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The kinetic equations for the single particle distribution function and pair correlation functions
are considered for general nonequilibrium states of a low density gas. The formal relationship of the
kinetic equations for correlations to the Boltzmann equation is used as the basis for constructing
self-consistent kinetic models. The familiar Bhatnagar-Gross-Krook kinetic model for the nonlinear
Boltzmann collision operator is extended to kinetic models for the dynamics of correlations at one
and two times. The results provide a practical basis for describing both Quctuations and transport
phenomena in complex nonequilibrium states.
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I. INTRODUCTION

The nonlinear Boltzmann equation for the one particle
distribution function provides an accurate description of
transport phenomena in a low density gas. Applications
have been limited primarily to states near equilibrium
due to the difficulty in solving this equation. However,
considerable progress has been made using model kinetic
equations obtained by replacing the Boltzmann collision
operator with a representative, but more tractable, op-
erator. The simplest of these is a single relaxation time
model due to Bhatnagar, Gross, and Krook (BGK model)
[1]. The essential qualities of this model are its preserva-
tion of the exact equilibrium solution (with an H theorem
for asymptotic approach to this solution) and all five con-
servation laws. The BGK model is still a complex nonlin-
ear, integro-difFerential kinetic equation for the distribu-
tion function, but several exact solutions are now known
that provide a rare description of stationary states far
from equilibrium [1,2]. Furthermore, this model admits
simpler numerical analysis than the Boltzmann equation
for a wide class of boundary conditions.

The Boltzmann equation does not provide any direct
information about the dynamics of correlations (fluctu-
ations) in the gas, but methods used in its derivation
can be extended to obtain kinetic equations for the cor-
relations in the same low density approximation. The
most general result is a kinetic equation for a generating
functional at low density &om which all multipoint corre-
lations can be obtained by functional di8'erentiation [3].
This approach also makes explicit the close relationship
of the kinetic equations for correlations to the Boltzmann
kinetic equation, and suggests the possibility of formulat-
ing BGK models for the correlation function equations as
well. The objective here is to indicate how this can be
done for the simplest and most important case of pair
correlations.

The dynamics of two point correlations at low den-
sity is a well-studied problem only for the equilibrium

state [4]. Such correlations are described by a linearized
Boltzmann collision operator; even here, practical appli-
cations are obtained only by introducing a corresponding
linearized equilibrium BGK kinetic model. Equilibrium
multipoint correlation functions also have been described
in terms of the linear and nonlinear Boltzmann operators
[5] and applied to steady states close to equilibrium [6].
Ten years ago, there was substantial interest in calculat-
ing equal time pair correlations for stationary nonequi-
librium states as a test of fluctuation theories away from
equilibrium [7]. Most applications were limited to lowest
order perturbation about (local) equilibrium, while non-
perturbative analyses were based mainly on more macro-
scopic hydrodynamic descriptions [8]. More recently,
interest in pair correlations for nonequilibrium steady
states has been revived both by accurate experimental
results [9] and a possible association with the concept
of self-organized criticality [10]. We address here the
problem of describing the dynamics of correlations in the
most general nonequilibrium state. The kinetic theory
is known and well founded for low density, but practical
and accurate approximations are lacking in this general
context. The objective here is to provide kinetic models
of the BGK type for correlations, such that whenever a
solution to the nonlinear Boltzmann-BGK equation can
be obtained the correlations can be determined as well.
The resulting kinetic model provides a realistic basis for
addressing a wide scope of potential applications.

The presentation is organized as follows. Section II
has two parts. In the first part the phase space corre-
lation functions are de6ned, and the kinetic equations
for the single particle distribution (nonlinear Boltzmann
equation) and the correlation functions are given. These
are known results, but their derivation is included in Ap-
pendix A for completeness. The analysis is based on an
expansion in powers of the ratio of the force range to
the mean free path, appropriate for a low density gas
of particles with short range interactions [3]. In addi-
tion, this derivation gives all multipoint correlations at
one or two times in terms of the two-point correlations
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considered in the text. The second part of Sec. II de-
velops the kinetic models for these equations, based on
certain fundamental exact functional relationships. The
Boltzmann collision operator is a given functional of the
distribution function, and the operators characterizing
the kinetic equations for the pair correlations can be de-
termined from it by functional difFerentiation. The prop-
erties of this functional rejecting a stationary point and
conservation of mass, energy, and momentum are indi-
cated, and the corresponding properties inherited by the
kinetic equations for the correlations then are identified
as necessary constraints on construction of simple kinetic
models. The kinetic equation for equal time correlations
has a source term, known as the "noise intensity" (orig-
inating from a Langevin model for fluctuations). The
relevant exact properties of this source also are identi-
fied as constraints for the models. In Sec. III the BGK
model for the nonlinear Boltzmann collision operator is
introduced and analyzed. A corresponding kinetic model
for the pair correlations is proposed, based on the exact
functional relationship of all kinetic equations, stationar-
ity, conservation laws, and properties of the noise source.
Boundary conditions and the efFect of external forces are
briefly discussed in Sec. IV. The formal solution to the
kinetic equations for the pair correlations is obtained in
Sec. V, under the assumption that the Boltzmann-BGK
equation has a known stationary solution. More gener-
ally, the calculation of correlations for a general nonsta-
tionary state follows in a similar way, if the corresponding
solution to the Boltzmann-BGK equation is known. Fi-
nally, these results are summarized in the last section and
some important applications are indicated.

f(yi, yz, t)—:(f (yi, yz, t))
= f (yi, t; y2, t) —8(yi —y2) f (yi, t), (2.6)

respectively. The angular brackets denote an average
over an ensemble specified at some initial time (taken
here to be t = 0). Correlations at two phase points and
times are de6ned by

C(y, t; y', t')—:f (y, t; y', t') —f (y, t)f (y', t')
= (~f(y, t) —(f(y, t))]f(y', t )) (2.7)

Here and below we choose the convention t & t'. At low
density, and for space and time scales large compared
to the force range and collision time, respectively, f (y, t)
and C(y, t; y', t') are determined from the kinetic equa-
tions [3,11,12] (see Appendix A for a derivation)

I

—+v &
I f(»t) = J(ylf(t))

(' o)
(2.8)

( (9
~

—+ v V' —A
~
C(y, t; y', t') = 0.

