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We study the decay law of the Sinai well in D dimensions and relate the behavior of the decay
law to internal distributions that characterize the dynamics of the system. We show that the long
time tail of the decay is algebraic (1/t), irrespective of the dimension D
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I. INTRODUCTION

In a previous work [1] we studied the decay of qua-
sibounded classical Hamiltonian systems in two dimen-
sions, in particular the decay problem for the Sinai well.
In this paper we extend the study to the D-dimensional
case. We will briefly describe what a quasibounded sys-
tem means, but for further details we refer to the original
work.

A quasibounded system is a dynamical system tran-
siently bounded to a 6nite region of the phase space
where an infinite set of nonstable periodic orbits is in-
cluded before it displays unbounded dynamics. The tran-
sition &om the bounded motion to the unbounded mo-
tion is the decay process and the decay law is related
to the bounded transient dynamics. The kind of sys-
tem that we are interested in is fully chaotic, but not
completely hyperbolic. In terms of the invariant set this
means that instead of being completely hyperbolic, it has
a nonhyperbolic (namely, parabolic [2]) subset. One of
the main difFerences with the analogous system in two
dimensions is that whereas in that case, the invariant
set could be fully hyperbolic or have a parabolic subset
depending on the value of a simple parameter; for the
(D ) 2)-dimensional system the invariant set always has
a parabolic subset. In this case the global consequence
on the decay law is that it always exhibits a crossover be-
tween a stretched exponential and an algebraic decay for
long times. One of the main purposes of this work is to
study the long time tail of the decay law in D dimensions
and to relate the decay of population &om equilibrium
to internal distributions that characterize the dynamics.

Our work is organized as follows. In Sec. II we in-
troduce the system that we will call the Sinai well in D
dimensions because it is geometrically similar to the Sinai
billiard [3) in D dimensions, but with a finite rather than
in6nite well. In Sec. III we review some results of the
analogous xnodel in two dimensions [1].

Section IV is the central body of the work and is de-
voted to the study of the temporal decay law both nu-
merically and analytically. We show the results of the
numerical study of the decay that reveal the above men-
tioned behavior, and using ergodic properties we relate
the decay law to interDal distributions that depend on the

internal dynamics. Finally, Sec. V is devoted to discus-
sions and conclusions. We include an Appendix in which
the explicit expression for the transition probability &om
the bounded to the free region is derived.

II. THE SINAI %TELL IN D DIMENSIONS

Our system consists of a point particle of unit mass
in a D (D ) 2) -dimensional square well (hypercube) of
depth —Vo (Vp ) 0) and side a, which collides elastically
with a 6xed scatterer located in the center of the well.
The scatterer is a D-dimensional unit sphere and as usual
we take the speed of the particle to be one. In the study
of the analogous system for D = 2 [1] we consider the
total energy E = p /2 —Vo (0 ( E ( Vo) and explain
in detail how the collision with the scatterer rearranges
the energy among the degrees of &eedom in order that
the particle could transit &om the bounded region to the
&ee one after colliding with the central barrier.

Although the extension to higher dimensions is
straightforward, there are some features to remark on
and we devote the remainder of this section to these re-
sults.

The bounded motion in D dimensions is characterized
by the condition

(2.1)

where n;, i = 1, ..., D, is the normal direction to face i
on which the particle bounces and

1
4'i; = arcsin

1+V /Eo
(2.2)

is the limit angle in D dimensions. The inequality (2.1) is
the condition to have an internal reQection when the par-
ticle reaches the boundary of the hypercube. This result
has been explained in detail for D = 2 in Appendix A of
[1] and for D ) 2 the derivation is similar. As we men-
tioned before, the collision with the scatterer changes the
value of the components of the momentum and this en-
ables the transition to the &ee region, or, in other words,
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the decay process. In the D-dimensional problem the
limit angle 4~; can be related to the probability ~D ( 1
that the particle transits &om the bounded to the &ee
region after one collision with the scatterer. The space
of momenta is a D-dimensional unit sphere in which

d@i; (D)
A(D)

(2 3)

where dpi; (D) and A(D) are, respectively, the solid an-
gle subtended by 4~; and the total solid angle in D
dimensions. In the Appendix we derive an explicit ex-
pression for (2.3) in terms of @b . Here we give the
result

D —1eD ~ 4') ~ (2.4)

which shows that the transition probability decreases
with the dimensions D when 4i; (( 1 for a given (fixed)
energy E.

