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Use of Hamiltonian mechanics in systems driven by colored noise
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The evaluation of the path-integral representation for stochastic processes in the weak-noise limit
shows that these systems are governed by a set of equations which are those of a classical dynamics.
We show that, even when the noise is colored, these may be put into a Hamiltonian form which leads
to improved numerical treatments and to better insights. We concentrate on solving Hamilton's
equations over an infinite time interval, in order to determine the leading order contribution to the
mean escape time for a bistable potential. The paths may be oscillatory and inherently unstable, in
which case one must use a multiple shooting numerical technique over a truncated time period in
order to calculate the infinite time optimal paths to a given accuracy. We look at two systems in
some detail: the underdamped Langevin equation driven by external exponentially correlated noise,
and the overdamped Langevin equation driven by external quasimonochromatic noise. We deduce
that the bifurcation of the optimal path in the latter case is due to singularities in the configuration
space of the corresponding dynamical system.

PACS number(s): 05.40.+j, 02.50.Ey

I. INTRODUCTION

The subject of noise induced activation has received
a great deal of attention in the past decade or so with
the development of new techniques which allow systems
where the noise is not white (i.e. , colored) to be studied
in a systematic and controlled way [1—4]. While these
techniques were being refined it was natural that only the
simplest of systems were studied: those which consisted
of a single particle moving in a one-dimensional potential
with a relatively simple form of noise. More recently the
investigation of models acted upon by white noise and
having more than one degree of freedom has revealed
novel effects such as caustics and focusing singularities
[5—9]. In these systems it was also found that the leading
order term in the expression for the mean escape time,
that is, the action, was reduced unexpectedly [7].

The appearance of such features can be understood in
the following way. In the limit of weak noise the dynamics
of the system is governed by a set of equations which are
the extrema of the action in the path-integral formulation
of the stochastic process. These equations have the same
form as those of Newtonian mechanics, if the original
stochastic dynamics was underdamped and the noise was
white. Hence the dynamics of these stochastic processes
is controlled by trajectories in a 2n-dimensional phase
space, where n is the number of degrees of freedom of
the system. By analogy with what is found in the WKB
approximation in quantum mechanics [10], we would ex-
pect caustics or focusing singularities to appear due to
instanton trajectories intersecting each other. Within the
Hamiltonian formalism these appear when trajectories in
phase space are projected down onto configuration space
[ll]. In fact, since the Lagrangian that appears in the
path-integral formulation of stochastic processes [see, for
example, (5) later] is non-negative, there are differences
to what is found in quantum mechanics [9]. Nevertheless,
multidimensional systems, without detailed balance and

where ri(t) is Gaussian white noise of strength D.
Let us now make the above comments on the emer-

gence of a classical dynamics in the weak noise limit more
concrete by outlining how a path-integral representation
for the conditional probability distribution of a process
defined by (1) can be written down [13]. One begins by
using (1) to transform the probability density functional
for white noise given by

P[rl] = C exp
~

— rl (t)dt ~,4D (2)

acted upon by white noise, will typically have singular-
ities in configuration space. In this paper we will show
that similar effects can also be expected to occur in sys-
tems with one degree of freedom, but with a more com-
plicated type of noise. To study such effects it is useful,
both from a practical (i.e. , numerical) and a conceptual
point of view, to introduce a generalized Hamiltonian
formalism. In this way a phase space can be constructed
which is multidimensional and hence, since these systems
do not satisfy detailed balance, one may be expected to
see the phenomena mentioned above.

Our starting point is the observation that a system
consisting of a single degree of &eedom, but acted upon
by a rather general form of external noise [12], can be
written as a Markov process which consists of a num-
ber of equations, only one of which involves a noise term
(which is white). These equations can be combined into a
single equation, at the expense of introducing higher time
derivatives. Essentially we have traded a simple system
acted upon by a complicated noise term, for a compli-
cated system acted upon by a simple white noise. We
shall give explicit examples later in this paper. A pro-
cess of the kind we have been describing can be defined
by the generic stochastic difFerential equation
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to the probability density functional for that of the coor-
dinate x:

P[x] = JVJ[x] exp (—S[x])

where S[x] is the action mentioned above and J[x] is the
Jacobian of the transformation. The action is so called
since it may be written as

II. HAMILTONIAN FORMALISM

For a dynamical system which is defined by a La-
grangian of the form L(x, x, x, . . . , x~ l; t), a Hamiltonian
structure can still be constructed (see, for instance, [17]).
To do so one introduces a generalized coordinate vec-
tor q spanning an n-dimensional space with components

