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Controlling chaos using time delay coordinates via stabilization of periodic orbits

Paul So* and Edward Ottt
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(Received 15 August 1994)

Using time delay coordinates and assuming no a priori knowledge of the dynamical system, we
propose a method that stabilizes a desired periodic orbit embedded in a chaotic attractor. Similar
to the original control algorithm introduced by Ott, Grebogi, and Yorke [Phys. Rev. Lett. 64, 1196
(1990)], the stabilization is done via small time dependent perturbations of an accessible control
parameter. The control method is numerically illustrated using both the Ikeda map, which describes
the dynamics of a nonlinear laser cavity and the double rotor map which describes a periodically
kicked dissipative mechanical system.

PACS number(s): 05.45.+b

I. INTRODUCTION

In experimental studies of chaotic dynamical systems,
it is often the case that the only accessible information
is a time series of some scalar function ((X(t)) = ((t)
of a d-dimensional state variable X(t). Using delay co-
ordinate embedding technique, Takens [2] showed that a
delay coordinate vector

Z(t) = (((t),((t —TD), ((t —2Tz)), ..., ((t —MTD)),

with a conveniently chosen delay time TD and a suK-
ciently large M, is generically a global one-to-one repre-
sentation of the system state X.(t). Using a Poincare sur-
face of section, we obtain a set of discrete state variables
Z = Z(t ), where t = t denotes the time at the nth
orbit crossing of the surface of section. As pointed out
by Dressier and Nitsche [3], in the presence of paramet-
ric variation, delay coordinate embedding leads to a map
that in general will depend on all parametric changes that
were in effect in the time interval t„&t ( 4 —MTD. The
question that we address is the following: Given a chaotic
system reconstructed from time delay coordinates, how
can we incorporate dependences of past parametric vari-
ations in a control scheme so that a desired attracting
time-periodic motion can be attained? This problem was
previously addressed by Dressier and Nitsche [3] for the
case of a period-one orbit of the Poincare map in which
there was a one-dimensional stable manifold and a one-
dimensional unstable manifold.

Similar to the control method originally purposed by
Ott et aL [1], we wish to make only small controlling
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perturbations to the system. We do not envision cre-
ating new orbits with very different properties from the
already existing orbits. Thus we seek to exploit the al-
ready existing unstable periodic orbits that are embed-
ded in the chaotic attractor. Controlled chaotic systems
offer an advantage in flexibility that any one of a number
of different orbits can be stabilized by the small control,
and the choice can be switched from one periodic orbit
to another without drastically altering the system con-
figuration. The present paper extends previous work [4]
to the case when the future system state of a chaotic sys-
tem depends on the current parametric variation as well
as the previous parametric variations.

To numerically illustrate our method, we apply it to
both a two-dimensional example, the Ikeda map, and a
four-dimensional example, the double rotor map. Physi-
cally, the Ikeda map describes the dynamics of a nonlin-
ear optical cavity and the double rotor map describes a
periodically forced mechanical system, the kicked double
rotor. In the case of the Ikeda map, the stabilization is
achieved by small variations of the amplitude of the light
pulses entering the optical cavity. To control the double
rotor map, stabilization is achieved by small variations
of the strength of the periodic forcing.

II. DESCRIPTION OF THE METHOD

To be specific, we concentrate our discussion on a pe-
riodically forced system and use a stroboscopic surface
of section t = nT~ + to, where T~ is the forcing period.
Assume that the orbit of this periodically forced system
pierces the experimental surface of section r times in the
time interval t ( t ( t —MTD, when the delay co-
ordinate vector Z is being formed. Then, at the next
piercing of the surface of section, the discrete state vari-
able Z +q must depend not only on the current value
of the forcing p, but also on the r previous forcings
p i, ..., p . [We assume that the time-dependent pa-
rameter p(t) is constant in each forcing period p(t) = p
for t ) t ) t i.] Thus the relevant surface of section
map will in general be of the form
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Z„~i——G(Z„,p„,p„i, ...,p„,).
The most direct way to control a nontrivial period T

orbit of the map is to take the Tth iterate of the map
and apply the method developed in Sec. 2.6 of Ref. [4].
However, this method will be overly sensitive to noise,
especially when long-period periodic orbits are involved.
The following is a method that we think in general will
be better. Control is applied at each iterate of the map
instead of each period T. This reduces the chance of the
orbit being kicked out of the control region by noise while
we are waiting for the orbit to cycle through the T peri-
odic points.

Given a period T periodic orbit Z* with Z*+T ——Z*
and with p(t) = p for all t, we can define the following
set of (d x d)-dimensional matrices A and a collection
of d-dimensional column vectors B„,..., B"„+to describe
the efr'ect of small control parameter perturbations on
the linear dynamics of the surface of section map Eq. (2)
near the periodic orbit:

ric perturbations with respect to n. As an example, let
us consider all pairs of points (Z, Z ~i) with h'p g 0.
(The other r groups of data pairs correspond to cases
with bp„ i g 0, ... , or hp„„g0.) Since we have cho-
sen bp„ i —— . . ——8p„,= 0 for this data set, Eq. (4)
reduces to the form

Z„~,—Z„*+,(p) = A„[Z„—Z„*(p)]i B„'b

Then, the d-dimensional column vector Bi (Z*,p) can
be estimated by least-square fitting the data pairs
(Z„,Z„+i)to the above equation. The other B~, 2 (

— j & r + 1, can be obtained in a similar fashion using the
other r groups of data pairs.