(cft
(2.9)

(0 + vi Vi —Ai+ v2. '(7z —Az
~
C(yi, t;y2, t)

= B(yi, y2~ f(t)). (2.10)

The last equation requires specie. cation of the initial data
C(y, t', y, t') The an. alysis in Appendix A also provides a
kinetic equation for this equal time correlation function,

II. KINETIC EQUATIGNS AT LQM DEIhlSIT~

The system considered is a low density gas of point
particles interacting via a short ranged potential. Let y =
(r, v) denote the position and velocity of a point in the
single particle phase space. We introduce the microscopic
densities

As expected, Eq. (2.8) for the single particle distribution
function is the Boltzmann equation, where J(y~ f(t)) is
the nonlinear Boltzmann collision operator. The kinetic
equation for the two time correlation function applies for
t ) t' and is a generalization of Onsager's regression law
for the decay of fluctuations around the nonequilibrium
state, f(y, t) It is char. acterized by a linear operator
A, which is related to the nonlinear Boltzmann collision
operator by

f(y t) —= ).~(y —**(t)) (2.1)
Ah(y) = A(y, t~fh) = f dy~ , h(yt). (2.11)~J(ylf(t))

y„t

f(y, t;y', t') = f(y, t) f(y', t'), (2.2)

f (yi, y2, t)—:f(yi, t; y2, t) —~(yi —y2)f (yi, t), (2.3)

f(y, t) —= (f(y t)) (2.4)

the two particle and two time distribution,

f(»t y t ) = (f(»t y t)) (2.5)

and the single time two particle distribution,

where T,(t)—:(r;(t), v;(t)) is the phase point for parti-
cle i at time t. The corresponding average phase space
densities are the single particle distribution function,

Since J(y~ f(t)) is a nonlinear functional of f (y, t), A de-
pends on the solution to (2.8), and the solution to (2.9) is
therefore a functional of the nonequilibrium distribution.
For the special case of A operating on the distribution
function itself, we have

A(y, t~ f, f) (x J(y~ f) (2.12)

[The constant of proportionality depends on the form of
nonlinearity of J(y~ f) For the Bol.tzmann operator it is
2, while for the BGK model of the next section it is 1.]

The equal time correlation function equation (2.10) in-
volves two of these operators, Ai and A2, defined over
functions of yq and y2, respectively, and a source term
B(yi, y2~ f (t)). To interpret this source term, we first ex-
press the nonlinear Boltzmann collision operator in terms
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of a binary collision kernel p(yi, yz~ f(t)), through the
definition

A second essential property of the collision operator
follows &om the conservation laws,

dy2 y(yi, y2
~ f (t) ) = J(yi

~
f(t) ) . (2.13) dv@-(v) J(ylf(t)) = o. (2.21)

Clearly, p(yi, y2~ f (t) ) represents the velocity changes due
to a single binary collision; its detailed form is given in
Appendix A. The source term B(yi, y2~ f (t)) is related to
this collision kernel by

These two properties of the Boltzmann collision operator
are inherited by the kinetic equations for correlations via
the relationships (2.11) and (2.12),

B(»»If(t)) = ~(» yzlf(t)) + ~(yi —»)J(»lf(t))
—(Ai + A2) &(yi —yz) f(yi, t) (2 14)

A(y, ti f(, f() = 0, (2.22)

Further interpretation of this result is given at the end
of this section.

For applications, it is often convenient to consider in-
stead of C(yi, t;yz, t) a closely related single time pair
correlation function, G(yi, y2, t), defined by

dvg (v)A(y, tif, h) = 0. (2.23)

Finally, an essential property of the source term
B(yi, y2]f(t)), related to the conservation laws, is the
orthogonality condition for the summational invariants,

G(yi, y2, t) = f(yi, y2, t) —f(yi, t)f(y2, t)
= C(yi t y2 t) —~(yi —yz)f(yi, t) (215)

dvigu

(vi) B(yi, y2
~ f(t) ) = 0. (2.24)

The kinetic equation for G(yi, yz, t) follows directly &om
(2.10) and (2.14),

|9
~

—+ vi . V'i —Ai + v2 . Vz —A2
~ G(yi, yz, t)

=~(»»lf(t)) (2.16)

(yl&, (t)) = o,

where f~ (y, t) has the form

(2.17)

f((y, t) = exp ) z (r, t)@ (v)
)

(2.is)

The five functions z (r, t) are arbitrary at this point, and
vP (v) are the summational (collisional) invariants of the
nonlinear Boltzmann operator,

vP (v) = (i, v, v j. (2.i9)

In fact, (2.17) is a consequence of (2.13) and the property
for p,

~(»»lf~) =o. (2.2o)

Equations (2.8)—(2.16) show the close relationship of
the kinetic equations for correlations to the nonlinear
Boltzmann equation. The kinetic equations for corre-
lations are linear, but depend on the solution to the non-
linear Boltzmann equation; the latter is autonomous and
can be solved independently of the correlations. This
structure for the equations of transport and correlations
is quite general, and extends to systems other than low
density gases [12,13]. It will be exploited in the next sec-
tion to develop a practical kinetic model for a low density
gas. Several exact properties of these equations should be
preserved by the kinetic model, in addition to the above
structural relationship of J, A, and B. A first relevant
property of J(y~ f(t)) is its stationary point at the local
equilibrium distribution f~,

The proof is given in Appendix B.
The above results show the importance of self-

consistency in modeling the kinetic equations. The sig-
nificance of the conservation laws in the kinetic equations
for correlations is discussed further in Sec. VI. In the next
section, a kinetic model for transport and Huctuations
preserving the relevant exact properties is proposed.

For states near equilibrium the source term B has a
simple physical interpretation. From (2.20) and (2.17)
it follows that for the special case of local equilibrium
Eq. (2.14) reduces to

B(yi, yz~ f~) = —(Ai + A2)b(yi —y2) f~(yi, t). (2.25)

This is the expected local equilibrium generalization of
the fluctuation-dissipation relation derived by Bixon and
Zwanzig [14] and by Fox and Uhlenbeck [15], relating
the amplitude of "noise" from other degrees of freedom
to the equilibrium 8uctuations of f and the linearized
Boltzmann operator (dissipation). The vanishing of the
first two terms of (2.14) for the local equilibrium state is a
"detailed balance" property of p for two particle collision
eKects. In contrast, nonequilibrium states have boundary
and initial conditions or external forces leading to distri-
butions that do not satisfy this condition, and additional
physical effects arise from the first two terms of (2.14).
As illustrated in Sec. V they can lead to very long range
correlations not present in the equilibrium state. They
are also related to very slow relaxation in Huctuation cor-
rections to the nonlinear Boltzmann equation, but this
will not be considered here.

