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Chaos in a Coulombic mufBn-tin potential

S.Brandis
II. Institut fur Theoretische Physih, I urger Chaussee ling, M761 Hamburg, Germany

(Received 17 November 1994)

We study the two-dimensional classical scattering dynamics by a mufBn-tin potential with three
Coulomb singularities. A complete symbolic dynamics for the periodic orbits is derived. The
classical periodic trajectories are shown to be hyperbolic everywhere in phase space and to carry no
conjugate points. We further determine all quantities that are characteristic for a chaotic system
by the concept of the topological pressure.

PACS number(s): 05.45.+b, 34.80.—i, 72.10.—d

I. INTR.ODUCTION

In recent years the study of chaotic dynamical systems
has attracted a lot of attention [1]. However, there are
only a few models for which the dynamics is known to be
completely chaotic. Well defined properties like ergodic-
ity or complete hyperbolicity of the dynamics in phase
space is usually very hard to prove. Systems for which
a proof has been found are usually either Euclidean bil-
liards with nontrivial boundaries or motion on Riemann
surfaces endowed with a hyperbolic metric [1]. In con-
trast, for potentials there are hardly any examples for
which these properties can be shown rigorously.

A few years ago an outstanding work by Knauf and
Klein [2] gave an example of ergodicity in a potential
problem using rather sophisticated mathematical tools.
It treats the classical two-dimensional scattering by a
rather general potential, whose main features are n fixed
attractive Coulomb centers and a fast decay towards in-
finity. For n & 3 the system exhibits all the typical char-
acteristics of chaotic scattering. On the set of bounded
orbits the motion is proven to be ergodic (with respect
to a specified measure).

However, some open problems remain, of which we
would like to pick out the following two. For one, no-
body has actually calculated periodic orbits beyond the
proof of their existence as it turns out to be rather dif-
ficult. The periodic orbits yield a lot more insight into
the detailed properties of the classical system. Moreover,
there seems to be no path in sight to treat the quantum
mechanical problem in the general setting given by Knauf
and Klein, e.g. , an exact way to determine resonances.

We study here a slightly diferent model in order to
discuss the two above mentioned open questions. The
classical part is the content of this paper. We derive a
diferent, much simpler symbolic dynamics at the price
of giving up the smoothness and generality of the poten-
tial. The quantum mechanical treatment as well as the
semiclassical analysis will be the subject of a forthcoming
presentation [3].

A similar model is discussed also by Gutzwiller in
Chapter 20 of his book [1]. Again, no explicit results
are known. In particular, the symbolic representation is
diferent from ours, because we concentrate on periodic

II. THE MODEL

The two-dimensional Hamiltonian system we consider
is a potential scattering process. One particle scatters on
a locally fixed potential which is defined in the following
way:

V(r) = g

Z;I
R;)

for ~r s,
~

(R;—
else .

These are three distinct fixed Coulomb potentials located
on points 8, in configuration space, each being cut oK be-
yond a radius B;,i = 1, 2, 3. They do not overlap. The
strength Z; of each of the singularities is chosen to be
positive, such that the potential is purely attractive. The
constant terms —' added to each site lift the potential asR;
a whole and make it continuous. In a continuous poten-
tial, the momentum of the moving particle is continuous

orbits rather than scattering orbits which are the subject
in [1].

