.

For a given rule table, Langton introduced a param-
eter, A, defined as the fraction of templates in the rule-
table which are mapped to a nonquiescent state. It is
intuitively quite clear that rules with a low value of A

(close to 0) belong to either class 1 or 2, while those
with a high value of A (close to 1) belong to class 3. The
"complex" class 4 rules are expected to occur at interme-
diate values of the A parameter. Consider a collection of
randomly generated rules, one at each value of A, span-
ning the interval [0, 1]. We will call such a collection a
lambda string. If we now think of the rule space as an
abstract space where each point represents a CA rule,
then a particular lambda string might be thought of as a
curve through the rule space. What Langton noticed was
that, while along most curves (or equivalently, lambda
strings) the transition from class 2 rules to class 3 rules
was discontinuous (sharp), there did occur some curves
in the rule space along which the transition &om class
2 to class 3 was smooth. These curves in fact "passed

through" class 4 rules. In more quantitative terms, the
Shannon entropy, when calculated over lambda strings of
the former type, showed a jump at some value of A (which
depended on the chosen string), from values quite close to
0 to values near 1. The value of the mutual information
at difFerent points on such curves did not difFer substan-
tially &om 0. However, for lambda strings of the latter
type, the entropy showed a relatively smooth transition
&om values near 0 to values near 1. The mutual informa-
tion, on the other hand, showed a sharp peak for these
lambda strings. Langton concluded that the structure of
the rule space appeared to be as follows.

There is an "ordered phase" of class 1 and 2 CA rules,
separated, in general, &om the "disordered or chaotic
phase" of class 3 rules by a "first order" transition. How-
ever, in the vicinity of this phase boundary lie pockets
of "complex" class 4 rules. If the rule space is traversed
across these pockets of complex rules, the order-to-chaos
transition is a "second order" transition.

The order of the phase transition is to be understood,
by treating the Shannon entropy in analogy with the
usual entropy in statistical mechanics and the mutual
information, with the derivative of the entropy.

IV. MINSKY'S "SMALL" UTM

We brieBy review here the definition of a Turing ma-
chine. For details, the reader may refer any standard text
on computation theory, such as [12, 13].

A Turing machine (TM) consists of a "head" which
moves along an infinite "tape" consisting of cells. The
cells on the tape can each carry a symbol from a finite
set Q. There is a special symbol in Q called the blank.
Initially, all except for a finite number of cells on the tape
carry the blank. The head of the TM, on the other hand,
can exist at each instant in one of a finite number of states
chosen from some finite set T. T contains a special state
called the start state. Initially, the head of the TM is
in the start state. At a given instant of time, the head
resides at a particular cell on the tape. Depending on
the tape-symbol that is "read" by the head and also on
the particular state that the head is currently in, the
following transformations are allowed.

(1) The present tape symbol may or may not be altered
to a new symbol.

(2) The present head state znay or may not be altered
to a new state.

(3) The head will move one cell either to its right or
left, or else the TM will halt.

The definition of a particular TM consists in specifying
Q, T and the state-symbol transition table.

As was mentioned before, the tape of the TM would
initially have all cells "blank" except for a finite number.
These nonblank cells can be thought of as encoding the
"program" or "algorithm" which controls the evolution
of the TM. A universal Turing machine (UTM) is de-
fined to be a TM which can simulate any other TM, if
supplied with an appropriate program which encodes the
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description of the TM to be simulated.
We now give the description of a four-symbol, seven-

state UTM due to Minsky [12]. The set of syznbols
is Q = (qp, qi, qq, qs) and the the set of states is T
(tp tl t2 t3 t4 t5 ts ). qp denotes the blank symbol, while
tq is the start state. The transition table for this TM
is given below (see Table I). If the combination of the
tape symbol and the head state at a particular instant
is (q;, tg), the corresponding entry in the table gives the
appropriate transformation for the TM. Here r denotes
"move to the right, " l denotes "move to the left, " while
h, denotes "halt. " The proof that this TM is indeed com-
putationally universal can be found in [12].

V. UNIVERSAL COMPUTATION AND CLASS 4

Universal computation is, by definition, the domain of
performance of a universal Turing machine. A univer-
sal cellular automaton (UCA) is one which simulates, at
every time step, a UTM. A CA which has been proven
to be universal is the well known Game of Life, due to
Conway [14]. In general, it is difEcult to decide whether
a given CA is a UCA. It is in fact easier to construct
CA's which are universal. Small UCA's are obtained. by
"embedding" a small universal Turing machine into a
CA rule. Of these methods, which by now are quite well
known, we describe one a little later.

From the discussion in Secs. II and III, it appears that
the class 4 CA rules bring together two rather disparate
looking themes —that of phase transitions from statis-
tical mechanics and universal computation from compu-
tation theory. However, at present it can hardly be said
that the connection between these two themes is clear.