III. BGK MODEL FOR CORRELATIONS

It is clear from the discussion of Sec. II that any kinetic
model for the Boltzmann collision operator will also pro-
vide a model for A, and hence for the two time correlation
function C(y, t; y', t') via (2.11). Also, the orthogonality
property of B, Eq. (2.24), can be imposed to model the
equation for the equal time correlation function. In this
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(ylf(t)) =——~ [f(y t) —f (y t)] (3.1)

where v is a constant collision frequency. (It is straight-
forward to generalize the analysis of this section to more
complex models for which the collision frequency is a
function of the local temperature, density, and velocity. )
The conservation laws, (2.21), are imposed by choosing
the arbitrary functions z (r, t) in the local equilibrium
distribution to satisfy

section, the simplest kinetic model for the Boltzmann
equation is extended to a self-consistent model for the
dynamics of correlations using these relationships.

In constructing a simple kinetic model for the Boltz-
mann collision operator, the primary properties to be
preserved are stationarity and the conservation laws, ex-
pressed by Eqs. (2.17) and (2.21). The simplest func-
tional that vanishes at fi is the local, "linear" form,

g-p(r t) = g-p(rlf(t)) —= dvfi(y t)&-(v)&p(v) (36)

Inversion of (3.5) for the functional derivative gives

b
(r t) = ~(r —' )g p(r t)&p(v )8 yi, t (3.7)

and, therefore,

b
fi(y, t) = f((y, t)b(r —ri)g (v)g p (r, t)gp(vi).

yi, t

(3.8)

A h(y) = —v (1 —P) h(y), (3.9)

Finally, use of this result in Eq. (3.3) gives the BGK
model for A:

dv g (v) [f (y, t) —fi (y, t)] = 0. (3.2)
where P(t) is a projection operator defined over functions
A(y) by

This provides five equations defining the z as function-
als of f, z = z (rl f)—:z (r, t) The c.onstant v is a
characteristic collision frequency that can be chosen to
fit an exact eigenvalue of the Boltzmann collision opera-
tor or some designated transport coeKcient. Equations
(3.1) and (3.2) define the BGK model collision opera-
tor [1], and the resulting model kinetic equation will be
referred to as the Boltzmann-BGK equation.

A corresponding model for the dynamics of the corre-
lations at two diBerent times is obtained directly from
(2.11):

&(u) —= f ~vi
I

~ (ul«(t)) I

) (u~)

aaron

E~f( t) )
lb

dyi h(yi)
&

fi(y t)
I

.
8 yit ' )

(3.3)

The functional dependence of fi on f occurs entirely
through the z . Therefore

b b
, f((y t) = f((y t)&-(v)

~
.-(r t). (34)

A summation convention over repeated greek labels is
assumed. To evaluate the functional derivative in (3.4),
take the same functional derivative of (3.2) to get

b
8(r —ri)@ (vi) = dv@ (v) fi(y, t)f yl~t

dv q. (v)f, (y, t)@p(v)

b
x zp(r, t)

~~(&) = «(& ')4-(~)&.p(' ') f d~~ Oo(~I)~(~ ~&)

(3.10)

This operator is linear with respect to X, but is a non-
linear functional of f (t) through fi. We notice that from
Eq. (3.9) one gets

f(y, t) = J (ylf(t)), (3.11)

which agrees with (2.12). There is a factor of 2 diB'erence
in the proportionality constant relative to the Boltzmann
result which results &om the fact that the Boltzmann-
BGK collision operator is highly nonlinear in f (through
fi) whereas the Boltzmann operator is only quadratic in

f This difF. erence does not represent a strong violation of
the physics of the Boltzmann description, since the rele-
vant property preserved by the model is that the equation
for C can be directly obtained by functional linearization
of the equation for f Amore ge.neral discussion of this
point can be found in Ref. [13].

Next consider the equal time correlations. This re-
quires, in addition to A, a model for B(yi, y2I f (t)).
The primary constraint is that imposed by the conserva-
tion laws, (2.24). To construct our model we first make
the orthogonality of B to the summational invariants ex-
plicit by inserting two orthogonal projections in (2.14),

&(yi, y2 I f ) = (1 —Pi) (1 —P2)
x 4'(yl y2If) + ~(yi —y2) J(yi if)

(Ai + A2)~(yi —y2)f (yi)]. (3.12)

This result is still exact. To define the corresponding
BGK model for B, we replace J and A by J and
A and neglect (1 —Pi)(1 —P2)p(yi, y2I f), leading to
the result

= g p(r, t), , zp(r, t),
~ (»t)

where g p is defined by

(3.5)
(yi y2lf) = v(l Pi)(1 —P2)h(yi —y2)

x [f(y, ) + fi(y, )], (3.13)
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(3.14)

l

—+ Z(t) l c(y, t; y', t') = 0,
B'

(Bt j (3.15)

where use has been made of the property Pi(1
P2) f~(y2)b(yi —y2) = 0. While the orthogonality con-
dition is not sufhcient to determine B uniquely, the
choice (3.13) appears to be the simplest one consistent
with the known form near equilibrium, (2.25). It is shown
in Sec. V that this choice also yields correct results for
correlations in nonequilibrium states.

We have now completed the BGK model for the dis-
tribution function and the correlations. Equations (2.8)—
(2.10) now become

tion equation is then solved for t & t' in terms of the
initial value at t = t . Finally, this initial value is cal-
culated from the solution to (3.16) or (3.18). Since the
correlation function equations are linear, their solution is
a tractable problem for the kinetic model.