The paper is organized as follows. In Sec. II we discuss
the main features of the model. We show a way to find
periodic orbits in Sec. III. Moreover, we calculate all pe-
riodic orbits up to code length N = 17 and discuss some
of their statistical properties. These are, e.g. , the topo-
logical entropy, the distribution around a code length,
and the nearest neighbor spacing. Section IV is devoted
to stability properties of periodic orbits. We present a
way to determine them for any given potential and will
specify it for our case by actual calculation. The mean
Lyapunov exponent and its spread around this value are
a subject of our study as well. In Sec. V we use the
topological pressure, known in the context of the ther-
modynamic formalism [4], to calculate various quantities
characterizing the chaotic dynamics. All quantities are
determined at diferent energies, since this is not a scal-
ing parameter of the potential. We shall finish with some
concluding remarks and an outlook on the quantum me-
chanical problem.
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and thus the trajectory is a once differentiable curve in
configuration space. This is a typical muffin-tin (MT)
potential indicated by the dotted lines in Fig. 1. As we
shall be concerned with scattering, the energy is always
positive, E ) 0. One can imagine this being an idealized
molecule, where an electron scatters off the protons. In
the calculation we have chosen values for the constants
such that the energy scale in the 6gures is of the order
of eV.

Studying the solutions of the Hamiltonian system is
equivalent to studying the geodesic motion on a surface
with a metric defined via (i, j = I, 2)

(2)

changing the time to arc length [5]. The superscript ex-
presses the explicit energy dependence of the solutions,
which is a decisive difference from billiards, where the ac-
tion scales with the energy. The metric is not well de6ned
at the Coulomb centers 8; as it is infinite there, but the
time a trajectory needs to hit the center is finite. The
most natural thing is thus to "regularize" these points
and to extend the geodesic How to the singularities by
adding a backscattering orbit whenever there is a col-
lision with a center. By this construction one can use

important results of differential geometry, e.g. , we can
calculate the Gaussian curvature for this metric. It van-
ishes outside a MT and is strictly negative within,

K (r)=— Z'
3'

This is a crucial property for the chaotic behavior as we
shall see later. Note that its limit, when approaching a
singularity, is finite.

The traditional way of studying scattering is to look at
quantities like the cross section or the time-delay func-
tion. A characteristic of irregular scattering is the self-
similar structure of singularities in these quantities [6].
These are consequences of the existence of a dense set
of hyperbolic periodic orbits in phase space, which are
therefore sometimes called the "skeleton" of phase space.
As they determine the main structure, we will directly
draw attention to these periodic geodesics instead of the
scattering orbits. The meaning of these orbits will be-
come clear in Sec. V in particular.

III. PERIODIC OHBITS

To find all periodic orbits systematically one usually
needs to have a symbolic dynamics. This provides a well
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FIG. 1. The periodic orbit corresponding to the code word (1231213) for an equilateral configuration of MT s with (a) E = 8
and (b) E = 50. The inset in (a) is an enlargement of nucleus number 2 to show that the orbit does not collide. (c) shows the
same orbit in a slightly asymmetric setting (E = 50). The dashed lines encircle the regions of nonvanishing potential. In (d)
one can see how the action of this orbit changes with p, where p = 2E.
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defined enumeration and a check for completeness. We
shall first present the code by mhich the periodic orbits
(PO's) can be represented in a symbolic way. Then we
describe the algorithm that Bnds the exact positions of
the PO's in phase space.

There are two restrictions to the method applied be-
low. (1) The code is valid for energies E ) max(~&) only.
This is due to the fact that it requires the Kepler trajec-
tories to be hyperbolas. (2) The centers s; have to be
arranged on the corners of a (convex) triangle, such that
the corridors on which trajectories can move between two
MT's do not intersect. Examples are given below (see
Fig. 1). There are indications that this code can readily
be generalized to more than three centers as long as they
are placed on the corners of a convex polygon.

The code is in fact fairly simple. Giving each center
a number (1,2,3) a periodic orbit is uniquely represented
by its history in terms of the centers it passes during one
traversal. That is to say, all periodic sequences in the
space of words of the letters (1,2, 3), without repetition
and modulo cyclic permutation, represent symbolically
the set of all periodic orbits. When the Kepler trajecto-
ries are hyperbolas, a repetition of equal numbers cannot
occur, because an orbit has to touch another MT before
turning around the first one a second time. We shall now
show this one-to-one relation.

(i) For an orbit to be periodic, it has to turn around the
centers again and again. Hence, given a periodic orbit,
it has a well defined path through the MT's and thus a
single code (modulo its cyclic permutations).

