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We illustrate a dynamic approach to statistical mechanics based on a procedure which reverses the
standard approach to the Fokker-Planck equation (FPE). Rather than using statistical mechanics,
derived from thermodynamics along the lines pioneered by Boltzmann [L. Boltzmann, Wiss. Ber.
58, 517 (1868)], we derive a FPE for a set of variables of interest interacting with a booster, i.e.,

a dynamical system mimicking the action of an ideal thermostat with no need of ad hoc statistical
assumptions. We derive a mechanical expression for the temperature of the system of interest, which
is proven to be a generalization of the one proposed by Boltzmann; in the case of boosters with
a limited number of degrees of freedom, it is shown that our de6nition depends also on dynamic
properties, which are not accounted for by the "standard" approach.

PACS number(s): 05.70.—a, 05.45.+b, 05.20.—y

I. INTR. (3DUCTION

The purpose of this paper is to synthesize a number
of separate results that have been obtained in the past
few years and show how they provide a single coherent
view of the mechanical basis of thermodynamics. This
goal for statistical physics is shown to be a consequence
of the existence of chaotic solutions to low-dimensional
nonlinear dynamical equations and the linear response of
ensembles of such systems to external perturbation.

The linear response theory (LRT) is a key ingredient
of the view here illustrated; this establishes a connec-
tion between the proposed theoretical approach and an
issue, the microscopic foundation of the LRT, which has
been the subject of a revival of interest in the last few
years [1—7]. The main result of this research work has
been that the trajectory instability, responsible for the
breakdown of the linear response of a single trajectory
to a perturbation, turns out to be the physical source
of a linear response at a statistical level. In the spe-
cific case of Hamiltonian systems in a continuous time
representation, the linear response is shown [6,7] to take
the form of Kubo-like theoretical predictions [8,9]. How-
ever, the work of Kubo [8] rests on the assumption that
thermodynamics as well as ordinary statistical mechan-
ics holds true, rather than using only dynamical prop-
erties of Hamiltonian systems. Since its formulation [8]
the Kubo theory has been widely used in the field of

condensed matter physics and it is thought that systems
obeying ordinary statistical mechanics follow closely the
theoretical predictions of this theory. The present paper
confirms this close connection between LRT and ordinary
statistical mechanics, by reversing, in a sense, the usual
procedure, in that it proves that, if possible, a rigorously
dynamical formulation of LRT [6,7] leads to a dynamical
derivation of statistical mechanics, and thermodynamics
as well.

As a further significant achievement of the approach
illustrated in the present paper, not only do we derive
the Boltzmann principle from dynamical arguments, but
this principle is arrived at in a generalized form, which
reduces to the ordinary version on increasing the number
of degrees of freedom of the system. This means a de6ni-
tion of temperature which difFers from the conventional
one due to the dynamical corrections which tend to van-
ish when the number of degrees of freedom is increased.

To properly place our theoretical proposal within the
context of the current literature on this subject, we re-
fer the reader to the scheme of Fig. 1. With the help of
this diagram, let us erst illustrate the conventional ap-
proach of many textbooks on equilibrium statistical me-
chanics [10,11],corresponding to the left column of Fig. 1.
It is assumed that the equilibrium distribution of a given
Hamiltonian system is microcanonical. In textbooks on
statistical mechanics written before chaotic dynamics was
investigated [10], this connection is assumed with no dy-
namical derivation and for this reason is here indicated
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FIG. 1. Diagrammatic view of the standard approach to
thermodynamics (left) and of the approach to thermodynam-
ics presented here (right): for details, see text.

S = kii ln A(E),

which establishes a connection between the area A(E)
of the phase space explored by the system in a micro-
canonical state and its entropy S, and consequently with
thermodynamics. This principle is usually supplemented
by the assumption that the system has an extremely large
number of degrees of freedom. This defines the path to
thermodynamics shown in Fig. 1 as (ag) or (ls), accord-
ing to whether the condition of microcanonical equilib-
rium is assumed or derived &om dynamics.

The latter possibility to derive thermodynamics, il-
lustrated by the paths (a, ) or (1,), is again based on
the assumption of an infinitely large number of degrees
of freedom. Under this condition, the microcanonical
equilibrium distribution is proved to be essentially in-
distinguishable from the canonical equilibrium. In other
words, the microcanonical condition of equilibrium, sup-
plemented by the condition that the system has a large

by the broken line (a). In more recent textbooks [11],re-
flecting the conceptual revolution provoked by the recog-
nition of the importance of chaos, the microcanonical
equilibrium distribution is given as a consequence of mix-
ing [12]. In other words, classical mechanics and mixing
imply a microcanonical equilibrium distribution, which,
consequently, has a dynamical derivation. This approach
is indicated by path (1) connecting classical mechanics
to the microcanonical equilibrium distribution.

We have now two distinct ways to derive thermody-
namics. The former refers to the pioneering proposal of
Boltzmann [13], mentioned in the textbooks of the pre-
chaos era [10]. This is the Boltzmann principle,

number of degrees of freedom, implies the canonical equi-
librium distribution, and this is enough to derive thermo-
dynamics. On the issue of how to derive thermodynamics
from the canonical equilibrium distribution, the reader
can refer to a recent report by Mackey [14]. We thus
arrive at the thermodynamical level through either the
path (a,) or (1,), according to whether the microcanon-
ical condition is assumed, or derived from dynamics. In
conclusion, as originally pointed out by Khinchin [15],we
can establish a connection between mechanics and ther-
modynamics without using the Boltzmann principle, and
only using the canonical equilibrium distribution to de-
rive thermodynamics. What about the Boltzmann prin-
ciple'? Without assuming the Boltzmann principle, after
reaching the thermodynamical level by the joint use of
the microcanonical distribution and of a large number
of degrees of freedom, the Boltzmann principle is simply
shown to be true [16]. This approach to thermodynamics
is denoted by the paths (a, ) and (1,) in Fig. 1.

We now illustrate the newer approach to thermody-
namics proposed herein, and corresponding to the right
part of the diagram shown in Fig. 1. Working from the
bottom of the diagram, let us focus our attention on the
box labeled nonequilibrium statistical mechanics. This
indicates that we derive the canonical distribution neces-
sary to found thermodynamics according to the indica-
tions of [14] as the equilibrium state of a Fokker-Planck
equation (FPE). This FPE is derived &om the top of the
diagram by means of a deterministic derivation of Brown-
ian motion along the lines established in earlier papers of
Bianucci et al. [17—19],which are concisely reviewed here.
The derivation of this FPE is carried out by using only
dynamical properties and no ad hoc statistical assump-
tions on the existence of Inacroscopic thermodynamics.
We proceed as follows. First of all we divide the set of
variables of a given system into two groups, the former
including the variables of interest, or macroscopic vari-
ables (system of interest), and the latter the irrelevant,
or microscopic, variables (booster) [17—19]. The coupling
between the variables of interest and the irrelevant ones is
expressed by a Hamiltonian interaction, whose strength
is kept under our control, to realize the conditions for a
second-order perturbation treatment, necessary for our
theoretical approach to work. In the numerical appli-
cations discussed in this paper the set of microscopic
variables is a dynamical system in a condition of "full
chaos" which we define subsequently. A booster exerts
an influence on the system of interest which is indistin-
guishable from that of an ordinary thermostat. However,
the adoption of the word thermostat might erroneously
suggest that we are subtly adopting the same statistical
assumptions used in the conventional approaches to the
FPE [20—23] from microscopic dynamics. Since this is
not the case, we prefer to adopt the more neutral term
booster rather than thermostat.

Our approach follows two major avenues, indicated by
the paths (2) and (3) of Fig. 1. In a sense, path (2) is
a special case of the more general physical condition be-
hind (3). Thus, let us illustrate path (3) first. A required
property to proceed along this path is that the booster
responds linearly to external perturbations, linear re-
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sponse, and that its state relaxes to equilibrium in a finite
time, finite correlation time. With these key properties
we derive the FPE leading to both the equilibrium and
nonequilibrium thermodynamics of the system of inter-
est. The equilibrium distribution of the FPE is canonical,
leading to a definition of temperature that is expressed in
terms of the dynamical properties of the booster. This
"mechanical" temperature can be regarded as referring
either to the system of interest or to the booster. In
the latter case, the system of interest is thought of as
a sort of "thermometer, " monitoring the temperature of
the booster.

Let us describe now the basic aspects of path (2). This
path is a special case of (3) corresponding to the as-
sumption of mixing, a property which, in the case of the
Hamiltonian booster used in this paper, is supported by
the nuxnerical simulations. The numerical simulations
confirm what is argued in Ref. [6], i.e. , that when the
booster has more than a few degrees of freedom and
its dynaxnics are so "chaotic" as to generate mixing and
consequently ergodicity on the hypersurface at fixed en-
ergy, then the booster responds linearly to an external
perturbation. The numerical results show also that for
the booster we use the regression to equilibrium after an
abrupt perturbation takes place in a finite time, satisfy-
ing the requirements of the theory. In this special case,
the analytical expression for the "mechanical" tempera-
ture of the booster, in the limiting case of boosters with
large numbers of degrees of freedoxn, is proved to coin-
cide with the prediction of the Boltzmann principle, in
full accord with the standard approach, path (1).