III. PRELIMINARY REMARKS

In this section we review some results of the analogous
problem in two dimensions [1). The decay of population
N(t) inside the well is characterized by two distributions
specific to the internal dynamics. The first one g(t)dt is
the &action of particles for which the first collision with
the circular scatterer occurs between t and t + dt; the
second one f (t)dt is the fraction of particles for which the
time between two successive collisions with the central
scatterer lies between t and t + Ct. In the decay process
&om the equilibrium population these distributions are
not independent, but related by

dg/dt = —g(0) f(t), (3.1)

In [1] (referred to, in the following, as I) we conclude
that distributions g(t)dt that decrease exponentially or
faster lead to an exponential decay law, while an alge-
braic decay of g(t) gives rise to an exponential decay law
that changes into a power law decay for long times. Our
model is closely related to the periodic Lorentz gas in two
dimensions, in which the problem of the asymptotic be-
havior of the velocity autocorrelation function has been
studied extensively over the past several years both the-
oretically and numerically (see [4] and references cited
therein). In that model we can distinguish two kinds of
behaviors depending on the "6nite" or "in6nite"nature
of the horizon. By definition a periodic configuration
of scatterers has an in6nite horizon if the length of the
Bee motion of the particle is unbounded. Actually if the
horizon is in6nite, then there exist trajectories that never
re6ect &om the scatterers. These trajectories define the
so-called corridors that are characterized by the direc-
tions of the velocity such that v„/v = zi/z2 (here zi
and z2 are coprime integer numbers). The number of
open corridors increases when the radii of the scatter-
ers R decrease. Following the notation of Ref. [5] for the
square Lorentz model, there are at least two of such open
channels corresponding to the x direction and the y di-

rection and we call these channels a and P, respectively.
When ~5/10 ( R ( ~2/4 we have other open channels
p that correspond to v„/v = kl. In I we explained in
detail the connection between the open corridors and the
parabolic periodic orbits that appear in our system when
the radius of the central scatterer decreases. For the Sinai
well a finite horizon, which means g(t)dt decreasing ex-
ponentially or faster, is compatible with the existence of
periodic orbits of hyperbolic type (with no open corri-
dor in the extended I orentz version), whereas an infinite
horizon, g(t)dt with algebraic tail, implies the existence
of parabolic nonisolated periodic orbits that appear for
R & R, and determine the corresponding corridors. In
the former case the decay law is exponential and in the
latter the decay law shows a crossover between an expo-
nential and a power law decay ( 1/t) for long times.

IV. THE DECAY LAW IN D DIMENSIONS

A. Numerical study of the decay

In this subsection we show the results of the numerical
study of the decay. It is a well known fact that for short
times, the behavior of the decay law in D dimensions is
of exponential type [6].

Our main purpose is to understand the behavior for
long times. In other words, we study the long time tail of
the decay law in D dimensions. As we will see in the fol-
lowing subsection, in order to extract information about
the long time tail of the decay it is enough to study the
function g(t)dt, the fraction of initial conditions for which
the 6rst collision with the scatterer occurs between t and
t + dt, for the D-dimensional system [to be more precise

I

we will compute the integral of g(t), G = f, g(t') dt'].
From the numerical point of view, the study of G as a
function of t instead of the decay law N(t)/No has a
great advantage because it requires less CPU time and
we can get better statistics with more initial conditions.
We begin with No ——10 particles with random initial
conditions in the phase space and the ratio Vp/E = 20.
Figure 1(a) shows the results of the numerical study of
G for D = 2, 3, 4 and radius of the D-dimensional scat-
terer R = 0.23. The behavior is exponential for short
times and becomes algebraic for long times (1/t ). Fig-
ure 1(b) shows the tails of G for D = 2, 3, 4 together
with the best fit that predicts for all the curves an ex-
ponent 8 = 1. Figure 2(a) is the same as Fig. 1(a), but
for R = 0.4. For D = 2, G is of exponential type. This
agrees with the result of paper I. For the two-dimensional
system R ) R,i ——~2/4 is compatible with a g(t) of fi-
nite horizon and the decay is exponential for all times.
For D = 3, 4 again the best 6t of the long time tail pre-
dicts an exponent h = 1. Figure 2(b) shows this fit to-
gether with the numerical results of the long time tails
for D = 3, 4. These results suggest that for D & 2 there
does not exist a critical value of the radius that changes
the behavior of the decay for long times as happens for
D = 2 (see I). In terms of the invariant trapped set, we
can stress that for D ) 2 there are always periodic orbits
of parabolic type and the initial conditions asymptotic to
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them are the ones that contribute to the long time tail
of the decay.