(ii) Given a code one needs to show that there is only
one PO. We shall exclude for a moment the orbits col-
liding with a singularity. Since the points s; are then
excluded, tmo orbits cannot be transformed continuously
into each other, i.e. , they are not homotopic, when they
turn around the same center in a difFerent orientation at
least once during their traversal of the orbit. As the code
is fixed, we know which centers the PO passes during the
traversal. Any other orbit with this code is either (a)
homotopic to the first one or (b) topologically difFerent,
which means that it runs around one of the MT's in a
di8'erent orientation.

We can already exclude (a), since we know that the
Gaussian curvature is nonpositive, which allows only one
geodesic per homotopy class (see, e.g. , [13]). To exclude
(b) we split up the code into smaller parts and find three
diferent types of pieces a periodic code can consist of.

(1) abc , wher. e.. a, .b.,.c C (1,2, 3) and a g c.
Whether the orbit turns around b clockwise or anticlock-
wise (see Fig. 1) is fixed by the explicit numbers, because
the Kepler orbit being a hyperbola does not aBom self-
crossing after one turn. Hence given a sequence like the
one above in a code the orbit has a well defined orienta-
tion.

(2) . cabab ababc ... .in the ..f.amilia. r notation. On the
pendulumlike motion between a and b the scattering an-
gle spreads or decreases constantly because of the hyper-
bolas at each center. Thus it will not change the orienta-
tion in between, when it comes out the same way it went
in. This is the case in (2), since the last three letters are
just a cyclic permutation of the first three.

+ arcsin
~

gpR;y
(4)

It is a function of the incoming relative angular momen-
tum l;. Here 0; is the direction of the momentum before
the ith center and P; and c; are the parameters of the

Kepler trajectory
~

P, = ~&, s, = 1+ &,
"* '

~

. In all

calculations we have set the mass to 1. Note in the defi-
nition of the parameter e; that the energy is reduced here
by ~R as a consequence of lifting the potential in the be-
ginning. p is the absolute value of the Inomentum of the
free motion.

On the other hand, the relative angular momenta (rel-
ative to the appropriate MT) transform into each other
by geometrical arguments

l;+i ——l;+ ~s; —sg+i~ p sin(n;, ,+i —8;+i),

a;;+q being the angle of the vector s, —s,+~ with respect
to the x axis in a Cartesian coordinate system (see Fig.
1). Taking the inverse, we arrive at an additional, purely
geometrical condition for tmo consecutive scattering an-
gles as a function of the angular momentum

t;+i —l;
((I);+i —8,)s, ——n, ;+i —n; i; — arcsin

~

82 —sg+i] p)

(6)

For periodic orbits (and for each index i,) the functions
in (4) and (6) have to be equal. Thus the problem of
determining PO's is reduced to finding the zeros of the
difFerence of (4) and (6) in N-dimensional angular space
as a function on the N-dimensional angular momentum
space, when the length of the code is N.

In general, the problem of finding a root in an N-
dimensional system of transcendental equations can be

(3) c. .a. bab a. .b. ac .... In this case the orientation has
to change, as it comes out of the pendular motion the
opposite way it went in. But as a result of the avoided
self-crossing the turn around mill happen exactly in the
middle of the term. The pattern looks like a squeezed
ancient Greek meander.

Finally, the orbits colliding with a center have to have a
mirror symmetry in their code because of their backscat-
tering nature. In fact, every code with this symmetry is
a colliding one, which is then unique.