(qi, . . . , q„) such that

t

S[x] = dt L(x, *,x, . . . , xi-l;t),
to

q, = x~' —'~

and one writes

where L(x, . . .) given by L(x, x, x, . . . , x~ ~;t) = ) p;q; —H(q, p;t),

L(x, *,x, . . . , x~"l; t) = [f(x-, x, x, . . , x~."l; t)]2.
4

This has the form of a Lagrangian for a mechanical sys-
tem, if the noise is white and the motion is overdamped,
so that no time derivatives higher than the first appear in
(1). For colored noise processes of the type we are inves-
tigating here, there are higher time derivatives in the La-
grangian and the analogy is now with a generalized form
of mechanics. The precise form of the Jacobian factor will
not be required in this paper since we will be performing
our calculations to leading order only and the Jacobian
only enters at next order. Probability distributions, cor-
relation functions, and other quantities of interest can
be found by integration of the appropriate functions over
paths x(t) with weight (3). In the limit of D ~ 0 these
path integrals can be evaluated by the method of steepest
descents, the paths which dominate the integrals being
the ones for which hS[x]/Sx = 0. This leads to the Euler-
Lagrange equation for the optimum path which will be a
2nth-order nonlinear differential equation given by

, d' (BL )).( ' d„ l(~ (,) l

=o.
j=0

(6)

In general, this equation will have no analytical solution
and one has to rely on numerical techniques [3, 14—16]. A
numerical solution will involve the decomposition of such
an equation into 2n coupled first-order nonlinear diKer-
ential equations. It would be convenient to derive the an
expression for the optimal path in such a format auto-
matically. This is instantly provided by using Hamilton's
formalism as an alternative to the Lagrangian method.
We have already mentioned that the structure of Hamil-
tonian mechanics gives one a better insight into why the
optimal paths take on the particular form they do. Now
here is another, more practical, advantage.

The outline of the paper is as follows. In Sec. II we
construct the generalized Hamiltonian formalism appro-
priate to problems of this type and give the case of the
underdamped Langevin equation driven by white noise
as an example. In Sec. III we use the formalism to find
the mean first passage time for this underdamped prob-
lem, but now with exponentially correlated noise, a task
which could not be achieved using the Lagrangian for-
malism [14]. The case of quasimonochromatic noise is
discussed in Sec. IV and we conclude in Sec. V.

where the p, 's have yet to be defined. Now if one demands
that p, = BH—/Oq;, it follows from (8) that

OL

BxU~
= p, +p,+„j=O, ..., n, (9)

where po and p +i are defined to be zero. Froin (6)
and (9) one sees that the components (pi, . . . , p ) of the
generalized momentum vector p should be taken to be

dg
—a ( gL

J ' = ).(-1)' * d„, I ~ (,) I
.

2 ='4

(10)

Hence, by construction, the optimum path given by the
2nth-order difFerential equation (6) can also be found by
solving the 2n first-order differential equations

BH
qi =

pi

and

BHpi-
Bq,

If the Lagrangian does not involve time explicitly, then
the Hamiltonian H also has no explicit time dependence,
and since dH/dt = BH/Bt, the Hamiltonian is conserved.
This reduces by one the number of integrals that have to
be performed.

As an example we shall consider the underdamped
Langevin equation driven by white noise

mx+ ax+ V'(x) = g(t),

L(x, x, x) = —[m,x + x + V'(x)]' (14)

and the Hamiltonian is found to be

~(q, S) = uiq2 + [q2 + V ('ql)].

The optimum path is then the solution of Hamilton's
equations

where q(t) is Gaussian white noise of strength D. Here

V(x) is assumed to be a double-well potential and n is a
friction constant which will be set equal to unity by an
appropriate choice of units of time. The Lagrangian for
this process is given by
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Ii = V2) III. EXPONENTIALLY CORRELATED NOISE

2p2
m2

p2V" (qi)pi j

V (qi)
In this section we consider the process modeled by the

Langevin equation

mx+ x+ V'(x) = ((t), (20)

where ((t) is Gaussian colored noise whose correlation
function is given by

. =P2
P2 = Pim (16) R(t)((t )) = exp

I

—
I

~

D (
r g r (21)

and the action is given by

S = —mq2 + V(qi)= 1 2

2 tp
(18)