B. Theoretical study of the decay

One of the main results of the present paper is that
for the Sinai well in D dimensions, the long time tail of
the decay law is ( 1/t), independent of the dimension
D. To our knowledge this is the first report in which this
result is stated analytically and confirmed by numerical

~~ g(s)/s
1 —(1 —urD) f(s)

(4.1)

where Q(s) = L[Q(t)] means the Laplace transform,

simulations. All the previous works only study the model
in two dimensions [7,8] or conjecture for the D ) 2 sys-
tem an exponential decay of the velocity autocorrelation
function for long times [6]. To begin the theoretical study,
we extend to the D-dimensional case some results of the
previous paper I that allow us to relate the decay law to
the internal dynamics:
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FIG. 1. (a) Numerical results of G for D = 2, 3, 4. We have
fixed a (the side of the D-dimensional square well) as the unit
of length and a//2(E+ Vo) as the unit of time. The log-log
plot shows G vs t for radius B = 0.23 of the central scatterer.
(b) The long time tail together with the best fit to G vs t that
is consistent with the exponent b = 1 for D = 2, 3, 4.

(b)
FIG. 2. (a) Numerical results of G for D = 2, 3, 4. The

units are the same as in Fig. 1. The log-log plot shows G vs t
for radius B = 0.4 of the central scatterer. (b) The long time
tail together with the best 6t to G' vs t that is consistent with
the exponent b = 1 for D = 3, 4.
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(4.2)

and N(t)/No is the fraction of particles present in the
well at time t (the decay law). Taking into account the
equation

dg/dt = —g(0)f(t),
so that

&(s) = 1 —s~(s)/~(0) (4.4)

we 6nally 6nd

&() = ldD g(8)/S
1+ (1 —~~) [g(s)s/g(0) —1]

(4.5)

t =oo
g(t') ch'. (4 6)

We must center our attention on the function g(t)dt for
our D-dimensional problem to study the long time be-
havior (4.6) of the decay law.

We will extend the definition of corridors to higher
dimensions. For that we must appeal to the periodic
Lorentz gas in the D-dimensional case for which statis-
tical properties in the hyperbolic domain (finite horizon)
have been studied in detail in a recent reference [9] and
a numerical study of some universal properties was per-
formed in [6]. We will say that a D-dimensional periodic
Lorentz gas has an infinite horizon if the length of the
&ee motion is unbounded. The first trivial extension is
to define the corridors in D dimensions by the directions
of the velocity v that satisfy v;/v~ = zi/z2 V(i, j), where
zq and z2 are coprime integers. These are not the only
directions that lead in D dimensions to unbounded free
motion. For example, for D = 3 the direction vq ——0,
with v2 and vs arbitrary (compatible with the condition
that the inodulus of the velocity

~

v
~

is 1), is also a
corridor in the meaning of &ee unbounded motion. The
main characteristic to note is that as the dimension in-
creases it is possible to find more directions that de6ne
unbounded motion for any value of the radius of the scat-
terer B & 0.5, which means that there is no critical value
B that destroys the corridors, as there was in two di-
mensions. However, B inBuences the number of open
corridors, since there are some corridors that disappear
whenR) R.