Given a one-to-one code with an appealing geometrical
interpretation, we can construct each periodic orbit by an
algorithm. The PO consists of pieces of free motion and
Kepler trajectories. Passing the MT with number i in
the code word, the orbit sweeps over an angle given by a
Kepler hyperbola. The scattering angle therefore is given
by conversion of the famous parametrization of a Kepler
trajectory [thus the index in Eq. (4)] plus an additional
piece coming from the impact parameter ~, when it hits
the boundary:

P, 1
(g;+r —g;)K,s = sgc(l;) (2 srcccs (——2) — —rr))

E'i
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rather dificult numerically, depending on the explicit
function. In this case, however, we find that it works
very well. We only have to keep track of the variables l,.

staying in their domain and give a good first guess for the
root. The latter can easily be constructed by the code.
This guarantees fast convergence. But even for start-
ing values far away &om the solution, we always find a
single solution, as it should be &om the above proof for
the uniqueness of the code. As an intuitive argument
one can imagine the good convergence coming &om the
monotonicity of the arc functions. We have tested this up
to code length 17, which corresponds to 16510 primitive
orbits, i.e., orbits that are traversed only once. There are
107 more when one includes multiple traversals. N = 17
is not a limit of this method, but a practical (prelimi-
nary) one, as the CPU time increases exponentially with
the code length. Figure 1 shows a typical orbit, this one
belonging to the code word (1231213). In Figs. 1(a) and
1(b) the MT's are located on an equilateral triangle and
only the energy is changed &om E = 8 to E = 50, respec-
tively. As the solutions do not scale with the energy, be-
cause the potential contains internal scales like the radius
of each MT and the distances between them, the periodic
orbits vary with the energy. However, the topologically
different orbits become geometrically very similar as the
energy rises. This gives rise to a number of nongeneric
features in quantities we shall look at in the following.
The effect of the high symmetry of the equilateral trian-
gle on the classical dynamics has been studied intensively
in the works on three disks [7]. Instead of reducing our
system to the fundamental domain to extinguish the non-
generic symmetries, we vary the positions of the MT's.
In Fig. 1(c) the angles of the triangle are slightly changed
to be 50', 60, 70', again representing the same orbit.

The number of periodic orbits N(T) with periods
below a certain period T proliferates exponentially in
chaotic systems. The topological entropy w determines
the rate of increase. That is to say that asymptotically

exp 7T
N(T) = as T m oo.

7T (7)

In our case this is strongly linked to the exponential in-
crease of the number of code words. If Z(N) denotes the
number of all primitive periodic codes of length N, it is
given by the recursion relation

Z(N) = — 2 + (—1) 2 —) m Z(m)
m, [N I

where the sum runs over all divisors m of ¹ To un-
derstand this formula, one starts by noticing that there
are 2 possibilities to create a code word (without rep-
etitions) of length N out of three letters. Implement-
ing the periodicity condition, subtracting all multiples of
smaller code words, and dividing by the number of per-
mutations N, one arrives at Eq. (8). Thus the number
of code words increases exponentially with a rate of ln2
(sometimes this is also called topological entropy of the
number of code wards). At high energies the period be-
comes essentially a multiple of the free parts of the orbit

as shown in Fig. 2. As one can see from Eq. (2) or (3)
the metric becomes nearly Bat as we go to very high en-
ergies. The pronounced staircase behavior washes out
only as one gets to longer Po's, which is a dificult re-
gion to reach numerically, or to lower energies as in Fig.
2(b). To eliminate the nongeneric staircase we destroy
the high symmetry by changing the equilateral triangle
as above. The effect on N(T) can be seen in Fig. 2(c).

To determine the topological entropy, we fit an expo-
nential to the staircase function. As we only know the
asymptotic behavior, there is a freedom in choosing the
fitting function, as long as the asymptotic behavior re-
mains the same. Experience with a lot of systems has
shown that the exponential integral Ei(x) usually leads
to a much better fit. It is defined as the principal value
of j '"~~ dt. Figures 2(a)—2(c) confirm how well this
function resembles the mean behavior, keeping in mind
that we concentrate on the asymptotic behavior.