It is well known that the BGK equation retains many
of the most important qualitative features of the nonlin-
ear Boltzmann equation, with the obvious quantitative
limitations of a single relaxation time model. To explore
any additional limitations of this more general model for
pair correlations, it is instructive to consider an alter-
native route to constructing a kinetic model. It is clear
&om Sec. II that specification of p completely determines
J, A, and B. In this way complete consistency with the
kinetic theory of Sec. II is maintained. Here, however, we
start with a given kinetic model for J and deduce A and
p. The reason is, of course, that the BGK model for J is
a well-studied and successful model for the distribution
function. The price is that the relationship of p to J in
(2.13) is lost. Instead, the BGK model gives

= v(1 —Pi)(l —P2)8(yi —y2) f(yi, t) + ft(yi, t)

(3.16)

C(t) = v V + v(1 —P). (3.17)

The equation for G(yi, y2, t) equivalent to (3.16) is ob-
tained Rom (2.15),

l

—+&i(t)+ &2(t)
l
G(yi y2 t)

l(B
(Bt

To simplify the notation we have introduced the operator

(yi, y2lf(t)) = o. (3.21)

In fact, there is no choice of p consistent with the exact
relations (2.13), (2.14), and (2.24), and with the B| K
definition (3.1). This is not unexpected since the details
of two particle collisions have been replaced in the BGK
model for J by an average single relaxation time e8'ect.
Consequently, p also must be understood as an av-
erage measure of binary collisions. The illustrations of
Sec. V confirm that the relevant properties of p are re-
tained by p

"(»»If(t)) (3»)
where p is defined in terms of B via (2.14),

IV. BOUNDARY CONDITIONS
AND EXTERNAL FORCES

(y, y~lf) = v (y, y If)
+~(yi —y2) 1 (yilf)
-(Ai "+~. )~(» —»)f(»)

(3.19)

More explicitly, p (yi, y2l f(t)) is found to be

(yi, y2lf) = ~PiP2~(yi —y2) [f(yi) —f~(yi)].

(3.20)

Equations (3.14)—(3.16) provide a model for fluctua-
tions and transport in a nonequilibrium gas that is both
tractable and realistic. There is no a priori restriction
to states near equilibrium, so a wide range of problems
dealing with the dynamics of correlations in both steady
and unsteady nonequilibrium states (including unsta-
ble states) can be considered. The equations must be
solved sequentially. First, the BGK-Boltzmann equa-
tion is solved for given initial and boundary conditions;
next, this solution is used to determine the operator 8
in Eqs. (3.15) and (3.16). The two time correlation func-

v. V' —i v. V'+ m V'„F, ~(y, t), (4.1)

where m is the mass of a particle. The divergence op-
erator with respect to the velocity variable operates on
everything to its right, including E z in the case of non-
conservative forces [16].

Systems driven at the boundaries are represented by
local boundary conditions on the distribution function
obeying the BGK-Boltzmann equation. The microscopic
origins of such conditions are corresponding boundary
conditions for the Liouville equation, in particular due
to the &ee streaming operator. A wide class of bound-

The most interesting applications of the BGK equa-
tions are to nonequilibrium states. These states can arise
&om initial conditions, boundary conditions, external
forces, or a combination of these. The initial conditions
for the distribution function f(y, O) and for the equal
time correlation function C(yi, O;y2, 0) must be given in
any problem. The specific form for any external forces,
F, &(y, t), also must be given for all times. The presence
of this force leads to a modi6cation of Eqs. (3.14)—(3.16)
only through the following replacement everywhere:
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f(r 6 Z, v. ri) 0) = Kf(r 6 Z, v ri (0), (4.2)

where Z denotes a point on the surface and n is a unit
vector normal to the surface and pointing into the region
occupied by the gas. In general, physical boundary con-
ditions are local in space, so that the operator K involves
only transformation of velocities. However, some ideal-
ized boundary conditions used in computer simulations
have nonlocal boundary conditions [18]. The boundary
conditions for C(y, t; y', t'), considered as a function of
y, take the same form as Eq. (4.2). In addition, the
boundary conditions on f (y, t) affect C(y, t; y', t') as well
through the dependence of the operator Z(t) on f (y, t).

The boundary value problem for the BGK-Boltzmann
equation is complicated by the nonlinearity of this equa-
tion. However, since the nonlinearity appears entirely
through the five fields z (r, t) [see Eq. (3.2)], the solution
can be expressed as a functional of these 6elds with the
boundary conditions made explicit. The fields are then
determined by a coupled set of Ave nonhnear integral
equations. While these equations are still formidable,
the number of independent variables has been reduced to
only space and time. Particularly for geometries of high
symmetry (e.g. , planar or cylindrical), this representa-
tion can be quite useful for both analytical and numer-
ical studies. The corresponding solution to the correla-
tion function equations is much simpler, for given f (y, t),
since they are linear. As will be illustrated in the next
section, a Green's function solution can be obtained in
terms of the boundary value problem for an ideal gas.

ary conditions is given by a linear relationship between
the distribution of particles incident on a surface to those
emerging Rom it [17]. For conditions of low density, cor-
relations among particles at the surface can be neglected
and the boundary conditions for each of the degrees of
freedom are imposed independently. Accordingly, the
boundary conditions are attached implicitly to each of
the free streaming operators in the Liouville equation.
The derivation of the kinetic equations for the reduced
distribution functions and the correlation functions in
Appendix A is unchanged, but the streaming operators
there must be understood to carry appropriate boundary
conditions. For the single particle distribution function
they can be expressed in the form

has been specified. Then, the operator A is time
independent and the formal solution to (3.15) is

C, (y, t;y', 0) = dyi K(y, y» t) C(yi, 0; y', 0), (5.1)

K (y, y', t)—:exp (—Et) h (y —y') . (5.2)

C, (y, y') = C.(y, 0;y', 0)

d~ dy, dy2 K(y, yi, ~)K(y', y2, r)

xB (yi, y2~ f,). (5.3)

The parameters of the local equilibrium distribution ap-
pearing in the expression of B are now considered
known via (3.2) since f, is assumed known.

The results (5.1) and (5.3) express the correlations in
terms of the Green's function K(y, y', t), defined in (5.2),
and that is the solution to

/0
+ v V'+ v

I K(y, y', t) = vfi(y)g (v)K (r, y', t),
(Ot )

(5.4)

with the initial condition K(y, y', 0) = 8(y —y'). The
functions K (r, y', t) are defined by

K (r, y', t) = g &(r~f~) dvi gp(v )Ki(r, vi, y', t).