All the trajectories that contribute to the long time
tail of the decay lie almost entirely in some corridor. In
terms of the Sinai well we say that these initial condi-
tions are asymptotic to the parabolic periodic orbits that
exist in D dimensions, leaving the bounded region with
probability u~ after one collision with the D-dimensional

The preceding equation is a straightforward extension
of the one that we have obtained in I for the two-
dimensional problem, being in that case uD —2

——m. To
know Q(t), we must be able to inversely transform (4.5).
Computing the leading term of (4.5) and employing (4.2)
we obtain

scatterer.
At this point it is necessary to emphasize that apart

&om the corridors whose asymptotic initial conditions
contribute to the algebraic long time tail of the decay
with an exponent h = 1 (we call them principal corri-
dors), there are other corridors in which initial conditions
asymptotic to them lead to an algebraic tail of the decay
(1/t") with the exponent p ) 1. A proof of the existence
of these other corridors is given in Fig. 3. It shows for
D = 4 and R = 0.4, there are two curves G as a function
of t In o. ne (dashed line) all the corridors have been pop-
ulated and the exponent for the long time tail is b = 1; in
the other (solid line) we do not consider initial conditions
to be asymptotic to the principal corridors, resulting in
an exponent for the long time tail difFerent &om 1.

Since the global behavior of the decay law for long
times is (1/t) independent of the dimension D, we call
these other corridors hidden corridors because there is no
evidence of them in the long time tail of the decay law.
On the other hand, the intermediate behavior of the de-
cay law, which it is related to asymptotic conditions to
the hidden corridors, results in a superposition of alge-
braic decays with exponents greater than and difFerent
from one, this behavior being more and more compli-
cated as the dimension increases.

We devote the remainder of this section to derive the
explicit dependence on t of the distribution g(t)dt for
initial conditions that are asymptotic to the principal
corridors using the D-dimensional periodic Lorentz gas
model. Without loss of generality we will compute g(t) dt
for the initial conditions that lie in the principal corridor
(D = 3) defined by the directions of the velocity vi/vq ——

+1 and vs arbitrary that satisfy the condition
~

v ~= 1,
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FIG. 3. Numerical results of G for D = 4. The units are
the same as in Fig. 1. The log-log plot shows G vs t for
radius R = 0.4 of the central scatterer. The dashed curve
corresponds to initial conditions in all phase space. The solid
curve results from not having populated any principal corri-
dors. The algebraic long time tail is originated by the hidden
corridors. The best 6t is consistent with an exponent b = 2.
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corresponding this case to B ( B . In Fig. 4 we show
a schematic representation of the mentioned corridor of
width / in which we have cut with the plane z =const the
spherical scatterers at their centers in order to simplify
the figure. We remark that as

~

v" ~= 1 the distributions
in times are equivalent to distributions in lengths.

Let n(t') be the &action of initial conditions for which
the 6rst collision with some scatterer occurs in times t )
t'. As we are interested in the large t behavior, the angle
n is proportional to n(t')

1/t dependence, so in that case

const'
t3 (4.11)

The preceding arguments can be extended to higher
dimensions. For the principal corridors the dependence
on t is exactly the same ( 1/t). For the hidden corridors,
as the dimension D increases, the integration over the
solid angle gives rise to contributions of the type 1/t"
withthe 2& p&D.

and

dn/dt—* g(t*)

(4.7)

(4 8)

C. The decay law in terms of the Laplace transform

We begin computing the decay law %(t) as the inverse
Laplace transform of a function q(A),

const
t2 (4.9)

Use of the expression (4.9) in (4.6) leads to the mentioned
behavior of the long time tail of the decay

(4.10)

We stress that the derivation (4.10) is also valid for the
other principal corridors. In the case of the hidden corri-
dors, vestiges of some principal corridors when B ) B,
the integration over the solid angle leads to an additional

where g(t')dt' is the &action of initial conditions for
which the Erst collision with the scatterer occurs between
t* and t*+dt*. To be more precise we must consider the
integration over the solid angle, but this gives 2m, so we
can conclude that inside a principal corridor

(4.12)

where q(A) can be seen as the &action of initial conditions
that decay at time t and which decay rate varies between
A and A+dA. In the context of (4.12), the whole decay law
can be thought of as the result of infinitely many decay
processes of exponential type, each one characterized by
a decay rate A; this interpretation is independent of the
dimension D. Our purpose is to relate the function q(A)
to g(s), the Laplace transform of the function g(t), which,
as we have shown in the preceding subsection, determines
univocally the decay law. Employing (4.2) and (4.12)

(4.13)

and making the Laplace transform of (4.13)
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(4.14)

V. SUMMARY AND CONCLUSIONS

The left-hand side of (4.14) is the Stieltjes transform of
the function q(A) and arises naturally &om the iteration
of the Laplace transform. Inversely transforming (4.14)
we can determine univocally q(A) from Q(s). Here we do
not give the exact expression for the inversion of (4.14).
For further details see [10]. We would like to empha-
size that this point of view enables us to determine the
fraction of initial conditions that decay at time t with a
decay rate between A and A+ dA when the function g(s)
is known.