It must be pointed out that, at first sight, this the-
oretical approach to statistical mechanics, based on the
deterministic derivation of the FPE along the lines es-
tablished in Refs. [17—19], from a formal point of view
does not have elements of signi6cant novelty, since it is
based on the derivation of an effective equation of mo-
tion for a set of relevant variables, a subject which has
been the focus of the research work of many groups, and
the source of very many papers, of which here we quote
only a small number [20—23]. This lack of novelty de-
pends on the fact that the properties of linear response
and finite correlation time of the booster (see Fig. 1)
necessary for us to derive the FPE for the system of in-
terest, are shared by the standard thermostats of the
cited literature, leading to reduced equations of motion
for the systems of interest that can be traced back to
those derived &om the boosters. However, in the stan-
dard approach to the FPE the irrelevant part (the ther-
mostat) is a linear system with an infinite number of
degrees of &eedom, placed in an initial state of canonical
equilibrium (thermodynamical argument). Thus the reg-
ular "macroscopic" behavior of the system of interest is
due to the regular microscopic dynamics of the thermo-
stat. The irreversibility of the system of interest stexns
&om taking an in6nitely large number of degrees of free-
dom for the thermostat. In other words, dynamically
this means that the single trajectories of the thermostat
are "irreversible" by thexnselves. Finally, thermodynam-
ics and temperature are introduced by hand through the
choice of the canonical distribution for the bath initial

condition. The novelty of our approach is that we do
not use linear systems for the bath. This means that in
our boosters single trajectories do not respond linearly
to an external perturbation; it is only the average over
xnany particle trajectories which responds linearly. The
chaotic nature of our booster also implies a decay of the
correlation functions in a 6nite time, even in the presence
of very few degrees of freedom. The properties of linear
response and finite correlation time of our booster, then,
have a source and meaning very diferent from the one
typically assumed for linear baths. Finally, we do not
introduce any "thermodynamical" hypothesis about the
initial conditions.

We want to point out that, although having the same
motivation and the same philosophy as Refs. [17—19], the
FPE derivation in the present paper is original with re-
spect to that of these earlier papers in the following two
ways.

(a) In these earlier papers [17—19] the coupling between
the system of interest and booster was not Hamiltonian
and the numerical treatment was restricted to the case of
non-Hamiltonian boosters. In this paper we extend those
results to the case of a Hamiltonian coupling between sys-
tem of interest and booster, allowing us to deal with a
fully Hamiltonian case, leading to the possibility to ex-
tend our theory to quantum mechanical systems [24—27].

(b) There was no defined time scale for the system
of interest, which basically was a free particle. Here,
we extend the results to the case when the system of
interest has an internal time scale: the importance of
this time scale, with respect to the booster time scale,
will be clari6ed.

The fact that in the present approach the system of in-
terest has a well defined time scale is not a minor detail.
To derive the FPE, we need a dynamical mapping &om
the irregular and non-Gaussian dynamics of the chaotic
booster onto an equivalent regular and Gaussian force
driving the system of interest. To explain under which
conditions this is possible, we introduce the following
three time scales.

(i) In the case when the coupling between the booster
and the system of interest is switched oK, the only sig-
nificant time scale is that of the equilibrium correlation
functions of the booster variables. More specifically, since
a key role is played by the booster variable through which
the booster is coupled to the system of interest, the
"doorway" variable ( defined in Sec. II, we shall refer
to the time scale of the equilibrium correlation function
of the variable ( as the unperturbed booster time scale
(unperturbed booster TS).

(ii) The time scale of the unperturbed system of inter-
est will be referred to as unperturbed system TS. This is
the typical time scale over which the variables describing
the system of interest (in the absence of coupling) evolve.
For instance, for an integrable system this time will be
the inverse of the typical frequency.

(iii) The third time scale comes into play when the cou-
pling between the system of interest and the booster is
switched on. In this condition, as we will prove, the un-
perturbed regular dynamics of the system is perturbed by
a 8uctuation-dissipation process, leading to a decay over
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a 6nite time scale. We shall refer to this relaxation time
scale as relaxation TS. The relaxation TS will increase
as the coupling strength between system of interest and
booster becomes smaller.

The key ingredient necessary to realize the dynamical
mapping mentioned above is the possibility of "filtering"
the fast dynamics of the booster, thus realizing the Gaus-
sianicity of the effective force via the central limit theo-
rem. In the case of earlier papers [17,18], given that we
had a &ee particle and the unperturbed system TS was
not defined, we simply assumed that the relaxation TS
ought to be much larger than the unperturbed booster
TS. Within the present theoretical treatment we also
have a de6ned unperturbed system TS. We still need the
relaxation TS to be much larger than the unperturbed
booster TS (that is, weak coupling constant 4). How-
ever, contrary to intuition, it is now not required that
in all cases the unperturbed system TS should be much
larger than the unperturbed booster TS. It will become
clear that in general we require this condition only if the
number of degrees of &eedom of the booster is small. In
other words, we are now paving the way for the study of
the joint action of chaotic dynamics and a large number of
degrees of freedom. This fact leads us to establish a con-
nection with the view of Khinchin [15], who shows equi-
librium thermodynamics to be determined by the laws
of large numbers applied to systems with an extremely
large number of degrees of &eedom. We stress that the
condition of a large relaxation TS means a weak coupling
between the system of interest and the booster. We con-
clude by recalling that, assuming always that the relax-
ation TS is much larger than tahe unperturbed booster
TS, two conditions are possible.

(i) The unperturbed system TS is much larger than
the relaxation TS; we recover a condition equivalent to
that explored in some of our earlier papers [17,18], and we
refer to this condition as the natural time scale separation
(NTS) case.

(ii) The unperturbed system TS is arbitrary; the theory
here developed leads to thermodynamics as a joint effect
of fully developed chaos and the action of a large number
of degrees of freedom, and we refer to this condition as
the generalized time scale separation (GTS) case.

The paper is organized as follows. In Sec. II we de6ne
the formal structure of the systems we investigate. In
Sec. III, using arguments valid in the NTS condition, we
obtain a Langevin equation for the system of interest. In
Sec. IV we derive the FPE using a formal approach, valid
in both the NTS and the GTS cases. Section V is devoted
to the numerical results and some general observations
are made in Sec. VI. Finally, conclusions are drawn in
Sec. VII.

II. FORMAL STRUCTURE OF THE
DYNAMICAL SYSTEMS UNDER STUDY

According to the prescriptions illustrated in Sec. I, our
theoretical approach refers to the dynamics of a general
system of interest coupled to a booster. However, to
make our treatment more transparent, we focus our at-

tention on the special case of a two-dimensional system
(x, v), where x is the displacement and v the velocity of a
nonlinear oscillator. The booster is an n-dimensional de-
terministic system and the coupling between the system
and. the booster is characterized by the coupling strength
L. The structure of the equations of motion of the sys-
tem under study is

X = V)

1 BV(x) b,
'U = ——

m Bz m
(= F((,n, —Ax),
ir = G'((, n, -Ex), (2)

where the variables ( and m:—(vrq, . . . , vr„q) are those
of the n-dimensional booster. We point out the special
role of the variable (, the "doorway" variable, through
which the booster exerts its influence on the system of
interest.

The dynamics of the booster is de6ned by the following
equations of motion:

where K(t) is a time dependent external perturbation.
We term the booster perturbed when K g 0 and un-
perturbed when K = 0. Under the assumption that L
is sufBciently weak, the dependence of the last two equa-
tions in (2) on —b,x, at least for a short time interval, can
be regarded as independent of the motion of the booster,
making it possible to interpret —Lx as an external field,
on equal footing with K(t). The dynamical structure
of Eq. (2) is a general form which applies, as widely il-
lustrated in the next sections, to both Hamiltonian and
non-Hamiltonian systems. In the former case the booster
is Hamiltonian, the variable ( is a spatial coordinate, and
the vector m' denotes the set of variables containing the
momentum conjugate to ( and all the additional pairs of
canonically conjugate variables necessary for the booster
dynamics to be given a complete representation. The lat-
ter case refers to a non-Hamiltonian booster, hence to a
case where the booster variables ( and m are connected to
one another by the functions F and G of Eq. (3) without
implying canonical conjugation.

In Sec. I we anticipated that we need the hypotheses of
linear response and 6nite correlation time of the booster.
We proceed to de6ne these properties, starting 6rst with
the finite correlation time, (i), and then with the linear
response of the booster, (ii).

(i) Finite correlation time of the booster The regres-.
sion to equilibrium of the booster, subsequent to the ap-
plication of an external perturbation, takes place in a
6nite time. Prom a mathematical point of view, thi»

property is expressed by the statement that all the cor-
relation functions of the booster decay in time so quickly
that they have 6nite time moments. A crucial role is
played by the autocorrelation function &p(t) of the door-
way variable (, defined by
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We define the following two moments:

where the symbol ( )o means an average over the unper-
turbed equilibrium distribution of the booster. The as-
sumption of a finite correlation time of the booster means
that

c(u) du

c(u) udu,

(12)

p(t)dt ( oo, (5)

which is, at the same time, the definition of the booster
correlation time v.

Of some relevance for the theory illustrated in Sec. IV
is also the first moment of the autocorrelation function
rp(t). This is

p(u) udu, (6)

(((t))~ = S(u) K(t —u) du + O(K').

Another dynamical function relevant for our theory is the
susceptibility y(t) defined by

and it will be useful to define the "macroscopic" trans-
port properties of Sec. IV.

(ii) Linear response of the booster Iet us. assume that
the booster is placed in the equilibrium state in the ab-
sence of perturbations, and that the corresponding mean
value of ( vanishes. We apply at time t = 0 the per-
turbation K(t). Then for linear response we mean that
the average value of ( at a given time t & 0, denoted
by (((t))K, can be approximated by a linear function of
the perturbation K(t), through a time convolution with
a response function S(t):

which turn out to be useful in defining the macroscopic
"thermodynamical" properties of Sec. IU. Notice that
the moments of Eqs. (6) and (13) are expressed as
squared quantities to stress the fact that they have the
dimension of a square time.

The problem of establishing if condition (ii) is satis-
fied by a Hamiltonian system is actually one of the most
relevant and fundamental in statistical mechanics. On
the basis of the results of Ref. [6], and of the numerical
results of Sec. V as well, it is proved that this condition
is fulfilled by boosters with a number of degrees of free-
dom large enough, although in general it is expressed in
a form which does not coincide yet with the canonical
version given by Kubo [8]; cf. Sec. IV. In Sec. V we shall
see that eight degrees of &eedom are enough to make the
booster satisfy condition (ii).