In the case of billiards one can define an energy inde-
pendent entropy in units of the geometric length of the
periodic orbits. Here there is no such simple exact re-
lationship and we have to calculate it for each energy
separately (see Table I). Nevertheless, in the high en-
ergy region, as the geometry of the orbits hardly changes
any further, the classical action scales with /2E approx-
imately. As an example, Fig. 1(d) displays the energy
dependence of the classical action of a typical orbit. This
will have an effect especially in the semiclassical analysis
[31.

Another interesting plot is the probability distribution
p~(T) of periods for a given code length ¹ Thus we
collect all orbits to a given code length N and determine
the probability for different periods to appear. This has
already been studied in the hyperbola billiard [8]. If one
finds this distribution to approach a smooth Gaussian
for large code length (and an overlap for different code
lengths), there cannot be a minimal time AT of which
all periodic orbits are just multiples. This in turn would
prove a system [as long as it is an axiom A system (for
a definition, see [9])] to be weakly mixing and to have
the mentioned exponential asymptotic behavior of N(T)
[10,2]. Our numerical tests indicate this behavior (Fig.
2), although numerics in this context has to be viewed
with much care. For one, the statistics is rather poor to
overcome the strong geometric in6uence of the MT set-
ting and we do not reach a Gaussian by far. Furthermore,
the numerical spreading might as well be a consequence
of larger multiples of a few basic lengths as has been
pointed out by Knauf [11].

The nearest neighbor spacing (NNS) of energy levels
in chaotic systems has been the subject of many discus-'
sions in the literature (see, e.g. , [1]).By the semiclassical
trace formula there is an interesting duality between the
energy spectrum on the quantum mechanical side and the
length spectrum of periodic orbits on the classical side.
Thus it seems to be natural to ask whether the NNS
statistics of the length spectrum reveals any character-
istic features [8]. In our system we find the number of
orbits to be not enough to give stable statistics. As one
includes more and more orbits, it seems to approach a
Poissonian rather than, e.g. , a distribution of a spectrum
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FIG. 2. N(T) for the symmetric configuration at energies (a) E = 10.125 and (b) E = 50. The asymmetric case is shown in

(c) (E = 50). The dashed lines show the fit to the function Ei(rT) for which the values of ~ are given in Table I. (d) displays

the distribution of lengths for code lengths 14, 15, 16, and 17 in the asymmetric system at energy 10.125 (full, dashed, dotted,
and dashed-dot ted, respectively) .

due to an underlying ensemble of Gaussian orthogonal
random matrices. This would agree with an observation
made for other chaotic systems as well [8,12].

IV. STABILITY AND CONJUGATE POINTS

Given a periodic orbit or any other trajectory one can
calculate its stability, i.e., the linear approximation of
the motion in its vicinity. In practice one needs to find
an orthogonal (local) coordinate system, which splits the
motion into a direction parallel and a direction transver-
sal to the How. This is, in general, not a perfectly obvious
procedure. In this case a particular problem comes about
by the Coulomb singularities, such that the results ob-
tained may easily be absurd, if one is not careful enough.

The most elegant way is to return to the geodesic mo-
tion generated by g;. [2,13]. We know from differen-
tial geometry on two-dimensional surfaces that orthogo-
nal coordinates always exist, called geodesic coordinates.
The second variation of the Lagrangian on the surface
leads to the Jacobi equation for the transversal compo-
nent y of a vector field along the geodesic,

y' + K (r(s)) y = 0,

with the Gaussian curvature in (3) given in terms of the

The index i labels the corresponding MT. By the negativ-
ity of the curvature, a solution of this equation is strictly
positive, which is a manifestation of the hyperbolicity of
the orbits. Note that a solution of a difFerential equation
of this type has a constant determinant, which refIects

TABLE I. Values for 7 and A at various energies.

p= &2E
4.5

30

Con6g.
sym.

asym.
sym.

asym.
sym.

asym.