The aim of the present investigation is to provide a
somewhat better understanding of the connection be-
tween class 4 CA's and universal computation. In a sense
this work may be thought of as an effort in a direction,
complementary, to that of Langton et al. in addressing
the above question.

The idea employed in the present work is quite simple
and is as follows. Using a well-known construction of a
"small" UTM due to Minsky [12] we construct a rather
large collection of (k = 18, r = 1) CA rules, all of which
are universal. We then perform a Wolfram classi6. cation
of the CA rules within this subspace of the rule-space.
Surprisingly, one finds that even within the subspace of

UCA's there are rules which seem to belong to each of
the Wolfram classes (except class 1).

We now describe this result in greater detail. First we
demonstrate a simple and very well-known way [15] of
embedding any TM into a CA.

An embedding of a TM into a CA requires the follow-
ing.

(1) The specification of a mapping between the states
and symbols of the TM and the states of the CA, which
would allow us, at every time step, to transform a TM
tape-head configuration into the corresponding CA con-
Ggur ation.

(2) The specification of the rule table of the CA which
is consistent with the state-symbol transition table of the
TM with respect to the above mapping.

To construct the embedding, think of the CA lattice
as the tape of the TM. The lattice variables should thus
carry the tape symbols of the TM. Moreover, they should
also carry information about the position and the state
of the TM head. This can be done by introducing CA
states corresponding to the different head states of the
TM, along with the information that the head is currently
reading the cell to either its immediate right or left, spec-
ified by the symbols L, R. The map required in (1) above
can now be chosen as follows: The set of states S of the
CA consists of tape symbols as well as ordered pairs of
the head states and L or R, i.e., S = Q U (T x (L, R)).
The nuinber of CA states is evidently ~S~ = ~Q~ + 2~T~.
With this map between the CA states and the TM sym-
bol and states, it is not hard to construct a CA rule
table, with nearest-neighbor interaction, which simulates
the transition table of the TM. We can also construct
an embedding in which the CA states are just the TM
states and symbols, along with the prescription that the
"head" variable always reads the cell which, say, is to its
immediate right. This leads to a CA rule table with a
next-nearest-neighbor interaction.

To clarify the procedure described rather abstractly
above, we reconstruct some of the details now with ref-
erence to Minsky's UTM (see Sec. IV). In this case the
set of states for the CA would be (q;, (tz. , L), (tz, R) ~i =
0, . . . , 3, j = 0, . . . , 6). We now give two examples of
the evolution of the CA lattice configuration in a single
time-step. From these examples it is clear how the rule

TABLE I. The symbol-state transition table of Minsky's small UTM. The entry in the table
corresponds to the transformation that the TM will perform if the head is currently in the state
t; and is reading the tape cell containing the symbol q~. . l denotes a left move, r denotes a right
move, h denotes halt.

qp

&0

(qp tp ~)

(qi, ti, t)

(qp, tp, l)

(qi, tp, t)

(q2, t, , r)

(qp, ti, r)

(qp, tp, l)

(qg, tp, r)

(qp, t2, h)

(qp, t2, t)

(q2 t t)

(qi, t3, t)

(q2, t4, r)

(qi, tp, t)

(qp, tp, l)

(qg, t3, t)

(q2, t~, l)

(q3, t4, r)

(q2, t4, r)

(qi, t4, r)

(q3, t2, t)

(q3, t5, r)

(q2, ts, r)

(qi, t5, r)

(q2, ts, r)

(q„t„r)

(qp, tp, r)

(qp, ti, r)
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table for the CA can be constructed.
In the first example the UTM at the present time step

has symbols . . . qo q2 q~ q2. . . inscribed on the tape and
the head is in the state t4 pointing at the tape cell con-
taining qz. Prom the appropriate entry in Table 1 the
UTM evolves by changing the tape cell &om qz to q3 and
the head moves a step to the right without changing its
state. In terms of the CA this evolution could be repre-
sented as follows:

. . . qo q2 (&4 R) qi q2
. . qo q2 q3 (~4 R) q2

In the second example the UTM performs the same
evolution as in the previous example. However, in terms
of the CA it could also be represented as follows:

qo q2 ql (&4, L) q2
. qo q2 q3 (t4 R) q2 ~ ~ ~

Note, however, that this ambiguity would come into
play at only the initial time step and could be removed
by demanding that only one of the configurations, say
the one in the first example, can be a legal initial con-
figuration. After making this demand, the rest of the
CA (or equivalently the UTM) evolution is completely
unambiguous.

As a result of the prescription described above, one
obtains a large class of (k = 18, r = 1) CA's, all of which
are computationally universal. The large class of UCA's
obtained is accounted for by the fact that the embedding
does not fix all the (2r + 1)-tuples (2:~ „.. . , xf+„) of the
rule table to a unique value. Since the UTM contains
only a single "head, " the (2r + 1)-tuples which contain
only a single head state are uniquely determined by the
definition of the UTM. However, CA lattice configura-
tions which contain more than one head state are per-
fectly legal as far as the cellular automaton is concerned.
For example, the following evolution is perfectly legal in
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terms of the CA:

. . . (ts, R) q2 q] (t4, L) q2. . .
q, (4, R) q3 (&4, R) q, . . .