In addition to these conditions on the dynamics of the
booster, we need also a condition of weak coupling be-
tween the oscillator and the booster. This means that the
coupling parameter L must be sufFiciently small. If cup

is a typical frequency of a booster that responds linearly
to external perturbations, and r is defined by Eq. (5),
a simple estimate for L such that the relaxation TS is
much larger than the unperturbed booster TS, leads to

(( ~s/r .

S(u) du. (8)

(((t)) =~ (t)+&% )

In the special case when the external perturbation is
abruptly applied to the booster at time t = 0, and is
constant, i.e. , when K(t) = 0(t)K, Eq. (7) yields

For the practical purposes of this paper, we do not use
this inequality, but the much more stringent condition of
assessing numerically the linear response of the booster,
and consequently the maximum allowed value of 4 is
more directly obtained by studying the susceptibility of
the booster.

y(t) = [1 —c(t)] y. (10)

It is evident that c(0) = 1 and c(oo) = 0. From Eqs. (8)
and (10) we have

which makes evident why the function of Eq. (8) is called
susceptibility. As a consequence of its own definition, see
Eq. (8), the susceptibility must vanish at t = 0, and, due
to the property (i), must reach in times of the order of the
correlation tiine 7 the stationary asymptotic value y(oo).
To simplify the algebra, we shall adopt the definition y =
y(oo). These dynamical properties of the susceptibility
make it natural to introduce another dynamical function
c(t) defined by

III. THE LANGEVIN APPROACH

In this section we derive a Langevin equation equiva-
lent to the FPE. The Langevin approach is not as com-
plete as the FPE approach, and it is limited to the NTS
condition. Nevertheless, the Langevin approach is attrac-
tive because it makes the physics underlying fluctuations
and dissipation very clear, and for this reason we think
it worthy of illustration.

Let us first focus our attention on difFusion. We can
separate the action of diffusion from that of friction as-
suming that both the coupling constant L and the mass
m go to zero keeping the ratio 6,/m constant. In this
limit the booster is no longer perturbed by the sys-
tem of interest. Assume also that the system of in-
terest is a linear oscillator, with frequency u, i.e., that
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V(z) = mw2z /2. From Eq. (2) we have 7, and the time 6 of the response of the booster is de-
fined in Eq. (12). The system of Eq. (19) is a Brownian
oscillator, with renormalized potential U(x)

2
x'

U(x)—:V(x) —D y—
2

and friction p given by

(20)

D = 6 (( )pr/m . (16)

Now we have to explain the origin of dissipation. The
diffusion process can be slowed at will by decreasing the
coupling strength L. Nevertheless, as slow as it is, under
the action of the diffusion process, the space and. velocity
variables spread with no limit over the (x, u) phase space.
This means that at a given time scale, depending on the
coupling strength L, the value of the coordinate x can
be so large as to make non-negligible the reaction term
Ax, through which the system of interest perturbs the
booster. Let us evaluate the effect of this reaction term
on the booster. Under the assumption that the coupling
constant 4 is weak, we can use the linear response prop-
erty (ii), from which we obtain, using Eqs. (7) and (11),

Bc(u) Ax(t —u) du. (17)

Using the NTS condition we expand the backward time
evolution of the variable x at the first order in time, using
the approximation x(t —u) —x —u v. Then, integrating
by parts, we obtain

Oc(u)
Ax(t —u) du

OtL

where the subscript "a" stands for the unperturbed time
evolution of the oscillator of interest. For times t )) v,
x(t) and v(t) are determined by the "sum" of a very large
number of unperturbed and uncorrelated fI.uctuations of
((t). This shows why the central limit theorem can be
used, in principle, even without the strong hypothesis
that the oscillation frequency is small (NTS condition).
In the limiting condition of times much larger than the
correlation time r the "force" ((t) becomes indistinguish-
able from a Gaussian stochastic force with zero average
and correlation time 7 of Eq. (5). Let us now enforce the
NTS condition, implying that the frequency u is very
small. In this case the diffusion coefficient of the velocity
v turns out to be

Q2

m (21)

k~T—:m(v ) q=m— 4')«
x (22)

Note that we have derived Eq. (19) under the assump-
tion that the potential V(x) is harmonic with frequency

However, using the weak-coupling assumption, the
NTS condition, and the consequent condition of lo-
cal linearity [28], according to which the slowly diffus-
ing system only perceives the local frequency cu(x)
/02V(x)/cjx2/m, it is possible to extend the result of
Eq. (19) to the nonlinear case. Under these conditions,
Eq. (19) applies also to a generic potential, not necessar-
ily harmonic.

IV. THE PROJECTION AP PROAC H
TO THE FPE

The purpose of this section is to derive an equation
of motion for the reduced probability distribution of the
system of interest from the equation of motion of the
whole system of Eq. (2). This equation is shown to be a
two-dimensional FPE with the following structure:

ee fB mvl
cr(x, v;t) = 2'~+ A(z, v)

~

—+

+ B(x, U)
~

+—
I

0(x, v;t),
cj f 0 U'(x) )

Ov (Bz k~T )
(23)

The fiuctuation-dissipation theorem, according to which
the temperature of the system of Eq. (19) is defined by
the ratio of the diffusion coefficient D, given in Eq. (16),
to the friction p, given in Eq. (21), multiplied by the mass
m, leads us to

c(u)du
~

v. (18)
where

The average of the "Gaussian" stochastic force ( is no
longer zero, but rather is given by Eq. (18). Defining
the function f(t)—:( —((), we can write the following
two-dimensional Langevin equation:

U'(x) 0 cj

m Bv Bx (24)

x=vq
1 OV(x)

v = —— + yx — X6v+ f(t)
m t9x m m

(19)

where f (t) plays the role of an "effective" Gaussian
stochastic force with zero average and correlation time

is the effective unperturbed Liouvillian of the system of
interest.

The theoretical tool used to derive this
two-dimensional FPE is the projection method of
Zwanzig [29] applied within the perturbation scheme of
Refs. [30,31].
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A. Linear response and Bnite correlation time
of the booster

The derivation of the FPE (23) implies that the set
of Eqs. (2) should be dealt with via a statistical treat-
ment. This means that, rather than studying the sin-
gle trajectories, we focus our attention on the equivalent
time evolution of the probability distributions. Since the
structure of Eq. (2) is general and applies to both the
cases of Hamiltonian and non-Hamiltonian boosters, we
refer to the representation in terms of the probability dis-
tributions as a Liouville-like picture, rather than a Liou-
ville picture, as we would do in the strictly Hamiltonian
case. The Liouville-like picture of the booster dynamics
corresponding to Eq. (3) can be written as

t

(((t))lc = — ((te "I"I)pK(t —u)du.
0

(31)

Finally, comparing Eq. (31) with Eqs. (7) and (ll) we
have

this first-order probability distribution can be used to
determine the response of the variable ( of the booster,
yielding

t

(t(t))R = —j d(dw( e '"IC(E —u)I'ipo(t, m)du.
0

(30)
Interchanging the order of integration between time and
phase space we have

0—p((, 7r; t) = A((, m, —K(t) )p((, vr; t), (25) S(t) = —&—c(~) = —(( r, ),.Bc
(32)

where pg, 7c t) ls tile probabEllty distrlbut1on of tile
booster variables and A((, m, —K(t)) is the correspond-
ing evolution operator determined according to the stan-
dard rules [14].

To proceed along these lines we enforce the hypotheses
behind the paths (2) and (3) of Fig. 1, namely the finite
correlation time (i) and the linear response (ii), conve-
niently adapted to the Liouville-like representation. First
of all, the correlation function p(t), necessary to define
property (i), can be written

(geC), tg)
V( ) (p)

where Zs = A((, vr, 0) is the Liouville-like operator cor-
responding to the unperturbed booster (K = 0).

The next step consists in enforcing the linear response
assumption (ii) within the Liouville-like representation,
and on the perturbed dynamics of the booster distribu-
tion, i.e. , Eq. (25), with a weak perturbation K g 0. If
assumption (ii) holds true, we can replace the Liouville-
like operator A((, m, —K(t)) with its first-order expan-
sion in a power series of K(t):

0
p((, ~; t) =—2&p((, ~; t) —K(t)I', p((, ~; t). (27)

Thus the operator I'i is the first-order contribution of
this expansion. If assumption (ii) holds true, we are
also allowed to expand the probability distribution of the
booster around its unperturbed state, assumed to be the
equilibrium state pp((, 7i'):

p((, m; t) = pp((, 7r) + pi ((, ~; t) + O(K ). (28)

We assume now that the initial distribution of the sys-
tem is given by the equilibrium state of the unperturbed
booster, and hence that pi ((,m; 0) = 0. Thus, inserting
Eq. (28) into Eq. (27), we get

As in the LRT of Kubo [8], Eq. (32) relates the response
function in the presence of an external perturbation to
an unperturbed dynamical property of the booster with
a correlationlike structure. In some cases, for instance
the case of a Gaussian equilibrium distribution of the
booster, this correlationlike structure can be converted
into a real correlation function, making explicit the action
of the operator I'q on the booster distribution.

In principle, this result, implying the use of a first-
order expansion, might be aH'ected by the criticism of van
Kampen [32], who objected to the use of the perturbation
calculation by remarking that the response of chaotic tra-
jectories to the perturbation &s linear over such a short
time region as to make the predictions of a first-order
treatment essentially useless. We could avoid this criti-
cism by attributing a coarse grained rather than a fine
grained character to the distribution p((, m; t), and co,n-
sequently a "master equation" nature to the operators Zg
and I'i. Indeed, we anticipate that the derivation of the
FPE (23) will not require the explicit expression of these
operators, and that, consequently, our result is indepen-
dent of whether or not the van Kampen criticism holds
true. However, we remark that, according to Refs. [6,7],
the van Kampen distinction between microscopic linear-
ity and macroscopic linearity is fictitious: if a system
responds linearly in a macroscopic time-space scale, then
we can evaluate the susceptibility using a microscopic
Liouville-like approach, like that of Kubo's LRT. In other
words, any "macroscopic" response theory would lead to
the same result as the Kubo-like (usually noncanonical)
LRT. It is convenient to keep this property in mind, since,
as shown in Sec. IVD, the dynamical derivation of the
Boltzmann principle rests on a Kubo-like treatment.