(5.5)

The solution to (5.4) can be reduced to the corresponding
ideal gas problem as follows. Integration of (5.4) gives

K (y, y', t) = Kp (y, y', t)
t

+v «dyi Kp(y, yi, t —r) f((y, )

Stationarity has been used to choose the initial time
t' = 0. The function K(y, y', t) is only a formal repre-
sentation of the Green's function as we now understand
that the &ee streaming operator has boundary conditions
associated with it. The initial condition in (5.1) is de-
termined from the stationary solution to the equal time
correlation function equation, (3.16),

V. STEADY STATE CORRELATIONS
x@ (v, )K (r„y', r), (5.6)

Equations (3.15) and (3.16) are linear and their solu-
tion can be reduced to quadratures once f (y, t) has been
specified, as illustrated below. The difFicult part of the
problem is therefore (3.14), which is still a highly non-
linear integro-differential equation (due to the functional
dependence of fi on f). Exact solutions for nonequilib-
rium steady states corresponding to heat and momentum
transport have been obtained recently for planar geome-
tries [2] and the results here allow the study of correla-
tions in these far kom equilibrium states. To illustrate
the analysis of the correlations, we consider such a sta-
tionary state and assume that a solution, f„ to (3.14)

where we have introduced

Kp(y, y', t) = exp [
—(v 9'+ v) t] b(y —y'). (5.7)

K (r, y', t) = Kp (r, y', t)
t

+ d7- driI p(r, ri, t —r)
0

xKp(ri, y', ~)) (5.8)

The remaining set of five functions K (r, y', t) is deter-
mined by substituting (5.6) into the right side of (5.5) to
give
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with where

ECO fr, y', t)—:g &fr~fr)/dv@pfv)A Of@, y', t) (5.9) B(k, z]v)—:(z+ v —ik. v) (5.16)

B p(k, z) = h p
—I p(k, z), (s.i7)

I p(r, ri, t) = vg ~(r]fi) dvdvi@~(v)Ko(y, yi, t)

x fi(yi) Wp (vi). (5.10)

A. Equilibrium states

For the special case of the equilibrium state f = fi =
f„ the Maxwell-Boltzmann distribution. The source
term BP K given by (3.13) simplifies to

B (yi, y2~ f.) = (&i + &z)~(yi —y2)f (yl) (5'l1)

in agreement with (2.25). Then (5.2) and (5.3) give im-
mediately the expected result for the low density equilib-
rium correlations,

C.(y; y') = ~(y —y')f. (y) (5.12)

or, equivalently, G, (y, y') = 0. Next, use of (5.12) in
(5.1) gives the two time correlation function as

The quantities KO, KO, and I p are determined en-
tirely &om the dynamics of an ideal gas (with appropri-
ate boundary conditions) which is a solvable problem in
general. The Green's function K is then obtained by in-
tegration via (5.6), and the correlation functions via (5.1)
and (5.3). The analysis of this section extends to nonsta-
tionary states as well without significant difFiculty. The
problem of calculating the dynamics of the correlations
is thus completely solved, once the solution to the BGK-
Boltzmann equation has been obtained. To illustrate this
analysis and the fact that the BGK model retains a wide
scope of physical phenomena, we specialize the above to
the equilibrium state and to stationary states near equi-
librium.

n is the number density of particles, and the functions
are linear combinations of the collisional invariants

. The analytic structure of C, in the complex z plane
determines the complete dynamics of C, (y, t;y', 0). The
resolvent R(k, z~v) has a pole at —v + ik v, represent-
ing free particle motion modulated by pure exponential
damping. The remaining dynamical behavior is deter-
mined from the analytic structure of B p(k, z), which
is independent of the velocities. The detailed form of
this function is given in Appendix C. It gives five simple
poles at z (k) that vanish as k + 0. A pole at the ori-
gin represents a conserved quantity, so at finite k these
poles characterize the associated hydrodynamic modes.
To lowest order in k the dynamics are equivalent to the
linearized Navier-Stokes equations. However, it is possi-
ble also to calculate these poles at larger k values as well
to define "extended" hydrodynamic modes. It is found
that these extended modes exist up to some maximum
value of k, corresponding to wavelengths small compared
to the mean &ee path. The real and imaginary parts
for the two propagating modes (i.e. , sound speed and
damping), the heat difFusion mode, and the shear diffu-
sion modes (twofold degenerate) are shown in Fig. 1. In
addition to the hydrodynamic modes there are poles and
branch points which approach —v as k ~ 0. These de-
termine the "kinetic" modes with lifetimes of the order
of v for all k.

This rich dynamics of equilibrium correlations is well
studied for the linearized Boltzmann equation using more
complex models [19]. In spite of the simplicity of the
BGK model, we see that all qualitative features of Buc-
tuations in equilibrium states are preserved and can be
analyzed quite simply.

C.(y, t; y', 0) = K(y, y', t)f, (y'). (5.13)

The correlation function C, (y, t; y', 0) and the Green's
function K(y, y', t) are the same up to a factor f, The.
Green's function is determined from (5.4)—(5.8), which
are easily solved by the I ourier-I aplace transformation

C, (k, k', z; v, v') = dp dp~ ~(&'~+k '~ )
Vp

dte ' C, (y, t;y, 0)

with the result

= (27r) b(k+ k')C (k, ziv, v'), (5.14) —1
(D

(s.is)

C, (k, ziv, v') = R(k, ziv)h(v —v') f, (v)

+—B(k, ziv)B(k, ziv') f, (v) f, (v')

xrti (v)Pp(v')B p(k, z),
FIG. 1. Real and imaginary parts of the extended hydro-

dynamic modes from the BGK model (in units of v).
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B. Stationary states near equilibrium

As a second illustration, consider stationary states near
equilibrium. More specifically, attention is restricted to
the Chapman-Enskog solution to the BGK-Boltzmann
equation. This is a "normal" solution for which the space
and time dependence of f (y, t) occurs entirely through its
dependence on the hydrodynamic fields [i.e. , z in (3.2)].
The solution is obtained as an expansion in the gradients
of these fields and is given to leading order by

(yl y2) = h(yi —y2)f. (yl)

dt e f '+c' 'p(yi, y2~ f,). (5.2i)

where V(r)—:v —u(r) is the peculiar velocity.
The equal time correlation function can be calculated

from (5.3) in the same way as for the equilibrium case
above. However, it is somewhat more direct to express
C, in terms of G, and. use the equivalent integral repre-
sentation for the solution to (3.18),

f (y) ~ f~(y) k~TV Ti

~i
+O 'D'. (v)