1.48
1.27
3.09
2.69
8.72
7.65

A

2.19
2.02
4.74
4.28

12.47
11.28

arclength 8 in this metric. The dot denotes the derivative
with respect to 8. To calculate the stability in phase
space we need to extend this to the 2 x 2 stability matrix
M(s) which is obtained as a solution of

M;(s) =
~ ~~ ~

M, (s) with M;(0) =
~

( 0 Il . t'I 01
( —K; 0) &0 I)

(10)
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the Liouville theorem on the conservation of volume un-
der the Qow in phase space.

The stability matrix for a periodic orbit is often called
the monodromy matrix. In our case it is a product of
those matrices that correspond to the pieces the orbit
traverses. The part for a free motion reads

a volume element in phase space. Whenever the dimen-
sion of this volume element shrinks on the trip through
the trajectory, you have hit a point conjugate to your
starting point. This is called a conjugate point. In some
direction of phase space you have crossed a trajectory
that has started at the same point, but in a diferent di-

rection. Now we return to the more technical definition
and demonstrate the absence of conjugate points in our
MT model.

Let c(s, v) be a geodesic parametrized by arclength s
Here tg„, is the time the orbit spends between two MT's.
The eigenvalues of the monodromy matrix now determine
the spreading of orbits. Since the determinant of the
monodromy matrix is equal to 1, their eigenvalues are
inverse to each other. As they are both positive, we can
write them as exponentials and remain with the stability
exponent as the only parameter, which is defined by

u(T):= ln
~

—~TrM(T)
~

+ g[TrM(T)] —4 ~, (12)
1

20

18 u(p}

14

12

10

a}

determines the celebrated Lyapunov exponent. T is the
period of the periodic orbit. These are strictly positive,
because the solution of (10) is always positive and hence
the orbits are hyperbolic.

The diferent features of energy dependence in the
length spectrum manifest themselves in a similar man-
ner in the Lyapunov or stability exponents. Figure 3(a)
shows that the stability exponent becomes to a good ap-
proximation energy independent for large energies. It
depends almost linearly on the period, where the spread
around the mean widens as the energy decreases or the
symmetry is destroyed [Fig. 3(b)]. Figure 3(c) displays
the distribution of Lyapunov exponents around their
mean in the most generic case, which is the asymmet-
ric configuration at low energies. The arithmetical mean
of the Lyapunov exponents A~ is always larger than the
topological entropy as can be seen. in Table I, a typical
feature for scattering systems. This plays an important
role for the question of convergence of the semiclassical
trace formula [14]. The index K states that we have
taken the mean over all Lyapunov exponents up to code
length N and A:= lim~~~ AN.

Not quite as vital for the classical discussion, but es-
sential in the context of semiclassics, are the so called
conjugate points. The number of conjugate points along
a periodic orbit determines (if there are no further reflec-
tians an hard walls) the Maslov indices in the Gutzwiller
trace formula [15].

Conjugate points can be understood in many ways.
Further on we are going to sketch a proof for the fact
that in this system there are no conjugate points along
periodic orbits. For this purpose we present a picture of
conjugate points that is closely linked to the reasoning
of the proof. Imagine you are sitting on a trajectory in
configuration space and start with various directions of
the initial momenta. This fan of trajectories then spans

I
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FIG. 3. Stability exponents (a) as a function of the momen-
tum and (b) plotted against the period length (for E = 10.125
in the asymmetric case). (c) shows the distribution of Lya-
punov exponents around their mean for the same setting.
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TABLE II. Dynamical quantities read off from the topo-
logical pressure in Fig. 4, corresponding to the asymmetric
case.