B. Zvranzig projection method

t
pi ((, 7r; t) = — e '"K(t —u) I'I pp ((,~)du. (29)

Since, as in Sec. II, the mean value of ( over the un-
perturbed equilibrium distribution is assumed to vanish,

We use the Zwanzig projection method in the pertur-
bation version of Refs. [30,31,33]. A crucial step of this
approach is the definition of the interaction part of the
dynamical operator l:, driving the motion of the total
probability distribution of the system of Eqs. (2),
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8
Bt

—p(x, v, (, m; t) = Zp( x, v, (, m; t),

where the dynamical operator 8 is given by

(33)

(34)

According to the linear response arguments which led us
to Eq. (22), we can write the interaction part as

t9l:I = —(—+ b,xI'i.
m Ov

(35)

The second terni on the right-hand side (RHS) of Eq. (35)
is the perturbation operator defined via the linear re-
sponse arguments of the preceding subsection, whereas
the first term gives the action of the booster variable (
on the system of interest. l. is the unperturbed dynam-
ical operator of the system of interest and its explicit
expression is

)) = foo(t;, v) f dgdv (37)

The reduced probability distribution of the system of in-
terest reads

1
v(v, v;t) = ))t)($, v;t) = J d(deep((, v;t), (38)

po

Note that we left unspecified the explicit form of the op-
erator Zg which drives the unperturbed motion of the
booster.

According to the prescriptions of Refs. [30,31],we write
Eq. (33) in the interaction picture, and we project the
resulting equation on the space of interest using the pro-
jection operator 'P defined by

8 V'(x) )9= —v +
)9x 7A ctv

(36)
and (see Refs. [30,31]) its time evolution, at the second
order in 81, is given by

|9—o(x, v;t) = 2 o(x, v;t) + 'Pl:Ipo((, ~) + PLI du(1 —P)e '"Clpo((, ~)e " o(x, v;t)
1

Bt po ) 7f po )7r p

1 Pl:Ie "(1—'P) p(x, v, (, vr; 0)
po ) ir

'Pdi (1 —'P)e '"Die '"du(l —P)e "p(x, v, (,m;0).
po(( ~) o

This expression is not yet tractable. We now make some additional assumptions (already discussed in Sec. I), based
on the physics of the system. The first one is related to the "macroscopic" character of the variables of interest. The
condition that the relaxation TS is much larger than the unperturbed booster TS implies that the booster dynamics
is "observed" at times much larger than the booster time scale v. , and that the upper limit of time integration in
Eq. (39), t, is replaced by infinity. We also use property (i) of the booster, which, together with the observation at
macroscopic times, iinplies that we can neglect the inhomogeneous term [34,35], i.e. , the last term on the RHS of
Eq. (39). We finally use the property (()o = 0 which, taking into account the explicit expression of Zl of Eq. (35),
leads us to

1 pglp u ~ u O
po((, m)

(40)

Carrying out the necessary algebra, we can rewrite Eq. (39) as

OO OO—e(e v t) = 6 v(e v f) + —E (F )o du)(u)e " —+ —f) du(ge '"Fo)oe "(vf)v(e, v f), (41)
OV |9V p

where we have introduced the superoperator A" [ ], associated with a given operator A, defined as

A" [B]C = (AB —BA)C. (42)

We also used the property

e [B]C=e Be C

with B and C expressing generic operators.
Following the approach illustrated in Refs. [31] and [34], reviewed in the Appendix, we have
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ct ( 0 l o) ( 8 l o)
x-(t —u)

I

——
I

—*-(t —u)
I

~ ~ ~

Ov (Bx ) Ov i)9v ) o)x
(44)

having used

"-"I~( )] = ("."h(*)) = h(*-(t - )) (45)

where h(x) is a given analytic function of the variable x and the unperturbed backward evolution of the variable x,
x (t —u), is defined as

x (t —u) =—ec "x. (46)

The backward evolution x (t —u) can be thought of as the unperturbed time evolution of the variable x corresponding
to the system of interest placed, at the initial time u = 0, in a state corresponding to the point (x, —v) of the phase
space. Therefore x (t —u) is a function of the coordinate x and the velocity v of the system of interest, as well as of
the time u. Thus, using Eqs. (44) and (45), inserting the formal expression of the response function of Eq. (32) into
the last term of Eq. (41), and integrating this term by parts, we can rewrite Eq. (41) as

o) )9 V'(x) 8 A o) B 4
o.(x,—v; t) = —v + —— xg —+ — (( ) o

Bt r9x m Bv m Bv Bv m2
(o) l 0

dug(u)
I

x (t —u) I—
io)x ) )9v

8 A2
(&')o

19v m
(0 l 0 o) A~

du(p(u)
I

—x (t —u)
Iqo)v ) Bx )9v m

due(u)v (t —u)I~(z, v; t). (47)

Note that we have replaced 8 with its explicit expression from Eq. (36).
Now let us compare Eq. (47) with the FPE (23). Under which conditions are these two equations equivalent. It is

evident that by inspection

Q2
&(»v) =,4')o

Q2
&(x v) = —,((')o

dug(u)
I

x.(t —u) I,(Bx )
( o)

dug(u) I

—x (t —u) I,)
and

U'(x) mv U'(x)
+ A(x, v) + B(x,v)

m QT H

V'(x) Q2
XX+

m
duc(u) v (t —u). (49)

The transport coefficients of the FPE of (23) are defined by Eq. (48). The temperature k~T and the renormalized

potential U(x), necessary to complete the definition of the FPE, are derived from Eq. (48) and Eq. (49). Inserting

Eq. (48) into Eq. (49) and noticing that

d 0 V'(x) o)
v (t —u) = —x (t —u)—: 6x (t —u) =—v x(t —u) —— —x (t —u),

dt Bx m Bv
(50)

we obtain

U'(x) OC) ( o)
Ã'). due(u) I Z

*.(t —u) I k T —,(&').
m 0 (Ox ) k~T m2 dug(u)

I

—x (t —u) I

( 0 l U'(x)

( )9v ) k~T

V'(x) (8
duc(u)

I
x (t —u)

I

v-
r

OC&

m2 x
l(8

duc(u)
I

—x (t —u)
I

V'(x). (51)
(Bv

In principle, the equality in Eq. (51) should take into account the implicit dependence of x (t —u) on the coordinate
x and the velocity v, the detailed nature of which is strongly dependent on the dynamics of the system under study.
However, in addition to making the problem intractable, this would make the results dependent on the system of
interest, whereas we are looking for a generally valid solution. For this reason we assume now that we can disregard
the implicit dependence of x (t —u) on the position x and the velocity v, and we derive from Eq. (51) the following
expressions:
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(( )o f dug(u) —x (t —u)kgT—:
f duc(u) os x (t —u)

(52)

Q2
yV'(x)U'(x) = V'(x) —A yx—

Q2
x

Q2= V'(x) —A xy — yV'(x) (&
du~(u)

I

—*-(t —u)
I(Bv )

f duc(u) —x (t —u)
. o

.. +O(A ).
f, dug(u) so x (t —u)

(8
duc(u)

i

—x (t —u)
i

0 )
( 8 ) f duc(u) os x (t —u)

dug u —x t —u j fo duio(u) ss x (t —u)

(8
duc(u)

i

—x (t —u) i—
0 ) o

In the next subsection we discuss under which physical
conditions the assumption which led us to Eqs. (52) and
(53) is correct.

C. Mechanical expressions for the temperature
of the system

v
x (t —u) = x cos(wu) ——sin(wu), (54)

&om which

(0
x (t —u) i

= cos(eau) (55)

and

(0
/

—x (t —u)
f

=—
)

sin wu
(56)

Thus we see that the dependence on x and v is lost. Fur-
thermore, substituting Eqs. (55) and (56) into Eqs. (48),
(52), and (53), we obtain

We show here that the implicit dependence of the me-
chanical temperature of Eq. (52) and of the renormal-
ized potential of Eq. (53) on the variables x and v can
be disregarded if any of the following three conditions is
realized.

(a) The system of interest is a linear oscillator. We
recover in this case the results of a previous paper [19].

(b) The property c(t) = p(t) is fulfilled As we sha. ll see
later, this is a condition realized by a booster in canonical
equilibrium or, alternatively, in a microcanonical equilib-
rium in the limiting case of an infinite number of degrees
of freedom.

(c) The XTS condition is fulfilled This is the. conven
tional condition of time scale separation which implies
that the oscillator of interest has only low frequencies.
We now discuss separately these three conditions.

(a) The system of interest is a linear oscillator. We
assume V(x) = mes x /2. In this case we have

Q2
, (&')oRe V(~)],

Im [P((u)]I (d

„TX')o Re [~(~)]
Re [c((u)]

' (59)

+2a ' ——y + —yculm[c((u)]
A2 y Im [P(u) ]Re [c(cu)]
m, (u Re [(P(~)]

2 ( A y 1m[a((u)]Re[c(~)] )
m(u Re[/(~)] )

Q2 2

y(elm [c(cu)] . (60)

Note that the renormalized frequency 0 is defined
through the renormalized potential U(x), which turns
out to be harmonic, U(x) = mO x /2, and where the
symbols Im[ ] and Re[ ] stand for the imaginary and the
real parts of [ ], respectively; the carets over the functions
c and p mean the Fourier transform of these functions,
having assumed c(t) = p(t) = 0 for t ( 0.