01"~
(5.iS)

S(v):—V
~

—mV — kgyT ~,—(2 2 )
(5.i9)

D;, (v) —= m
~

V;V, ——V'8,, ~,
(

)
(5.20)

Here T(r) is the temperature, u(r) is the fiow field, and

This equation applies to both the Boltzmann description
of Sec. II and the BGK model, the difFerence being in
the expressions of 8 and p. The first term has contribu-
tions from both the local equilibrium state and the gra-
dients of the hydrodynamic fields. As in the equilibrium
case this term is proportional to b(yi —y2), represent-
ing short ranged correlations in both configuration and
velocity space. The second term of (5.21) contains qual-
itatively different contributions. In particular, there are
very long ranged spatial correlations. These arise from
the hydrodynamic spectrum of l:. To see this more ex-
plicitly, we note that to lowest order in the gradients the
correspond. ing eigenvectors are proportional to the sum-
mational invariants, g, so there is a hydrodynamic part
of (5.21) arising from the terms

dte '+ ' 'h(ri —r2)M pg (vi)gp(v2) fi(yi) f((y2) = (Zi + Z2) 8(ri —r2)M pQ (vi)@p(v2)

x fi(yi)fr(y2), (5.22)

M~ph(ri —r2) —= g 'gp' dv, dv2$ (v, )g„(v2)p(y„y2~f). (5.23)

A Fourier decomposition shows that the hydrodynamic
spectrum of 8 leads to terms proportional to [A (k) +
Ap(k)] i, representing slow algebraic decay in configu-
ration space. The coeKcients M p can be easily calcu-
lated explicitly for the BGK model for which p(yi, y2~ f)
is found. from (3.20),

D p„= g gp„dvf((v)Q (v)@ (v)D;, (v), (5.27).

These are exaetty the same as those obtained from the
Boltzmann kinetic theory [20], confirming that the BGK
kinetic model retains a correct description of these long
range correlations in nonequilibrium states.

(yi, y2~fa) = —&iRh(yi —y2)f~(~i)

( , OT
x T ' S,(vi)

k@T Ori
VI. DISCUSSIC)N

l
'D, , (vi)

Ou,

Or, )
(5.24)

The result is

1 ( i OT Oti~
~T ' S 0, + D 0, iI (525)'

(5.26)S~p i —g gp dV g V ~ U ~ U Si V )

The objective here has been to describe both transport
(single particle distribution) and correlations (at one or
two times) in a low density gas. The formal statistical
mechanical analysis of the Appendix A, and in earlier
references, provides kinetic equations for the analysis of
this problem. However, their complexity has limited the
scope of applications. Kinetic modeling has proved ef-
fective as a means to probe the content of the nonlinear
Boltzmann equation in a realistic and practical represen-
tation. Here, the simplest BGK model has been extended
in a self-consistent way to apply to the kinetic equations
that determine pair correlations at one and two times for
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the same practical objective. All of the important struc-
tural relationships of the three types of kinetic equations
are preserved by this model. Practicality has been proved
in Sec. V by showing how correlations can be determined
whenever the Boltzmann-BGK equation can be solved.

To emphasize the broad scope of problems addressed,
it is useful to interpret the equations for the correlations.
Equations for the correlations at two times have the exact
structure of those for linear stability analysis of the Boltz-
mann equation. Thus analysis of the correlation function
equations at two times using this kinetic model provides
a practical way of studying unstable as well as stable
states. Preservation of the consequences of conservation
laws assures that this stability analysis includes the entire
field of hydrodynamic stability and bifurcation phenom-
ena. However, it also includes the possibility of exploring
the phase space origin of hydrodynamic instabilities, and
to study instabilities that do not have a hydrodynamic
origin. We do not mean to imply that these difBcult
problems have been solved, but rather that their scope
of analysis has been brought within reasonable control
by the kinetic modeling.

The equations for the equal time correlations also in-
volve the linear operator A. The self-consistent preserva-
tion of conservation laws assures that these equations will
have a slowly decaying, long wavelength hydrodynamic
spectrum for excitations about nonequilibrium states. It
has been proposed [10], and verified perturbatively [7],
that equal time correlations in nonequilibrium steady
states are of very long range (e.g. , algebraic decay). This
is somewhat surprising since the equilibrium state of a
low density gas has no long range correlations, and the
correlations in the nonequilibrium state are expected to
be generic: no "tuning" of driving forces or state condi-
tions are required. The nature of such long range correla-
tions far &om equilibrium is still largely unexplored. Phe-
nomenological Langevin equations have been analyzed
nonperturbatively for special cases, with local equilib-
rium assumptions about the noise amplitude and dissi-
pative transport matrix that limit their range of validity.
In one such example [21], the correlation length for the
steady state depends inversely on the driving force, so
that study of length scales large compared to the corre-
lation length cannot be done perturbatively near equi-
librium. The kinetic models given here, together with
several known steady state solutions to the Boltzmann-
BGK equation, provide the basis for the study of this
problem.

The kinetic theory of transport and correlations pre-
sented in Sec. II is obtained in Appendix A to leading
order in a density expansion. The pair correlations are
determined as functionals of the distribution function
f (y, t), which is a solution to the Boltzmann equation.
These lowest order correlation functions also determine
the first density corrections to the Boltzmann equation.
The kinetic equation for the correction, denoted here by
b f (y, t), is found directly from (A3) for s = 1 and (A9),

/0 + v1 ' + A&
l ~f(» t) = d»&(1 2)G(»» t).

(Dt
(6.1)

Here it is understood that A and G(yq, y2, t) are com-
puted as functionals of the solution to the nonlinear
Boltzmann equation as in Sec. II. The inhomogeneous
term on the right side describes sequences of correlated
binary collisions ("ring collisions" ). The contributions to
G(», », t) &om the hydrodynamic modes described at
the end of the last section are responsible for very slow
dynamics in (6.1), which is qualitatively different from
that of the Boltzmann equation (e.g. , algebraic decay).
Further details of these phenomena and the correspond-
ing BGK model for (6.1) will be deferred to future work.