The interpretation of (18) depends on exactly what quan-
tity is being calculated. For example, if one wished
to find the stationary probability distribution, then one
would take to ~ —oo so that S = m+2/2 + V(x) in
terms of the original variable x, which just gives the
Maxwell-Boltzmann distribution. On the other hand, if
one wished to find the mean escape rate from a poten-
tial well, one is interested in paths that take an infinite
time to interpolate between stable and unstable points
of the potential and are at rest at both ends. This gives
S = LV, where LV is the barrier height. For the rest of
this paper we will restrict ourselves to the calculation of
this quantity and so will assume an infinite time interval
in what follows. Since for colored noise processes, which
are the real interest of this paper, we cannot, in general,
calculate the action explicitly, we will choose the specific
double-well potential

X2 X4
V(x) = ——+—

2 4

to illustrate our techniques. If we choose to investigate
activation &om the left-hand well to the right-hand well,
then the section &om 0 to +1 will be a downhill path with
zero action. Thus we need only concern ourselves with
the section of the path &om —1 to 0. Having illustrated
the technique on a simple white noise problexn we now
go on to investigate the same system, but acted upon by
exponentially correlated noise.

In this case we can find the required solutions explicitly
enough to allow us to write down the action in closed
form. We are searching for solutions that begin at ex-
trema of the potential with all time derivatives of the
coordinate equal to zero. This immediately tells us that
H = 0 for these solutions, which is a common feature
in models of this type. For this simple case there are
only two of these solutions: a "downhill" solution given
by mx + x + V'(x) = 0 and an "uphill' solution given
by mx —x + V'(x) = 0 (see, for instance, [14]). These
solutions can easily be found as II = 0 solutions of (16):
the downhill solution has pi ——p2 ——0 and zero action
and the uphill solution has pi ——V'(qi), p2

——mq2, and
action given by

This represents the simplest generalization of the noise
in the system first investigated by Kramers [18],which it
reduces to in the r -+ 0 limit. One can see that it is the
simplest generalization by replacing (21) by the condition
that ( obeys the first-order differential equation

r(+ g = rl(t), (22)

where g is a Gaussian white noise of strength D. Equa-
tions (20) and (22) form an equivalent Markov process
with two degrees of &eedom. These equations may be
combined into the single third-order stochastic differen-
tial equation

mx+ x+ V'(x) + r[ m x+ x'+ xV"(x)] = i1(t). (23)

This is of the form (1) with n = 3 and so we expect to be
able to describe the weak noise limit of this system using
either Lagrangian or Hamiltonian dynamics.

The Lagrangian approach to this problem has been
investigated by Newman et al. [14]. However, these
authors were only able to explore the dynamics of the
system for relatively small masses; they were unable to
analyze the underdamped regime. We shall show in this
section that the Hamiltonian approach allows us to do
this.

Using (5) and (23) we can write down a Lagrangian for
this system:

L(x, x, x, x) = -([mx+ x+ V (x)]

+7.[mx + x + xV"(x)])'. (24)

The equivalent Hamiltonian is found in the way described
in Sec. II to be:

2

II(q p) —plq2 + p2q3 + [mq3 + q2 + V ('ql)]

——'[q3+ qzV" (qi)] (25)

with Hamilton's equations given by (ll) and (12). The
action reduces to

We now wish to find the value of the infinite time action
for the bistable potential (19). The downhill solution is,
as usual, trivial: p = 0, n = 1, 2, 3, which gives zero
action. The uphill solution cannot be found analytically
for general m and 7 and only perturbative methods and
numerical solutions are available. The m = 0, general v
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problem is extensively discussed in [3], along with per-
turbative expansions in the small w and large 7 regimes.
Therefore we will restrict ourselves to m ) 0. In Ref. [14]
a numerical calculation of the action for certain values of
m and v has been given, as well as perturbation expan-
sions for small m and small ~. In the rest of the section
we will expand on this treatment, extending it and inves-
tigating the previously unexplored underdamped regime.

For general m, but small w, the action for the uphill
path has the form

S(m, T) = Sp + 7 Si(m) + O(T ), (27)

where Sp ——1/4 is the white noise action for this po-
tential. The first correction Si(m) has the simple forin
[14]

A
E

0.5

0.4

0.3

0.2

0, 1

s~(m) = f xI dt, (28)
I

I I I I g i i i I I I I ~ I I I I ~ I ~ I I I I I I ~ I I I I I I I I I I I
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where xp is the optiinal path for white noise (w = 0) and
is given by the nonlinear di6erential equation

mxp —xp + V'(xp) = 0 (29)

with the boundary conditions xp( —oo) = —1 and
xp(~) = 0.