Using Eq. (11) we have that Eqs. (57), (58), (59),
and (60) become identical to the corresponding equations
derived in [19]. Thus we recover the properties pointed
out in Ref. [19],i.e. , the transport coeKcients of Eqs. (57)
and (58) depend on the frequency cu of the oscillator of in-
terest. This agrees with the remark [33] that the influence
of perturbations with frequencies comparable to those of
the bath makes the transport parameters strongly de-
pend on the frequency of the perturbation. At first sight,
this seems to violate the condition of a time scale sepa-
ration between microscopic and macroscopic dynamics,
on which the "thermodynamics" of the system of inter-
est should rest. However, this does not con8ict with the
GTS condition. The friction and difFusion coeFicients are
macroscopic parameters, and the "probing" of the result-



3012 BIANUCCI, MANNELLA, WEST, AND GRIGOLINI

ing transport process has to be carried out in the region
of macroscopic times, where the derivation of the FPE is
valid in spite of the high value of the oscillator frequency
used. The fact that the transport coeKcients are strongly
dependent on the "microscopic" frequency w means that
a transmission of information from the microscopic to the
macroscopic dynamics is possible, without violating the
Gaussian statistics and the standard "thermodynamical"
condition within which the observation is carried out [19].

(b) The property c(t) = p(t) is fulfilled In .this case
the temperature of Eq. (52) and the renormalized force
of Eq. (53) become

kBT = (&')p

x x (t —u)
l

=1— —+O(u),( 8 l V"(x) u'

(Oz ) m 2
(66)

of freedom, then the standard Kubo LRT is expected to
hold and, consequently, condition (b) is also realized.

(c) The NTS condition is fulfilled Under this condi-
tion the unperturbed dynamics of the system of interest
must also be regarded as "macroscopic" and we can think
of the system of interest as a tool to determine the ther-
modynamic properties of the booster. If condition (c)
holds, the susceptibility and the correlation functions of
the booster decay over times much shorter than the typi-
cal evolution time of the unperturbed system of interest.
Thus in Eqs. (52) and (53) we can expand the unper-
turbed backward evolution x (t —u) in a power series of
time u, yielding

I.e. )

U'(x) = V'(x) —A yz, (62)
t' 8 ) V"(x) us

I

—z-(t —u)
I

= -u+ —+ O(u')
(Bv m 6

(67)

2
X'

U(x) = V(z) —4 y —.
2

(63)

Notice that in this case the "mechanical" temperature
T and the effective potential U(x) depend only on the
stationary properties of the booster, namely, the suscep-
tibility y and the mean square value of the doorway vari-
able (, whereas in cases (a) and (c) these "macroscopic"
properties also depend on the relaxation dynamics of the
booster.

It is worth mentioning that condition (b) allows us
to prove that our approach recovers the same properties,
temperature, transport coefBcients, and renormalized po-
tential of a system interacting with an ordinary thermal
bath in a canonical equilibrium [31]. To prove this, let
us assume that this ordinary thermal bath is given the
temperature Tg. This is the standard case to which the
conventional LRT by Kubo [8] refers, leading to

It is safe to neglect the terms O(u ) in these equations.
By inspection, we have then recovered the expression for
the temperature given by Eq. (22). Furthermore, from
Eq. (48) we derive the following expressions for the trans-
port coefBcients A and B:

Q2
A= (()pr,

Q2
B = (( )prl, (68)

where rl is defined in Eq. (6). From Eqs. (68) and (22)
we recover, for the friction of the system p = A/kriT, the
same expression obtained using the Langevin approach of
Sec. III, Eq. (21).

As far as the renormalized potential U(z) is concerned,
from Eqs. (66), (67), and (53), we have

where

(t) = [1 — (t)1

K bo (& )p
~can

B 6

(64)

(65)

x'
U(z) = V(*) —&'x—+ xV(z)

l

&' —~' —l, (69)
2 m ( 7)

where the constant P is defined by Eq. (13). In the
case when the correlation function and the susceptibil-
ity of the booster decay exponentially with the same de-
cay time, the potential of Eq. (69) becomes equal to the
renormalized potential of Eqs. (21) and (63).

Comparing (64) to (10) we see that c(t) = p(t), i.e., con-
dition (b) is fulfilled. This makes it possible for us to
use Eq. (61) and, thus, by replacing Eq. (65) into (61),
to show that at equilibrium the system of interest, as pre-
scribed by ordinary thermodynamics, has the same tem-
perature as the thermal bath. As far as the transport
coefBcients are concerned, we recover the same result of
Ref. [31], inserting Eq. (65) inta Eq. (48). The renor-
malized potential of Ref. [31] is recovered by replacing
Eqs. (64) and (65) into (63).

It is also worth mentioning that, as discussed in [6],
Hamiltonian boosters with a large number of degrees of
freedom can also fulfill condition (b). In [6] it is shown
that if the booster is deterministic, Hamiltonian, and
"mixing, " and it has a suKciently large number of degrees

D. A comparison with the Boltzmann principle

We now illustrate the relation between the present re-
sults and the ordinary approaches to thermodynamics
[paths (o) and (1) of Fig. 1]. We derived the mechanical
expression for the temperature of Eq. (52) via a FPE ap-
proach, where the system of interest would become some
kind of instrument monitoring the thermodynamic prop-
erties of the booster. For this reason the most natural
condition to adopt would seem to be candition (c) (NTS
condition). However, we make the comparison between
the mechanical expression for the temperature arrived at
in this paper and the Boltzmann principle in each of the
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three conditions.
To begin with, we note that to make a fair compar-

ison with the Boltzmann principle, we must make the
same hypotheses used in the classical derivation of ther-
modynamics, and consequently we must assume that our
booster is a Hamiltonian system with mixing dynamics
(see Fig. 1), which implies a microcanonical equilibrium
distribution for it. In this case, using a Kubo-like ap-
proach, the susceptibility y(t) is proved to be [6]

X(t) =
A ~ ~~ (A(&)(&'). [I —~(t)l)

1 8
(70)

= X') ~(t)~ZlnA(&)+ ~Z (&') ~(t)

The last term of Eq. (71) rules out condition (b), which
would imply c(t) = p(t). It is clear, then, that we are
carrying out a comparison between the mechanical ex-
pression for the temperature of Eq. (52) and the temper-
ature given by the Boltzmann principle, applied to the
booster,

19
kiiTn h, =

~@ lnA(E)

when either condition (a) or condition (c) applies.
Let us examine condition (a) first. In this case the

theory of this paper results in Eq. (59). Thus, taking
the Fourier transform of Eq. (71), we have, at a given
frequency u',

[( ')] =Ã')o [ ( ')]~@ ( )

where A(E) is the area of the hypersurface of the phase
space occupied by the unperturbed booster with energy
E. From Eqs. (70) and (10) we have

1 0
&c(t) =

A E ~E A(&)h')p~(t)

A(E) ((2)pr

g~ [A(&) (&')p~]

t9 0
lnA(E) + ln ({()p7.)

In conclusion, we see that both condition (a) and con-
dition (c) lead to an expression for the mechanical tem-
perature which di8'ers from the Boltzmann prediction by
a "dynamical" correction, i.e. , a correction involving the
correlation function p(t). Only if

0
lnA(Z) && ln({(')pRe [j(~')])19

(76)

8
lim ln A(E) = e = const.

n —+oo QE
(77)

On the other hand, we expect ((2)p and y(t) to become
independent of n for large n, i.e. ,

does the "mechanical" temperature of Eqs. (74) and (75)
coincide with the Boltzmann prediction of Eq. (72).

What is the physical significance of Eq. (76)? We are
inclined to interpret Eq. (76) as the missing connection
between the equilibrium statistical properties and their
dynamical realization. The dynamical realization of sta-
tistical mechanics results, in principle, in a departure
from the standard prediction, through the term involving
the correlatioii function p(t). The effect of this dynamic
correction to the temperature is shown using the numer-
ical simulations in Sec. V.

Notice that this interesting discovery does not convict
with the standard view, since it is straightforward to
show that the standard Boltzmann prediction is recov-
ered by increasing the number of degrees of freedom of
the booster. To prove this, let us introduce the energy
density e—:E/n where E is the total energy of the sys-
tem and n the number of degrees of freedom. Increasing
n while keeping e constant we have that the area A(E)
grows like E, leading to

Under condition (a), this frequency must be identified
with w. Replacing the resulting expression in Eq. (59)
we obtain

1 |9 2lim ——(( )p ——0,
n —+oo n gQ

1 19
lim ——p(t) = 0.

n —+oo n gg

(78)

(79)

(&')pRe V(~)]
((').R V( )] —;1A(@) + —' ((&') Re 9( )9

8
lnA(E) + ln ((( )iiRe [jr((u)])

0
(74)

Let us now consider condition (c). In this case the the-
ory of this paper results in the mechanical expression for
the temperature of Eq. (22). The definition (12), in turn,
implies that the denominator of Eq. (22) is derived from
Eq. (73) with ur' = 0, and the definition of correlation
time of Eq. (5) implies that Re [P(0)] coincides with w.

Thus from Eq. (22) we get

Clearly, these equations imply that Eq. (76) is satisfied.
We also note that the hypothesis of a large num-

ber of degrees of freedom, leading to Eq. (79) and thus
making the last term of Eq. (71) vanish, implies that
the booster satisfies also condition (b). Moreover, in
this limit, using Eq. (78), the stationary susceptibility

&~&1 &@((2)p A(E) converges toward the standard
Kubo one of Eq. (65). As a by-product, we have now
also proven that in the limit of a large number of de-
grees of freedom the expression for the microcanonical
susceptibility in Eq. (70) coincides with the expression for
the canonical susceptibility obtained using Kubo LRT,
Eq. (64).

In summary, our derivation of thermodynamics &om
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classical mechanics has a range of validity more extended
than that of the ordinary procedures, since the resulting
"mechanical" temperature also depends on the micro-
scopic dynamica/ properties. In addition to that, our ap-
proach also establishes an attractive connection between
ordinary statistical mechanics and Kubo's LRT. This is
so because the same limiting condition of a very large
number of degrees of freedom, which makes the "mechan-
ical" temperature become independent of microscopic dy-
namics as prescribed by the Boltzmann principle, also
leads to the realization of the linear response in the spe-
cific form prescribed by Kubo, suggesting that statistical
mechanics has the same underpinning as Kubo's LRT. In
other words, we have found that it is possible to derive
ordinary thermodynamics with the joint action of chaos
and. of a large number of degrees of freedom. We shall
come back to this important issue in Sec. VI.