A

I'

~KS
&e
Dr

4.5
1.27
2.02
0.64
1.81
1.14
2.27
2.25

10
2.69
4.30
1.62
4.29
2.68
2.26
2.25

30
7.60

11.32
3.65

11.18
7.53
2.35
2.35

where the average ( )p is defined by

exp ( PA~T~—)
1 . 1 T(T~ &T+b

P &~~ T N(T + h) —N(T)

n(T) - exp( —I' T),
and I' is called the escape rate [7]. It is given here byI:=—P(1). In this case the Kolmogorov-Sinai entropy
is determined by

hKg ——A —I'. (20)

P(P) is monotonic and convex in general [4]. This
leads to inequalities of the form A & A and 6K'
In our case the topological pressure is nearly linear, a
feature that has been observed for the three- and four-
disk system as well, such that A = A and 6K' —7.

and the limit is said to be independent of b [17]. N(T)
is just the staircase function of Eq. (7). From this
representation one can see after some calculation that
P'(0) = —A. Thus we have determined r and A by two
independent methods (cf. Secs. III and IV) and find very
good agreement by comparing the values in Tables I and
II.

A chaotic system produces information: Two initial
conditions that are practically indistinguishable separate
into two completely different states under the time evo-
lution of the system. This is a consequence of the ex-
ponential divergence of two neighboring trajectories. A
measure for this gain of information is the Kolmogorov-
Sinai entropy hKs (for an exact definition, see [18]). For a
bounded system, it is linked to an average over Lyapunov
exponents by hKs = A, where A:= —P'(1) [this average
is more complicated than the arithmetical mean as one
can see from the definition in Eq. (17)]. For an unbounded
system, one has to take into account the number of or-
bits leaving the interaction region. They are "lost" for
the growth of information. In chaotic systems the pro-
portion of particles n(T) that remain in the interaction
region after the time T decays exponentially, i.e.,

Another interesting and often discussed quantity is the
fractal Hausdorff dimension DH. It measures in a certain
sense the fraction of phase space occupied by the strange
repellor. We find it here via the root of the pressure,
P(d~) = 0, where D~ = 2d~ + 1. In bounded chaotic
systems with two degrees of freedom, where the escape
rate I' = 0, such that d~ ——1, the repellor fills the whole

phase space (DH = 3). In our case the repellor is re-
stricted to a fraction of the interaction region (see Ta-
ble II). A similar measure is the information dimension
Dy ——2dp + 1, which is given by dp ——" '. From the
above inequalities we have Dy & D~ as is confirmed in
Table II.

There is an obvious trend in the data of Table II from
lower to higher energies. The topological entropy rises
almost linearly with the momentum of the free parti-
cle. This is, however, somewhat misleading. The strong
proliferation of orbits does not reflect that the system
becomes "more chaotic. " The increase in energy leads
to shorter times of the periods, such that more orbits
have accumulated below a fixed time T. Similarly, the
escape rate reflects the fact that a particle escapes faster
at higher energies. Somewhat surprising is the behav-
ior of the Hausdorff dimension. There does not seem to
be an overall trend, although intuitively one might ex-
pect the fractal dimension to shrink as the orbits tighten
closer to the triangle of MT's. But as it is a measure in
phase space, one needs to take into account the momen-
tum dimension, which increases as the trajectories get
closer to the centers of the MT's, where the momenta
become large due to the Coulomb singularity.

VI. CONCLUSION

We have studied the classical scattering dynamics of a
MT potential consisting of three Coulomb singularities.
We find an exponential proliferation of hyperbolic peri-
odic orbits using a complete symbolic dynamics. The
rather old and well known analogy to differential geome-
try proves to be very handy in studying potential prob-
lems in general, especially for the calculation of the sta-
bility exponents. The geometry of the system has a large
effect on the length spectrum in the limit of high energies.
By calculating the topological pressure, we could deter-
mine all relevant quantities to characterize the classical
motion.

Although the nonscaling behavior of the potential com-
plicates the situation compared to a billiard at first sight,
the completely defocusing nature of the potential facil-
itates it in other respects, e.g. , all Lyapunov exponents
are positive and there are no conjugate points. This will
have an impact on the semiclassical discussion, which is
our ultimate interest. The quantum mechanics and its
semiclassical approximation will be the subject of the
above mentioned forthcoming presentation [3].
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