In the paper by Newman et al. [14] this quantity was
calculated for small m only. However, Eq. (29) is stable
if integrated backward in time, i.e. , starting at zp = 0
golilg 'to xp = —1 (stability is discussed further when the
full solution is considered). Hence one can use a simple
initial value integrating scheme, such as a fourth-order
Runge-Kutta, starting with an infinitely small velocity
xp ——b. While in a formal sense the path over the infinite
time interval is only found in the limit 8 ~ 0, in practice
we find that if 8 is small, the value of the action does not
depend on it. The results for Si(m)/Sp are plotted in
Fig. 1 as a function of logip(m). The dotted line shows
a seventh-order perturbative calculation of Si(m):

1 m m 2m 3m
Si(m) = Sp —+ —— — +

2 5 5 5 10

)+ o( '). (so)
9m 5 3m6

+
5 5

Figure 1 shows the excellent agreement between the se-
ries (30) and the numerical solution for m less than about
0.3, and the catastrophic failure of the series above that
value. This breakdown of perturbation theory may be
due to the change in the nature of the solutions that oc-
curs at m = 1/8 (see below) and a calculation of more
terms in the series (30) might show that the value of
m at which the breakdown occurs approaches the value
0.125. This figure also shows that the value of Si(m) has
a inaximum when plotted against logip(m). Such max-
ima are also seen when plotting actions against logip(m)
([14] and Fig. 2 below). The existence of these maxima
are a consequence of the nonlinear nature of the problem.

Now let us go on to a numerical study of the solution
of Hamilton's equations for general m and ~. As a first
step we linearize the equations about the end points qu ——

a, where a is 0 or —1. To do this we approximate the
potential by a parabola V(qi) = V(a) + 2V"(a)(qi —a),
which leads to linear Hamilton's equations with solutions

FIG. 1. Si(m) plotted against logio(m).

of the form qi ——a+ Q„A„e"",where A„are arbitrary
constants specified by the boundary conditions. The A

have six possible values:

A„=+-, + gI —4mV-(a) )
T

I
2m 2m )

(31)

1 ( I i/I —8m) ( 1+
(2m 2m P (2m

QI —8m)
2m )

(32)

hk
**

1 — . OO
C38

0.6

0 4

0.2

0 i I

—4
I I

4
Iogio(&)

FIG. 2. S„(m,v) against logos (w) for different val-
ues of m.

When a = 0, V"(a) = —1 and we require that qi ~ 0
as t —+ oo for an uphill path, so we select only those A

which are negative. Conversely, when a = —1, V"(a) = 2
and we require that qq ~ —1 as t ~ —oo, thus we must
only take values of A„which are positive, i.e.,
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If m & 1/8, no problem arises. However, if m ) 1/8, two
of the quantities in (32) are complex, which is a signal
that the solutions may be oscillatory. Actually, if v

2m, the real one dominates, implying that the solutions
are not oscillatory near the stable fixed point in this case.
In summary, we can say that, as in the underdamped
Langevin equation with white noise, the system oscillates
about the bottom of the potential wells before making a
transition, unless m & 1/8 or m ) 1/8 and 7. ) 2m.
In this case the substitution y(x) = x(t), which was the
basis of the approach in [14], fails and another technique
has to be used.

The advantage of solving for y(x) is that since —1 &
x & 0, the difFerential equation has to be solved in a
finite range. Unfortunately, in the region of parameter
space where the oscillatory solution exists we have to
solve Hamilton's equations over the range —oo ( t ( oo.
In practice, of course, we have to truncate this span to a
large, but finite, value T and use the boundary conditions

f T) (T&

& 2)

qg]k —/=0,( T)
2)

T1
Vsl+ —1=0

2J
and calculate the action

2

S = dt.
T m272
2

(34)

The extrapolation T + oo is, in fact, not a problem;
the actual transition happens over a time scale of order
a few m and for the majority of the time the particle is
almost at rest at the two end points. Furthermore, this
decay of the position, velocity, etc. , at the end points is
exponential, which means that the truncation can be car-
ried out extremely accurately. However, the simple initial
value techniques of solution which are used in shooting
routines can no longer be used as this problem is in-
herently unstable. This is because, as one can see from
(31), there are growing solutions at both the end points.
In analytic treatments these solutions can be ignored by
setting the arbitrary constants (A ) to zero. Numeri-
cally, roundup errors introduced either through machine
precision or through the solution algorithm make these
constants small, but nonzero. Since these solutions grow
exponentially, whereas the required solution decays ex-
ponentially, they soon take over and any hope of solving
the problem numerically by this method is destroyed.