V. NUMERICAL RESULTS

The numerical results refer to two diferent kinds of
composite systems. The first composite system is Hamil-
tonian and consists of a slow linear oscillator of interest
interacting, via a harmonic coupling, with a Hamilto-
nian booster given by a Fermi-Pasta-Ulam (FPU) sys-
tem, with a quartic interaction: according to the nomen-
clature of the related literature [37—39], a P-FPU sys-
tem. The booster has eight degrees of freedom, i.e., it
consists of a chain of eight nonlinear oscillators, and it
is in a physical configuration which, according to the re-
sults of numerical calculations [37,38] and theoretical ar-
gurnents [39], corresponds to a state of "fully developed
chaos. " In this condition, we argue that the dynamics
of the booster is virtually mixing. The second composite
system is a "slow" nonlinear oscillator, with a quartic po-
tential, interacting with a non-Hamiltonian booster, the
dynamics of which is determined by a one-dimensional
map. The latter system is not Hamiltonian, but this is
the price we pay to have a rigorous theoretical proof [1—3]
of the mixing dynamics of the booster. As we shall see,
the boosters are so quick and the unperturbed dynam-
ics of the system so slow that they fulfill condition (c) of
Sec. IV, i.e. , the NTS condition. We note that the former
system fulfills also condition (a) of Sec. IV, since in this
case the system of interest is a linear oscillator.

11
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(81)

p(t)s, = exp( —nt) cos((B+ P)

1.0—

We integrate this system using a fourth-order symplectic
Runge-Kutta algorithm [36]. The integration time step
was chosen so that the total energy was always conserved
with at least eight significant figures at the end of each
run.

Let us discuss first the booster dynamics, in both the
unperturbed and perturbed. cases. The energy ~ per os-
cillator given to the booster for A = 0 is e = 10, and
according to Refs. [37—39] this should be a convenient
choice to produce a regime of fully developed chaos: the
unperturbed dynamics of the booster corresponding to
this energy density, within the accuracy of a numerical
treatment [37,38], is expected to be mixing and then er-
godic. It is worth remarking that, when the coupling with
the system of interest is switched on, part of the booster
energy is transferred to the system of interest, decreasing
the booster energy by approximately 10%. This change
is expected to be weak enough to leave the dynamical
properties of the booster virtually unchanged.

Notice that due to the particular choice of the system
of interest, a linear oscillator, condition (a) is satisfied.
This would be enough to make our theory applicable to
the whole system booster plus oscillator of interest. How-
ever, if condition (c) were also satisfied, we would have
a further simplification in our theoretical expression for
the temperature. As we shall see, in the numerical sim-
ulations we eventually use a frequency u for the system
of interest small enough to be far from the resonances of
the correlation function p(t).

Clearly, to apply the theory of this paper we need
first to characterize the dynamics of the booster, begin-
ning with its correlation function p(t). According to the
general discussion of Sec. I, this unperturbed dynami-
cal property must be characterized by a finite correlation
time. The result of a direct simulation of this correlation
function is shown as a full line in Fig. 2. The fit with the
analytical expression (for large times, t ) 100)

A. Harniltonian case

The Hamiltonian of the former composite system is

0.0
B-

-0.5-

where

8v2 u2x2
II = + +Ax(, +) ' + W((s)

2 2 ~ = 2

+) W((; —(, i), (80)

200 400 600 800

FIG. 2. Comparison between the correlation function p(t)
(solid line) and the normalized susceptibility c(t) (dashed line)
obtained from numerical simulations in the P-FPU model
with eight oscillators [Eq. (80)]. The total energy of the chain
is E=80.



51 FROM DYNAMICS TO THERMODYNAMICS: LINEAR. . . 301'

t t
(~ (&)) = (((s)((s ) )ods~s

0 0

= 2(( )ort + const, (83)

Knowing (( )o and fitting a straight line to (tu2(t)) for
large t, we derived r for different values of e = E/n.
To use Eq. (75) we must also evaluate numerically the
dependence of A(Z) and (( )o on E, which we derive
explicitly by integrating the corresponding expressions
on the appropriate energy surfaces.

Next, we check that the booster responds linearly to
the external perturbation or, equivalently, as it is proved
in [6], that Eq. (70) is satisfied by our booster: the com-
parison between the numerical y(t) and Eq. (70) is shown
in Fig. 3. To check the validity of Eq. (70), the calcula-

turns out to be extremely good since for times t & 100
the difference between the best fit and the numerical cor-
relation function would be a horizontal straight line vir-
tually coinciding, in the scale of the figure, with the ab-
scissa axis. The best fit yields o. = 0.0076, b = 0.44, and
P = 0.038 rads. The agreement between this fitting func-
tion and the numerical results suggests that in the limit
of large times this correlation function decays exponen-
tially; this confirms that this system satisfies condition
(i) (finiteness of the relaxation time), on which our ap-
proach to the FPE is based. We add that, as it should,
the short-time behavior of the numerical results departs
from the exponential-like structure of the fitting function.
This is a well known problem stalking the representation
of a decay process via an exponential-like expression [40].
However, it must be stressed that the good agreement at
large times does not rule out the possibility that long
and weak tails with an inverse power law falloff might
be present and masked by the numerical fluctuations. In
this unlucky case, the error fluctuations would play the
same role as the environmental fluctuations which pre-
vent the long tails from having a significant influence on
the macroscopic time evolution of the system of interest.
In Sec. VI we shall come back to discussing this problem.

Having an estimate of the typical resonant frequency
appearing in the correlation function, the parameter b

above, and of its typical width, the parameter o., it is
easy to pick a value for u such that condition (c) is real-
ized. In the simulations we set cu = 0.2 and we checked
numerically that actually Re [j&(~)] = Re [P(0)] = r.

To apply Eq. (75), we need to know the value of r,
the area under the correlation function p(t), and of the
derivative of v. with respect to the total energy E of the
booster. In practice, the value of w turns out to be rather
small, whereas the correlation function p(t) is character-
ized by very fast oscillations, making a numerically ac-
curate derivation of 7 extremely dificult; a possibility
would be to increase the number of sampling points of
p(t), but the problem soon becomes intractable. We then
followed a different procedure. We took the equations of
the booster and introduced an auxiliary variable defined
as zu = (. Then we examined the free diffusion of vi. It
is straightforward to see that, under the assumption of
the finiteness of the area under the correlation function
p(t), the second moment (tv (t)) is

2.0-

1.5

1.0 "

0.5 I-

0.0—
0 200 400 600 800

I

1000

FIG. 3. Comparison between the numerical g(t) (solid line)
and the theoretical y(t) (dashed line, barely visible under the
solid line), obtained using the LRT approach in the micro-
canonical case, Eq. (70), as function of time. The simulations
refer to a P-FPU model with eight oscillators [Eq. (80)]. The
total energy of the chain is E = 80.

tion of y(t) is carried out with a numerical "experiment":
first, we determined a number of "unperturbed" initial
conditions, obtained following the trajectory of the sys-
tem in the absence of any external perturbation. Then
an external (constant) perturbation K is switched on,
the resulting trajectories are averaged, and the response
is determined.

The evaluation of the theoretical susceptibility y(t) of
Eq. (70) from the numerical data poses a delicate nu-
merical problem. In principle, we should determine a
correlation function rp(t) for a range of values of the en-

ergy of the booster around a given energy, and then we
should proceed to a direct differentiation. However, in
practice we found that, due to the finiteness of the num-
ber of trajectories used to build the correlation function,
the statistical fluctuations would make the result for the
derivative of rp(t) with respect to E totally meaningless.
Therefore we had to approach the problem differently.
We decided to compute the correlation function for sev-
eral values of E around the value of interest; then we in-
terpolated, for any given time t, to find (via a linear least
square fit) the bona fide value of the correlation function
p(t) and its derivative with respect to E. This proce-
dure turned out to be amazingly reliable, with results
only very weakly dependent on the number of different
correlation functions used for the fit and the range of en-
ergies considered. We see from Fig. 3 that the "true"
y(t) and Eq. (70) are in remarkable agreement; even the
details of the oscillating behavior of y(t) are well repro-
duced. This is a very satisfactory confirmation of the
validity of Eq. (70) and of what is argued in Ref. [6].

According to Ref. [6], we conclude that the number
of degrees of freedom in our system is large enough
to guarantee condition (ii) (applicability of a linear re-
sponse theory). But, as is evident from Fig. 2, it is
not large enough to realize also condition (b) (coinci-
dence between microcanonical and canonical susceptibil-
ity). Hence we should be able to observe a discrepancy
between the observed temperature, the theoretical pre-
diction of Eq. (75), and the "standard" Boltzmann tem-
perature, given by Eq. (72).
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From the simulations we find

g'), ~ = 0.56,

B
BE(( )o~ ——0.01, (85)

We show in Fig. 4 the result of the numerical inte-
gration of the equations of motion obtained coupling the
system of interest and the booster. We plot in the fig-
ure the evolution of (v2(t)) for a sample of 400 particles,
starting from the initial condition

Io(x, v, (, , g;, t = 0) oc b(v)8(2:)b(Hb „„—E),
- —1B

BE
ln A(E) = 14.95, (86)

from which, using Eq. (75), we expect a temperature of

k~T = 11.78 (s7)

&max (88)

It follows that 4 must satisfy

(x')., && K

The mean quadratic value of x, in turn, is given by

eq — V eq Cd

(so)

(oo)

that must be compared with the numerical results. No-
tice that the significant discrepancy between the Boltz-
mann prediction, Eq. (86), and our prediction, Eq. (87),
as widely discussed in Sec. IV D, is due to the dynamical
property (85). To complete the discussion of our theo-
retical approach to thermodynamics, we now couple the
booster to the system of interest to check whether the
temperature perceived by the system of interest is really
that predicted by Eq. (87).