Although such configurations would make no sense in
terms of the underlying Turing machine, they have to
be considered while performing the Wolfram classifica-
tion. It is of importance to mention that for initial con-
figurations which contain a single head state, all rules
within the space of UCA's that we are considering have

FIG. 2. Mutual information (M) vs. A for a generic curve
in the space of UCA's. The mutual information was calcu-
lated between two cells, each of three adjoining lattice sites.
The data for computing probabilities were obtained by count-
ing the frequency of occurrence of different configurations,
between time steps 350 to 400 and further over 10 different
initial conditions. Here A is the fraction of templates not fixe
by the definition of the UTM that are mapped onto the non-
quiescent state.
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FIG. 1. Shannon entropy (H) vs A for a generic curve in
the space of UCA's. The entropy was calculated for a cell of
three adjoining lattice sites. The data for computing proba-
bilities were obtained by counting the frequency of occurrence
of different configurations, between time steps 350 to 400 and
further over 10 different initial conditions. Here A is the frac-
tion of templates not fixe by the definition of the UTM that
are mapped onto the nonquiescent state.

FIG. 3. The space-time history of a randomly generated
UCA at A = 0.1. The evolution is from a randomly generated
initial condition on a lattice of size 60 with periodic boundary
conditions. The class 2 behavior seen is consistent with the
low value of mutual information observed at this value on A

in Fig. 2.
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FIG. 4. The space-time history of a randomly generated
UCA at A = 0.45. The evolution is from a randomly generated
initial condition on a lattice of size 60 with periodic boundary
conditions. The class 4 behavior seen is consistent with the
relatively high value of mutual information observed at this
value of A in Fig. 2.

FIG. 5. The space-time history of a randomly generated
UCA at A = 0.7. The evolution is from a randomly generated
initial condition on a lattice of size 60 with periodic boundary
conditions. The class 3 behavior seen is consistent with the
low value of mutual information observed at this value of A

in Fig. 2.

the same evolution. Within the space of CA lattice con-
6gurations those which contain two or more head-states
form an overwhelming majority, and if one is to select a
(few) random initial configuration(s) as a basis of classi-
6cation, then it would invariably be one of these.

In other words, the subspace of CA lattice-
configurations which governs the behavior of any of the
UCA's as a UTM is quite distinct from the subspace of
configurations which determines the Wolfram class, to
which the UCA belongs.

In Figs. 1 and 2, we have shown the variation of
the Shannon entropy and the mutual information over a
(generic) lambda string through the subspace of UCA's.
The decay of mutual information to 0 on both sides of a
peak value suggests the wide variation in complexity of
the rules associated with the lambda string. The space-
time histories shown in Figs. 3—5 corroborate this fact.
We remark that we have de6ned A as the &action of tem-
plates of the rule table, not 6xed by the definition of the
UTM, that are mapped onto the nonquiescent state.

VI. CONCLUSIONS AND REMARKS

The main observation that emerges from our investi-
gations is the importance of initial conditions for any
study of complex systems. We point to the work of
Banks, which demonstrates the dependence of compu-
tational universality on initial conditions [16] for a two-
state automaton and proves that such an automaton can-
not be universal starting &om a uniform tape, but can be
starting &om a tape filled with a simple regular pattern.
As far as CA's are concerned, any quantitative classifi-

cation of the rule space must also, perforce, be a state-
ment about the space of initial conditions. We draw the
reader's attention, once again, to the classification due
to Cullick arid Yu [3], where the definitions of the classes
are statements about all initial conditions. Whether the
agreement of these classes, with that of Wol&am's, for
the (k = 2, r = 2) totalistic rules is a mere coincidence
or a necessity for small rule spaces remains unclear. Our
analysis shows that the subspace of (k = 18, r = 1) rules
that we have considered, which would belong entirely to
class 4 of the Cullick-Yu scheme, by virtue of their being
computationally universal, is actually distributed among
the various Wolfram classes.

Complex systems are invariably studied from one of
two diferent points of emphasis. One is the view aris-
ing out of statistical mechanics and dynamical systems,
where the emphasis is on the properties of the system ob-
served at large times, i.e., the steady-state properties of
the system. The second. view is the one that arises &om
formal studies of the computational complexity classes.
Here the emphasis is on the behavior of the system as
a function of the input. We feel that a new &amework
of statistical mechanics which incorporates the second
point of view is required to provide a better definition
for a study of complex dynamical systems.

The observations made above seem to suggest an av-
enue for further exploration. One might be tempted to
consider a scenario in which the classes are not well de-
marcated regions of the rule space, but rather, are sets
with fuzzy boundaries. The measure of fuzziness at-
tributed to the set could depend on the proportion of the
space of initial configurations on which the rules (con-
tained in the set) evolve in a complex manner.
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