FIG. 4. Periodic con6guration of scatterers in D = 3 di-
mensions for a constant value of the coordinate z. The coordi-
nate z has been chosen in order to cut the spherical scatterers
at their centers. The principal corridor defined by vi/v2 ——1
and vs arbitrary, which satisfied the condition

~

v" ~= 1, is
shown. The width of the corridor is L and the angle n ( L/t')
is proportional to the number of initial conditions that collide
with some scatterer in a time t ) t'.

In the present work we have studied the decay of the
Sinai well in D dimensions, this system being an exten-
sion to higher dimensions of the previous one studied in
detail in I. The main difFerence between the (D ) 2)-
dimensional system and the analog in two dimensions is
that being both completely chaotic, the first one has an
invariant parabolic trapped set for all the values of the
radii R of the scatterer, whereas in the second one the
invariant trapped set can be fully hyperbolic or have a
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parabolic trapped subset if R & ~4. In terms of the de-
cay law this means that for the present system the decay
law is always of algebraic type for long times (related
to initial conditions asymptotic to the parabolic periodic
orbits in D ) 2 dimensions). We have related the decay
law in D dimensions to internal distributions that char-
acterize the dynamics and concluded that the exponent
b for the algebraic long time tail is b = 1 irrespective of
the dimension. This behavior is in agreement with the
results encountered in Ref. [11]. In that work the au-
thors investigate in D dimensions a system like a Sinai
billiard [3] and allow the decay providing a small window
in one of the walls of the container. They conclude that
for the regular case (without a scatterer in the center)
the decay law is algebraic ( 1/t), independent of D. As
the trapped set of the regular system coincides with the
parabolic periodic orbits of the Sinai well, the result is
consistent with our conclusion. We also studied the inter-
mediate behavior of the decay law and concluded that it
is related to the so-called hidden corridors, which asymp-
totic initial conditions contribute to the decay law with a
temporal dependence of the type (1/t"), with 2 & ls & D.
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with r = 1, 0 & P & 27r, and 0 & 0; & 7r, i = 1, ..., D —2,
we can derive the expression

O(D) = 2vr

D—2
~

~sin'0, d8; .
~ i 4 h

z=~
(A3)

Employing the well-known formula [12]

sin' 0; d8; = ~sr
r(i+ 1/2)

(A4)

and putting it back in (A3), we obtain

(A5)

In order to compute dpi; (D) we must perform the inte-
gration in the variables 0; with i = 1, ..., D —3 between
0 & 0; ( x and 0 ( OD

so for computing ~D we must have the explicit expres-
sions for O(D) and d@h (D).

Introducing the polar coordinates in D dimensions
(D) 3)

(,W, ei .",OD-2)
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APPENDIX
d4'&; (D) = 2m

D —3

sin'0; d0,.
h a h

In this appendix we derive the explicit expression for
~D, the transition probability from the bounded to the
&ee region after one collision with the scatterer. It can
be evaluated using ergodic theory as the ratio between
all orientations of momentum in the free region and all
possible orientations of momentum.

The space of momenta is a D-dimensional unit sphere
(the modulus of p is 1). Let dpi; (D) be the solid angle
subtended by 4i;, where 4i; is given in expression (2.2)
and O(D) is the total solid angle in D dimensions. As
we have established in (2.3),

d@&im(D)
(Al)

A(D)

X ~D —2 d~D —2.
0

2 (~~)D ' eP '
(D —1) I'(D —1/2)

and from (2.3), (A5), and (A7)

results.

2 I'(D/2) @„.
~sr (D —1) I'(D —1/2)

After a straightfoward calculation we obtain

(A6)

(A7)

(A8)
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