The coupling constant L must be chosen so that we
are within the range of validity of the linear response
theory. The critical value K below which the booster
responds linearly is

and for different values of the coupling constant A. It
is clear that as far as the dynamics of the mean veloc-
ity square is concerned, the process seems to be a true
brownian motion with exponential relaxation to an equi-
librium value.

From the structure of the FPE, we know that, starting
from the initial condition of Eq. (94), the relaxation of
(v (t)) should be described by a function of the form (we
are in a strongly underdamped regime)

y(t) =k T(1 —.-"). (o5)

We used Eq. (95) to fit the results of the numerical sim-
ulations done for different A. The comparison between
the theoretical prediction for p and the result of the fit is
summarized in Fig. 5. The numerical values for p follow
the theory very closely.

The temperature we expect, on the grounds of
Eq. (87), is shown as a horizontal solid line in Fig. 4. It
is clear that the simulations relax to a value close to this,
which is markedly different from the value expected fol-
lowing the "standard" Boltzmann prescription, Eq. (86),
shown as a dashed line.

Finally, we need to check that the equilibrium con-
dition of the system of interest is indeed. described by a
canonical distribution. This implies that all cumulants of
the variable v of order higher than 2 should vanish iden-
tically. Furthermore, given that the system of interest is
a harmonic oscillator, we also have that the cumulants of
order higher than 2 should identically vanish at all times.

and the mean square value of the velocity is estimated.
by assuming that the thermodynamic prediction we want
to prove [Eq. (75)j is indeed true. Thus, using for the
temperature the value Eq. (87) and for the frequency of
the system the earlier used value, u = 0.2, we find that
A must satisfy the inequality

4 (( (u//kacy T = 0.05.

14-

10
A

8

6

'R''tIN
I I .. AJ i, i. iI, .I ailiik, Ilslsa.

'
',

g a.
+d+'@f./]t. P III IIIVUH II" '.11&]14 DL

vIP ilI &PPPgI&' 's1I'
QlI

"' 'Il I]PII[Pldsls

From the structure of our FPE, we have immediately
that the friction coeKcient, in terms of the system pa-
rameters, reads 0 I

0 20
I

40 60 80
l

120x10

p = 6 ((2)o~/k~T. (o2)

Using Eqs. (84), (87), and (91) we have

~(&10 4. (o3)

Comparing this damping coeKcient to the frequency ~ =
0.2 of the system of interest, we have that the decay is
strongly underdamped: from the FPE, we have then that
the relaxation time is, to a good approximation, given
simply by 1/p.

FIG. 4. Relaxation of (v (t)) for the system of Eq. (80),
and total energy E = 80. The jagged lines are the result
of numerical simulations, done averaging the motion of 400
particles, starting from the initial distribution of Eq. (94),
for different values of A: from bottom right to top left we
have A = 0.001, 0.003, 0.006, 0.01, 0.02, 0.04, and 0.08. The
dashed line is the Boltzmann temperature [Eq. (72)]. The
horizontal solid line is the temperature obtained following our
proposal [Eq. (75)]. The thick solid line superimposed on the
relaxation of A = 0.02 is the best fit done with Eq. (95).
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FIG. 5. Comparison between the theoretical damping from
Eq. (92) (solid line) and the corresponding damping observed
in the numerical simulations, as function of A (squares). The
system simulated is the one of Eq. (80); total energy E = 80.

We checked this property, plotting in Fig. 6 the cumulant
of order 4, for a given 4, as a function of time: it is clear
that indeed, apart &om some statistical fluctuations, this
cumulant is reasonably close to zero.

In conclusion, with the help of a numerical treatment
we have shown that a Hamiltonian booster with only
eight degrees of &eedom is sufBciently large to give the
oscillator of interest thermodynamical properties. The
&iction and the temperature of the oscillator of interest
are proved to fit very satisfactorily the theoretical values.

B. Non-Hamiltonian case

We recall that the theory developed so far can be ap-
plied to a generic system, not necessarily a Hamiltonian
one, like a chaotic map. The reason to use a chaotic map
as a booster is that in this case conditions (i) and (ii)
are exactly satisfied. We showed in the preceding section
that for a system of interest given by a linear oscillator
our theory is indeed applicable: here, given that we are
much more confident about the correct behavior of the
booster, we focus on using a system of interest which
is nonlinear [hence condition (a) does not apply], and on
relying only on condition (c) (NTS condition): in the sim-
ulations, the potential used has the form V(x) = x +z .

There is clearly an intrinsic problem: the nonlinear po-
tential of the system of interest is harder than a harmonic
one. In principle, if the energy of the system increased
enough, the dynamics would involve higher and. higher
frequencies, violating the NTS condition. In practice,
however, due to the choice of the parameters, the equi-
librium distribution involves frequencies small enough to
satisfy the NTS condition, apart from some negligible
contributions coming from the distribution tails.

The theory developed in this paper refers to the situa-
tion when the time is a continuous variable, whereas the
evolution in a mapping takes place at discrete times. We
can cure this problem with an appropriate choice of the
relaxation time in the booster (in the simulations, this
time was taken to be 100 map iterations): the idea is
that, if the relaxation time of the booster is fairly large
compared to 1, then the evolution of the map, on the scale
of its relaxation time, will become indistinguishable from
a continuous one. As for the coupling between the map
and the system of interest, it is obvious that the system
of interest is integrated using a discrete numerical inte-
grator (a fourth-order predictor-corrector, in practice):
the unitary time of evolution in the map is assumed to
be equal to the time step dt used in the integration of
the system of interest.

The map used as the unperturbed booster is the uni-
dimensional piecewise linear map studied by Grossmann
in [41]. This map has a correlation function that is an
exponential with a decay time w that depends on the only
parameter that enters in the equation defining the map-
ping [41]. As we said above, we choose this parameter
so that 7 = 100dt. The system of interest perturbs this
map by an additive term b, zbf (() where bf(() is a piece-
wise quadratic function (see [41]). Applying a constant
perturbation K to the booster, we find that it responds
linearly for ]K~ ( 10, thus characterizing the region of
linear behavior. From [41], we know that, in the linear
regime, the response function S(t)—:By(t)/Bt is propor-
tional to the correlation function p(t), which makes it
easy to evaluate the function c(t). From the results of
Ref. [41], we can easily work out the booster parameters
needed under condition (c); and finally we can evaluate
the coeKcients and the temperature of the FPE.

Figures 7 and 8 summarize the comparison between
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FIG. 6. Plot of the quantity q(t)—:[1 —(v (t))]/[3(v (t)) ]
vs t, for the system of Eq. (80), total energy E = 80, and
A = 0.01.

FIG. 7. Comparison between the theoretical relaxation of
(v (t)) and the simulations for the non-Hamiltonian system
of Sec. V B. The parameters used in the simulations are indi-
cated on the graph.
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numerical simulations
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FIG. 8. Comparison between the theoretical equilibrium
distribution of the variable T [exp —U(x)/k~T], and the sim-
ulations for the non-Hamiltonian system of Sec. V B. See the
graph for a key to the curves.

numerical simulations and theoretical predictions. In
Fig. 7 we compare the relaxation obtained in the numer-
ical simulations with the theoretical prediction based on
the FPE of Eq. (23), with A and B given by Eq. (68), and
the temperature &om Eq. (22) [condition (c)]: we stress
that no adjustable parameter has been used in drawing
the theoretical curves. Similarly, we show in Fig. 8 the
equilibrium distribution of the variable x obtained from
the numerical simulations, and the theoretical predic-
tions. As expected, we find that the distribution is given
by the exponential of the effective nonlinear potential
[see Eq. (23)], divided by the appropriate temperature.
Again, the theoretical curve has been drawn without any
adjustable parameters.

This example shows that a non-Hamiltonian system
with only one degree of freedom can "work" as a thermal
bath for the system of interest. In this case the correct
statistics of the system of interest is a pure consequence
of the central limit theorem applied to the "chaotic" dy-
namics of the booster. For this reason, to obtain the right
statistics we have to use a very small coupling constant
L so that the process of relaxation of the system of in-
terest is very slow compared to the fast dynamics of the
booster. As a consequence we have that the numerical
simulations take, for such a "small" system also, several
days of CPU time.

VI. SOME CENEB.AL KEMAHKS

The most important result of our approach to ther-
modynamics, when compared to the standard one, is its
dynamical derivation. The macroscopic dynamical prop-
erties of the system of interest are the consequence of an
accumulation process of a large number of uncorrelated
booster fluctuations, Altered by the dynamics of the un-
perturbed system of interest. It is a natural consequence,
hence, that the time scale of the booster, compared to the
time scale of the system, should explicitly appear in the
coeKcient of our FPE. This new approach, because it in-
volves the dynamics of the booster directly, shows where

the real problem of a realization of the thermodynamics
lies.

We must admit that it is difFicult to prove in general
that the Hamiltonian boosters exactly fulfill the dynam-
ical properties (i) and (ii) used as hypotheses in our ap-
proach. Only in some cases of non-Hamiltonian boost-
ers is it possible to prove that these properties are ex-
actly satisFied. However, comparing the numerical results
of the Hamiltonian case of the preceding section, where
there is no general theorem supporting these properties,
with the non-Hamiltonian case, where these properties
can be rigorously derived, we see that both result in "or-
dinary statistical mechanics" within the limits of the nu-
merical accuracy. In other words, it seems that Hamilto-
nian systems can also satisfy properties (i) and (ii). But
is this perhaps just an artifact of the Rnite precision of the
numerical results'? We are currently not able to answer.
For example, an important problem still open is whether
the true behavior of the correlation function y(t) in the
long-time region is dominated by fluctuations due to nu-
merical errors. Are these time regions characterized by
an inverse power law or not? If there are long and weak
tails, these may be hidden by the numerical fluctuations,
which play the same role as the environmental fluctu-
ations. In this case, the approach to thermodynamics
illustrated in this paper would not be completely objec-
tive. Notable efforts to rid the approach to thermody-
namics of subjective aspects are those by Prigogine and
co-workers [42].