Finally, we mention work in progress for the special
case of a steady state representing uniform shear How. An
exact, nontrivial, solution to the Boltzmann-BGK equa-
tion is known. However, its stability at large shear rates
has not been determined and suggestions of a possible in-
stability have been noted recently [22]. The kinetic model
equation (3.15) is an appropriate basis to study this prob-
lem without prejudice with regard to a presumed hydro-
dynamic bifurcation. The question of long range correla-
tions for this same steady state is being studied using the
kinetic model equation (3.16). The dominant long wave-
length hydrodynamic modes near the steady state involve
significant rheological effects that can be calculated for
the kinetic model. Similar questions can be raised for
steady states with constant heat Aux, or combined heat
and momentum Huxes, for which exact solutions to the
Boltzmann-BGK equation are known. Also, it is possible
to obtain nonsteady solutions near equilibrium driven by
time dependent boundary conditions. In this case, the
correlation functions measure the competition between
driven and dissipative dynamics.
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APPENDIX A: CORRELATIONS
AT LOW DENSITY

The derivation of the Boltzmann equation from the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY) hier-
archy is described in many texts. However, the cor-
responding analysis of correlations for nonequilibrium
states is less extensive and often contradictory. In this
appendix the scaling properties of the BBGKY hierarchy
for reduced distribution functions at one and two times
are exploited to allow a perturbative solution to the en-
tire hierarchy in terms of an expansion parameter that
is small at low density [23]. The method applies strictly
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only for systems of hard spheres, but the same results
can be obtained for general short ranged forces by more
elaborate methods [3].

The single particle phase space density given in (2.1)
can be generalized to a multipoint density according to

f(')(yi . . y. t)

The scattered velocities are v,' = v; —(g,z r)r" and v'. =
v, + (g;, r)r.

Equations (A3) and (A4) depend on the single dimen-
sionless parameter n = o/Io ——nos, the ratio of the force
range to the mean Bee path. This parameter is small at
low density, suggesting an expansion for the solutions to
(A3) as a power series in n. Without loss of generality,
the residual a dependence of T(i, j) is suppressed and we
look for solutions of the form

21 f22 g
) h(y —z; (t)). (Al)

~ ~ o gg (A6)

f"(y, " y. t)—:(f"(yi " y. t)). (A2)

The average of this microscopic density is the 8-particle
reduced distribution function, Substituting (A6) into (A4) and equating coefficients

gives the kinetic equations determining the coefFicients
f('). To zeroth order in n the solutions are found to be

As in the main text, the angle brackets denote an ensem-
ble average over some specified initial ensemble. These
functions obey the BBGKY hierarchy. A dimensionless
form of this hierarchy is obtained by scaling the space
and time with appropriate scales. Here we are inter-
ested in length scale large compared to the force range,
so the lengths are scaled relative to the mean &ee path,
Io = 1/(nor ); also, the time is scaled relative to the mean
free time, to = Eo/vo. Here, n is the density, 0. is the force
range, and vo is some characteristic velocity. Taking into
account the intensive character of the reduced distribu-
tion functions in the thermodynamic limit, f' is scaled
with 'n/v 'so.

The above scaling is particularly helpful for the special
case of hard sphere interactions. Collisions between hard
spheres yield finite momentum transfer in infinitesimal
times since the force is singular. The BBGKY hierarchy
takes on a difI'erent form for hard spheres, whereby the
singular forces are replaced by binary scattering opera-
tors [11].The resulting dimensionless BBGKY hierarchy
has the form

dy. +i T(t, s+ 1)f '+ (yi, . . . , y, +i, t). (A3)
i=1

fo'(yi " y t) =(8) f, (y;, t),(~) (A7)

where fo( )(y, t) is the solution to the kinetic equation

I

—+» '7i
l fo (yi t)

PB (i)
(c)t )

dy2T12 0 y& t o y21 A8

The solutions to order o. are

8 8f"(yi, , y. , t) = ). fo' '(y*, t)f"(y, , t)
2=1 i82

8 8

+). fo' '(y, t) & (y', y, , t),
i(j kgi, j

(A10)

for s & 3. The functions fi and Gi are solutions to

fi '(yi, y2, t) = fo'(yi, t)fi '(y2, t)

+fo (y2~ t) fi '(yi, t) + &i(yl & y2, t)
(A9)

and

Here T(i, j) is an operator describing the scattering of
the pair of particles (i, j), l

—+ vi &i —&i
l fi (yi, t)

CB (i)
q c)t

T(i, j) = dr 8(r g,~)r g,~

x [b(r;, —nr)b;, —h(r;, + nr)], (A4)
dy2T 1, 2 G& y»y2, 4, A11

where dr denotes a two dimensional solid angle inte-
gration over the sphere for particles at contact. Also,
g;~ = v; —v~ is the relative velocity, r" is a unit vector
along r,~, and b,~ is the scattering operator defined for
any function X(v;, v~. ) by

( c)
l

—+ vi Vi —Ai + v2 . 7'2 A2
l
Gi(y» y» t)

= T(1, 2) fo (yi, t) fo (y2, t). (A12)

6;~X(v, , v~)
—= X(v';, v'). (A5) Here Ai is the operator defined over functions of yi by



KINETIC MODEL FOR PAIR CORRELATIONS 307

~i ~(yi) = dy2 T(1, 2) [fo"(ui, t) h(y2)

+h, (y, )f,"(y„t) j. (A13)

These results give an exact solution to the entire hier-
archy to order o. , with reduced distribution functions of
any number of particles determined as a sum of products
of single particle functions fo (yi, t) and fi (yi, t) and
the pair function Gi(yi, y2, t). The single particle func-
tions are simply the Erst two terms in the o. expansion of
f i l; the pair function is the leading contribution to the
density expansion of G(yi, y2, t) in (2.15).

The Boltzmann limit follows from both low density and
neglect of spatial variations over the force range during
collision. This requires neglect of the remaining o. de-
pendence in (A4) for T(i, j). Then, the kinetic equations
(A8) and (A12) become

To(i,j) = S(r;~ ). dr" O(r g;~) r" g,~ (b,~
—1) . (A19)

The right side of (A16) is recognized as the nonlinear
Boltzmann collision operator for hard spheres, so fo is
indeed the solution to the Boltzmann equation. Equation
(2.10) for C(y, t; y', t) follows directly from (A19) and the
definition (2.15), with B(y, y'l f) given by (2.14).