Normally, it is possible to solve inherently unstable
problems by using a relaxation technique or collocation
such as CoLSYS [19]. However, as noticed in Ref. [14],
this technique is poorly convergent when the solution is
oscillatory. Instead, one can attempt to proceed using
either invariant embedding or multiple shooting tech-
niques. It is the latter that we have used, calculating
the action for w & 2m using MUSN [20]. These techniques

damp out the exponentially growing solution by splitting
the total time span into several smaller time segments
and then matching the solution continuously [21]. In this
regime it turns out that the time of integration T needs
only to be of the order of a few m in order to obtain
reliable results. On the other hand, if we try to find the
solution as a function x(t) in the regime 7 ) 2m, the time
of integration needs to be of the order of a few v, which,
since we are interested in large values of r, becomes a
problem. Fortunately, as we have seen, the solution can
be found as a function y(x) in this case.

The results of the numerical solution are shown in Fig.
2 for several values of the mass. It is convenient not to
plot the action S(m, 7) itself, but the reduced quantity

S(m, v-) —Sp

S-( )
(35)

since this is finite in the limits ~ ~ 0 and w —+ oo, having
the values 0 and 1, respectively. Here So is the action
when w = 0 and S (r) is the action in the large w limit
and is given by [3]

2~
27

(36)

So and S are m independent. For w ) 2m, the hollow
points have been calculated using (y, x) variables and the
solid points using (x, t) variables. The lines are curves of
best fit through these points to aid the eye.

This figure shows that numerically the mass has little
efFect on the action and the overdamped Langevin equa-
tion provides an excellent approximation to the action
for the underdamped system. There seems no reason to
expect this a priori, except for the fact that since in the
limit of small and large T the action is m independent,
there is very little freedom at intermediate values of w to
have significant deviations &om the m = 0 result.

IV. QUASIMONOCHROMATIC NOISE

In Secs. II and III two explicit types of noise have
been considered: white noise whose power spectrum is
flat and exponentially correlated noise which has a spec-
trum centered about zero. A type of noise that has a
definite color, in the sense that it has a power spectrum
peaked at a nonzero frequency, is quasimonochromatic
noise (QMN) [22—26]. Systems acted upon by QMN are
the subject of this section.

The noise ((t) is defined by

( + 21'( + ~ p( = il,

where g is a Gaussian white noise of strength D. Hence,
for the overdamped system x + V'(x) = ((t), the La-
grangian is given by

1 . , 2I' ..I.(x, x, x, x') = — [x+ V'(x)]+, [x+ xV"(x)]
4 Ct)0

- 2
+—,[*-+*-V"(*)+ *'V"'( )1 (38)

COO

and the Hamiltonian is found to be
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II(q g =piq2+ p2qs+ ~ops —I s(~o'(q2+ V')
+2I'(qs+ q2V") + q&V" + q2V'"). (39)

The dynamics will be governed, in the limit of weak noise,
by solutions of Hamilton's equations given by (11) and
(12). For concreteness we will again consider the poten-
tial to be of the form (19) and hence we will require the
truncated infinite time boundary conditions (33) for the
uphill path. The action for the uphill path will be given
by

T

S = ~04p32 dt
T
2

(40)

The downhill path again leads to zero action and will not
be considered further.

An analysis of the linearized Hamilton equations near
the end points along the lines described in Sec. III again
shows there to be oscillations depending on the value of I'
[in fact oscillations occur for I' & min(2, ~p)] and so once
again we are unable to use the (y, x) parametrization
of the solution. Figure 3 shows the generalized coordi-
nates found by solving Hamilton's equations for I' = 0.45
and u0 ——10. This particular value of w0 was chosen to
allow comparison with earlier work [26], where an ap-
proximate solution to the classical dynamics was used to
calculate the action. The value of I' is chosen for clarity:
for smaller values it is harder to illustrate graphically a
complete transition showing the smaller scale oscillatory
features characteristic of QMN, whereas for larger values
these oscillations are absent. As is already known, the
paths have three distinctive features: (i) an underlying
oscillatory factor of angular frequency wp, (ii) an under-
lying growth and decay either side of the transition time
t p given approximately by exp( —I'It —tpI), and (iii) that
they pass over the top of the potential barrier many times
before coming to rest.