We do not address directly this very delicate issue,
and we limit ourselves to remarking, on the basis of the
general arguments used by Lee [43], that a rigorous ex-
ponential decay might be incompatible with the current
physical paradigms. According to the main conclusions
of this paper, the presence of slow tails would induce the
breakdown of the linear response, and consequently the
breakdown of ordinary statistical mechanics itself. Since
there is a consensus on the importance and validity of or-
dinary statistical mechanics, we are tempted to conclude
that the inverse power law behavior must be regarded
as an idealization of reality as strong as the exact expo-
nential behavior, and that reality must imply a complex
superposition of these two ingredients, with ordinary sta-
tistical mechanics obtained along the lines here indicated,
and with an exact exponential behavior replaced by a be-
havior which is exponential within the limits of human
observation. This would not be a completely satisfac-
tory approach to thermodynamics, and there are seri-
ous doubts that such a satisfactory approach is possible
within the theoretical framework of the current physi-
cal theories, either classical or quantum mechanical [40].
The avenue illustrated here is, in our opinion, the most
compatible with the physical laws already known.

According to what we said above, the "weakness" of
our theoretical approach to thermodynamics, namely, our
inability to guarantee condition (i) in general, can also
be regarded as a significant result of this paper: the dis-
covery that a rigorous derivation of LRT is a necessary
step to derive statistical mechanics and thermodynamics
from mechanics, with no statistical assumptions.

Note that when only condition (a) is satisfied we have
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a thermodynamics (a temperature) dependence on the
frequency of the system of interest and on the correla-
tion function of the booster, which is clearly an unsat-
isfactory result: condition (a) leads to a very "strange"
thermodynamics. On the other hand, when condition
(c) applies we are forced to use only systems of inter-
est that are very slow compared to the booster and (see
Sec. IVD) the temperature depends on the number of
degrees of freedom of the booster. Thus condition (c)
also does not yield ordinary thermodynamics, although
for real systems where a fluctuation-dissipation process is
observed, it would require some additional investigation
(for instance, comparing susceptibility and autocorrela-
tion function) to appreciate that the thermodynamics is
that typical of condition (c) and not the "canonical" one.
It is only when condition (b) is realized, as in the case
in which the standard canonical Kubo LRT is applicable,
that we have temperature independence of the dynamics
of the booster and of the kind of system of interest used;
this reinforces the idea that the standard canonical Kubo
LRT must be a general property of nature, and that it is
probably the result of the joint action of chaos and of a
large number of degrees of freedom.

Finally, some remarks about the applicability of the
perturbation approach on which the theory here devel-
oped is based. It is clear that for any weak coupling
constant L, there exists a time t* such that for times
shorter than t* the perturbative approach is applicable.
The smaller A is, the larger t* becomes. However, a de-
crease of L increases the relaxation time of the system
of interest, therefore it is wrong to think that it is al-
ways possible to find a small enough 4 such that the
perturbation approach gives the correct results for times
greater than the relaxation time, i.e. , for all times: the
final equilibrium state will be affected by how these two
limits are actually reached. This is particularly strik-
ing in the Hamiltonian case treated here. It is clear (see
Fig. 4) in this case that the equilibrium temperature mea-
sured in the simulations is independent of the parameter
L. However, it is also clear that this temperature divers
by some 10'Fo from the theoretical temperature expected
for the system. Thus also for vanishing coupling 4, the
di8'erence between the theoretical temperature and the
measured one does not decrease.

This discrepancy is due to the obvious fact that we

coupled a booster with a small number of degrees of free-
dom and with energy E to a system of interest with zero
energy. The coupling, as small as it can be, nevertheless
allows a flow of energy from the booster to the system of
interest. The equilibrium eventually reached is such that
the total energy exchanged is not a small perturbation
of the booster energy. So, although the short-time dy-
namics is well reproduced by the theory, the equilibrium,
deduced assuming that the booster is left unperturbed,
in this case is not correct. Even so, we stress that the
equilibrium temperature reached in this situation is much
closer to the temperature predicted following our theory
than to the temperature predicted using the "standard"
Boltzmann principle without any dynamical correction.

We can conclude that, to apply our theory, we must
use a small coupling constant 4 and we must also check

that the booster is never perturbed too much by the sys-
tem of interest. In the case of a Hamiltonian booster this
means that the booster must have a number of degrees of
freedom that is fairly large compared to that of the sys-
tem of interest. In the Hamiltonian case of the numerical
simulations of Sec. V A, we see that eight degrees of free-
dom are perhaps just large enough to be able to apply
the theory, and small enough to appreciate the contri-
bution from the dynamical correction to the "standard"
Boltzmann principle.

VII. CONCLUSION

In this paper we derived equilibrium and non-
equilibrium statistical mechanics from deterministic me-
chanics, using systems with a finite (and small) number
of degrees of freedom. Prom equilibrium statistical me-
chanics we derived thermodynamics, reversing the order
normally followed to derive statistical mechanics, where
thermodynamics is assumed. Our dynamical derivation
yields an expression for the temperature which is only a
function of the mechanical properties (Fourier transform
of the correlation function at a given frequency, suscep-
tibility) of the system.

The comparison of our expression for the temperature
with the "standard" expression for the temperature (ob-
tained using the Boltzmann principle) shows that the lat-
ter is corrected by a factor connected to the dynamics of
the system studied, and which vanishes when the limit of
a system with many degree of freedom is taken. The the-
ory is based on the distinction between variables for the
system of interest and irrelevant variables, following the
standard approach to derive the FPE. Notably, however,
in our approach the irrelevant part is not a thermody-
namical system on its own but rather a (small) dynami-
cal system with chaotic solutions. Numerical simulations
performed for two model systems strongly support our
theoretical arguments.

In conclusion we are convinced that this paper provides
a satisfactory derivation, and generalization, of the Boltz-
mann principle, and of ordinary statistical mechanics, in
terms of dynamical properties with no thermodynamical
assumption whatsoever.
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APPENDIX: DEB.IVATION OF SOME
QUANTITIES OF INTEREST

Let f be a vector of differentiable functions of the vari-
ables q of the system under study. Let 0 be a generic
operator of the form

f(e)
t9

Og
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and let 0+
00+ —= -&(~) .

Oq
(A2)

2
v = —[E —V(x)],

(A6)

be its adjoint. The equalities

(0+~(~)) = (0') l~(~)l = —0" l~(~)] (A3)

hold true, where we used the definition of Eq. (42) and
g is a generic analytic function of q.

To prove the equalities in Eq. (A3), it is simply neces-
sary to explicitly carry out the commutations and work
out the resulting derivatives. If 0 = 1, i.e., it is the dif-
ferential operator responsible for the time translations, it
follows from Eq. (A3) that Eq. (45) is true; furthermore,
for Hamiltonian systems, if q is a vector of canonical vari-
ables, then 0+ = —0, and the last equality in Eq. (A3)
becomes an identity.

We now prove Eq. (44), written here for convenience:

&om which

8 t9 I 0
a. =

a V'(*)aE
8 0= mv(E, z)

|9v
(A7)

Hence the Liouvillian operator 8, defined as

(9 V'(x) t9:——v
Bx m Ov

' (A8)

where

g:— v(E, x—)
8

Bx (A9)

becomes, under the transformation, the new operator g
defined as

(9 ( 8 ') (9 )' 8 ) 8
e -" —=

i
x (t —u) i

——
i

—x (t —u) i

(9v (t9x ) Bv i(9v ) (9x

2
v(E, *-) —= —(E —V(x)] (A1O)

(A4)

To this end, we map the canonically conjugate variables
x, v to some new variables E, x defined as

V2E—:m —+ V(z)
2

(A5)

The inverse mapping is given by

0 8 0 0 8g" = v(E, x) — + v(E, x)

1 19 1

mv(E, z) Bz mv(E, z)2

It follows that

(A11)

From now on, for simplicity we omit the tilde on the new
variable x.

We note that

gX g gX 8
e o" —= m eg " v(E, z)

Bv
' BE

OO

= m v (t —u) +), (g") g"
n=1

= v (t —u) (m + ) —(g")"
n=1

g
v(E, x)2

8=v (t —u) (m
0=v (t —u)(m
8=v (t —u)(m (A12)
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The last equality in Eq. (A12) follows from Eq. (A3).
Note now that

Comparing now Eq. (A16) with Eq. (A14) we can write

1
v (t —u), du'

p va t —u

v (t —u)
1 (&du'= ——

]

—x (t —u) ].v (t —u')2 v iBv )
'

(A17)

1= —v (t —u) m, dx'. (A13)
2: (t u) — v, x

Using this result in Eq. (A12) and going back to the old
canonically conjugate variables x, v, we have

where

v (t —u) (8
~

—u(x, x (t —u), v) ], (A14)
v (Bv )

As function of the old canonically conjugate variables x
and v, Eq. (A13) becomes

tC

v (t —u), , du'
p va t —u

gx
e

Ov

Noting that

(AIS)

v (t —u) cl 1 ( 8—+ —
~

—x (t —u)] l:
v Ov v (clv

=1 (V'(x) 8 ) 8
v (t —u)+] —x (t —u)

i

'U m r9v ) Ov

(8 l 8—
]

—x-(t -u)
I(r9v ) Bx

Bx (t —u) /Dx (t —u)i
Bv ( Bu )

Ox (t —u)
(I9'U

t9—u(x, x (t —u), v) =-
SU

1
v (t —u)

1
u(x, x (t —u), v)—: , dx'

x (t—u) v

It follows that

(A16)

V'(x) cl (&—x (t —u) = 6 x (t —u)+v
]

x (t —u)
~YA O'U (Ox

d (8= ——x (t —u)+v
]

x (t —u)
idt (Bx )

/0= —v (t —u)+v] x (t —u) ],r9x )
(A19)

we obtain Eq. (A4) &om Eq. (A18).
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