The analysis of correlations at two times can be accom-
plished in a similar way. Define the two time distribution
function

h~'+'~ (yi, . . . , y„ t; y', t')

= (f"( . . )f"'( ' t')) ( o)

where f~'l is still given by (Al). The two time correlation
of the text is related to h~ ~ by

+ vl ' +i
I fo (yi t) = J(uilfo'(t))

(Ot

l

—+ v] v'] —A] + v2 v'2 —A2
l Gi(y], y2, t)

(A14) C(y, t; y', t') = h" (y, t; y', t') —f"(y t)f" (y', t').

(A21)

The two time distribution functions h~'~ obey the same
BBGKY hierarchy (A3) for t ) t'. A solution in powers
of o. can be obtained from an expansion for h~'~ analogous
to (A6),

J(»lfo '(t)) = d»To( 2)fo'(» )fo'(» t)

(A16)

= To(1, 2) fo (yi, t) fo (y2, t). (A15)

These are the same as Eqs. (2.8) and (2.16), with the
identifications

h '+ (yi, . . . , y„t;y', t')

= ) o.'"h~'+'l (y„.. . , y„ t; y', t') (A22).
n=O

The solution up to order o. is

(8+&) 1 1
ho (yi, . . . , y„t;y, t )

Ai~(yi) = du2 To(1 2) [fo (yi t) h(y2)

+I (y )f' '(y. t)l (A17)

(y' t')f (» . y. t) (A23)

(» t y' t') =f. (» t)f (y t)

p(yi y2lfo ) = To(1 2)fo (yi t)fo (y2 t) (A18) and

+f, (yi, t)f (y', t'), (A24)

hi'+'(yi, . , y. , t;u', t') = fo'(ui, , y. , t)fi '(u', t')+fi'(yi . y. , t)fo '(u' t')
S S

+) . fo (y' t)Ci(y* t' y t )
i=1 jgi

for s ) 2, where fo' and fi' are the same as determined above, and Ci obeys the equation

l(0
l

—+ v V —A
l Ci(y, t;y', t') = 0,

Ot )

(A25)

(A26)

for t ) t . The operator A is given by (A13) and reduces to A in the Boltzmann limit. Furthermore, substitution
of (A25) into (A21) shows that Ci(y, t; y', t') is the first nonvanishing contribution to C(y, t; y', t'), so that (A26)
becomes the same as (2.9). This completes the derivation of all low density kinetic equations for transport and pair
correlations at one and two times.
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APPENDIX B: PROOF OF ORTHOGONALITY CONDITIONS

The orthogonality conditions (2.24) for B play a dominant role in the kinetic model for the equal time correlation
function. The proof of these conditions is sketched here for completeness. The definition of B in (2.14) leads to

dvi&-( i)~(»»if( )) + &-( 2)~(» —")J(»if(t))
—A28(ri —r2)ij'j (v2) f(», t), (B1)

where use has been made of (2.23). From (A19) we note that To(1, 2) has the form To(1, 2) = 8(ri —r2)t(vi, v2).
Consequently, expressing p, J, and A in terms of To(1 2) (Bl) can be written as

dv, P~(v, )B(p„i12~f(t)) = 8(» —») dvi[Q~(vi) +@ (v2)] t(1, 2)f(pi, t)f(», t)

dvit(1 2)f(» t)f(» t) W-(vi) + &-(v2)] (B2)

Since [Q (vi) + Q (v2)] is a summational invariant and unchanged by t(vi, v2) the two integrals on the right side of
(B2) are equal and cancel, giving the desired result (2.24).

APPENDIX C: EQUILIBRIUM EXCIYATIONS

The solution to the correlation function equation is given in terms of the matrix B p = 8 p
—I p, (5.17), which de-

termines the hydrodynamic poles. The matrix I p is obtained from the Fourier-Laplace transform of (5.10), specialized
to the equilibrium state

I p(k, z) = vg dvf, (v)B(k, z~v)Q~(v)@p(v), (Cl)

where B(k, z~v) is given by (5.16). Further analysis is simplified by choosing the summational invariants g (v) to be
an orthonormal set constructed from linear combinations of those i i (2.19),

+()= (~j 4 j4+ j (kpTj ' (kpTj I 4T j (C2)

where vi = k v is the component of v along k, and v2 and v3 are the orthogonal transverse components. With this
choice g p = nb p and (Cl) reduces to

I-p(k z) = A-p(&).
kvo

Here x—:(z + v)/ikvo, vo = (2kiiT/m)ij, and A p(2:) is a symmetric matrix, whose elements are given in terms of
the complex probability integral,

1
Z(x) =

7r

exp —v 2

dv
V —X

(C4)

(A p)=

( Z (-.')'i'[*+ (*'- —,')Z]
A, z —[Z + (-, ) 'i (~ ——,

'
)A i2]

&~a &23
0 0
0 0

v 2(1+ xZ)
v»Ai2
~2xA„

0
0

0 0
Z 0
0 Z
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Since I p is analytic for Re(z) g —v, the singularities
of B

& (k, z) leading to hydrodynamic modes are associ-
ated with values of z for which

D(k, z) = det (B p) = det (b p —I p) = 0. (C6)

This equation has been solved numerically looking for
solutions z = z(k) such that z(0) = 0. In fact, due to the
structure of the matrix A;s, Eq. (C6) factorizes into two
independent equations. One of them is

(C7)

It is easily verified that the twofold degenerate solution
of this equation, z, (k), does not have an imaginary part
and that there is a limiting value of k, k," = ~vrv/vo,

where Eq. (C7) no longer has a solution. Besides, z,
is a decreasing function of k and z, (k;) = —v. These
are the shear modes, and to lowest order in k one gets
the Wavier-Stokes expression z, = —gk, where g is the
kinematic viscosity.

The other equation coming from Eq. (C6) leads to two
solutions which are each others' complex conjugate and
to another real solution. These are the two sound modes,
z~ (k), and the heat mode, ztI (k), respectively . To
Navier-Stokes order, z~ ——Sick —I'k and zH ———D~k,
where c is the sound velocity, I' is the sound damping con-
stant, and D~ is the thermal difFusivity. For the BGK
model, g = I' = DT, in agreement with what is observed
in Fig. 1. The sound modes and the heat mode also
present limiting values of k. Prom our numerical anal-
ysis we have found k+ —1.85v/vo and kH 1.91v/vo,
corresponding to z~ ——zH ———v.
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