These features only occur if I' is less than a critical
value I', (which has a value just less than 2); otherwise
the solution is that of the system acted upon by white

(j)*=v'(*)+o
k~o)

(41)

which has the corresponding action

1 1 (jis= ——,+o
I
—,I.

4 4~o (~o
(42)

This approximate solution is independent of the value of

noise to an accuracy of 1%% (i.e. , of order j/urp2). They
explain why the approximate treatment given in [26] was
successful: there it was assumed that the paths had ex-
actly the features (i) and (ii) above. The last point men-
tioned above shows that one has to distinguish clearly
between a mean 6rst passage and a well transition.

Figures 4 and 5 show the second and third figures of
[26] redrawn with the action calculated from the Hamil-
tonian technique shown as a dotted line. The asterisk
on the action S indicates that it is the most probable
escape path —for I' ( I", the escape path can be either
white-noise-like or oscillatory, but it is the latter that
occurs in practice since it has the least action and so is
most probable. These two figures show the remarkably
good agreement between solving the full equations and
the approximation used in [26]: the value of F, is approx-
imately the same and a maximum value of S*/I' occurs
at I' 0.1. From Fig. 4 one can also see that for I' & I',
S* 3I' and for I ) I', S* 4. The intersection of
these lines gives I', = 8, which is a reasonable estimate.

Difficulties arise for small I' as the time required for
transition goes as I' and hence a longer time span T
is required. If we attempt to rescale time by I', the fre-

quency of oscillations now goes as cup/I' which means we
need a finer grid of shooting points to calculate the ac-
tion to sufficient accuracy. So far we have only been able
to extend our method down to I' = 0.05.

If one writes down an equation for the optimum path
[given by Eq. (12) of [26]] perturbatively in powers of
j/urp2, one finds that the uphill solution is

U'
0

in
0.25
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I

FIG. 3. qz, q2, and q3 against t for I" = 0.45 and (a)p = 10.
FIG. 4. Minimum QMN action S" against I'. The dotted

line is from the Hamiltonian method.
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0.9

0.8

0.7

and the problem has to be solved using time as an inde-
pendent variable and by use of a multiple shooting tech-
nique. Another added problem is the introduction of two
more coordinates, since the Lagrangian now has fourth-
order time derivatives. Though this does not cause any
further instabilities, it does add to the complexity of the
problem and further complicates finding the required so-
lution. We shall not pursue this extension any further,
since it does not introduce any novel features.

V. CONCLUSION

0.4

0.3

0 2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I

FIG. 5. Minimum QMN action S*/I' against I'. The dot-
ted line is from the Hamiltonian method.

I and exists independently of the value of I'. For I' ) I'
it is the global minimum; however, for I' ( I one finds
that the optimum path from —1 to 0 bifurcates. In this
case this white-noise-type path ceases to be a local min-
imum and it is the oscillatory-type path which becomes
a local minimum. The existence of these latter paths is
not obvious when solving Hamilton s equations numeri-
cally; a very thorough search in phase space is required
to find them. This situation is common in a system such
as this with several degrees of freedom: the existence of
caustics and focusing gives rise to bifurcations in opti-
mal paths [7], which makes the prediction of the correct
action difFicult.

An obvious extension of this work is investigate the
driving of the underdamped Langevin equation (20) by
QMN ((t) given by (37). We might expect that driv-
ing an equation such as this with harmonic noise such
as QMN, we would find a problem that is inherently un-
stable with oscillatory solutions. This is indeed the case,

The Hamiltonian formalism has proved effective for ob-
taining results for stochastic systems governed by com-
plicated differential equations. It has allowed us to un-
derstand why optimum paths take on particular forms.
It also indicates that bifurcations related to caustics and
focusing singularities appear as general features of sys-
tems governed by colored noise (even those with only
one degree of freedom) and not just those with white
noise and more than one degree of freedom. The Hamil-
tonian formalism is the natural one in which to inves-
tigate and understand these singularities systematically.
We have also shown that the technique of multiple shoot-
ing, though slower than relaxation and less convergent,
has allowed us to study regions which have so far been
elusive and has opened up the solution of these instanton
paths in terms of the original (x, t) variables. This could
be useful when investigating time-dependent Lagrangians
or more complex oscillatory problems. We now feel that
the structure and general features of optimal paths are
better understood, and that as a consequence the weak-
noise evaluation of escape rates and the stationary prob-
ability distribution for many stochastic processes is now
becoming more straightforward.
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