In order to include the dynamical dependence of past
parametric variations in Eq. (2) in the consideration of
the control law, we first incorporate both the delay coor-
dinate vector Z and the r past parametric values into a
new (d + r )-dimensional state vector Y

A„=A„gT

8 =B

= DzG(Z, p„,p„i, ... ,p„„),
= Dp G(Z, p„,p„i, ...,p„,),
= D„„,G(Z, p„,p„i, ...,p„„),

(3a)
(3b)

(3c)

Pn —1

Pn —2 (5)

B'+ = B"q'T ——DJ, G(Z) p„)p„i) ... )p„„).(3d)

The partial derivatives defined above are all evaluated at
Z = Z„*(p)and p„=p„i —— . ——p„„=p, which
is the unperturbed parameter value of the system. For
values of p close to p and for Z close to the periodic
orbit Z* (p), the surface of section map Eq. (2) can then
be approximated by its linearization

With this new (d + r)-dimensional state vector Y, we
can utilize Eq. (4) to obtain the following matrix equation
for the linearized dynamics of the combined "state-plus-
parameters" system:

(p) = A-IY- —Y.*(p)1+B-(p- —p) (6)

where

Z-+i —Z.*+i(p) = A-[Z- —Z.*(p)]

+B.'(p. —p) + B.'(p--i p)-
+ . +B'„+'(p .—p). (4)

Y„*= Y„*~T——

( Z.*(p) )

We emphasize that the location of the periodic orbit
and the partial derivatives Eq. (3) can be obtained di-
rectly from experimental time series. In particular, the
location of the periodic orbit and the associated Jaco-
bians A can be extracted from experimental time se-
ries using the standard method described in Refs. [5—10].
The collection of matrices B~, 1 & j & r + 1, that de-
scribes the variations of the map Eq. (2) with respect to
the difI'erent past parametric perturbations can also be
obtained experimentally from time series generated by
intermittently turning on the parametric perturbations
bp = p —p at each (r + 1)th piercing of the surface of
section (i.e., bp = bp g 0 for every n divisible by
r + 1 and bp = 0 otherwise). (We assume hp to
be small enough that the linear approximation is valid. )
The next step in ending the matrices B~ is to extract
sequences of data points (Z ) that are in the neighbor-
hood of the periodic orbit Z* (see Ref. [5]). Since we
are keeping track of the history of the parametric pertur-
bations, we can classify these sequences of data points
into r + 1 groups according to the time of the paramet-

( A„B2 B„' B.
„

B„
0 0 0 . 0 0
0 1 0 . . 0 0
0 0 1 -- 0 0

( o 0 0 . - 1 0

0 )
where 0 is the d-dimensional row vector of zeros. Be-
cause of the periodicity of the partial derivatives Eq. (3),

Here the set of [(d+r) x (d+r)]-dimensional matrices A
and the set of (d+r)-dimensional column vectors B are
d.efined in terms of the partial derivatives given in Eq.
(3):
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the [(d + r) x (d + r)]-dimensional matrices A„and the

(d + r)-dimensional column vectors B„arealso periodic
with a period T. One should note that this new state-
plus-parameters dynamical equation reduces to the orig-
inal linearized dynamics Eq. (4) if we consider only the
first d components of Eq. (6). In particular, say that the
periodic orbit Z is a saddle point with u unstable direc-
tions, s stable directions, and d = u + s. Then, in this
state-plus-parameters representation, the u-dimensional
linearized unstable subspace E„(Y„*)in R( +') is equiv-
alent to the u-dimensional linearized unstable subspace
E„(Z„')in R", while the (s + r)-dimensional linearized
stable subspace E, (Y*) in R( +') is the direct sum
of the equivalent s-dimensional linearized stable sub-
space E, (Z*) in R" and the r-dimensional null space of
A„gA„2.A„Tin R "+

The basic idea of our control algorithm is as fol-
lows. Given a periodic orbit Y* = Y*+& with pe-
riod T and u unstable directions, we either wait for
the system trajectory to come close to the control re-
gion (which we will define later) of the desired peri-
odic orbit Y„*or we can use the various targeting tech-
niques [11—14] to bring the system trajectory near the
control region of Y*. When the system state is in the
control region, we will try to use u small parametric
perturbations p, p +q, . . . , p„+~„q~to control the u un-
stable directions of the combined state-plus-parameters
dynamics. In other words, with the u parametric con-
trols in u iterates, we attempt to bring the deviation
bY +„——Y + —Y*+„to lie on the linearized stable
subspace E, (Y„*

+)
of A„+„iA„+„2. . A„+„T.Af-

ter this is accomplished, the control can be set to p and
the orbit will naturally approach the desired periodic or-
bit.

To get an explicit expression for the control parame-
I

ters, let us consider u iterates of Eq. (6),

Y„+„—Y'„'+„——4„p[Y„—Y„*]+ 4„iB„(p„—p)

+@„2B„+i(p„+i—p)

+ ' ' + n+(u —1)(pn+(u —1) p) &

where

Y~+~ —Y~+~ = +yv~+~ i + A2V~+~ 2

+ ' ' + &s+r vn+u, s+r )

where v +„~,v +„2,. . . , v„+,+„is any set of linearly
independent unit vectors in R"+" that spans E,(Y*+„).
[Recall that E,(Y'+„)is the sum of the linearized stable
subspace of Z'+„and an r-dimensional null space. ] Com-
bining Eqs. (9) and (11), we then have (d + r) equations
with (d + r) unknowns, p„,. . . ,p„+(„i), ni, . . . , n, + .
This can be solved to obtain an expression for the re-
quired control parameter

p„=p —K„[Y„—Y„*], (12)

where

K„=~C„@„p
and r denotes an (d + r)-dimensional row vector whose
Grst entry is one and whose remaining entries are all ze-
ros. The [(d+ r) x (d+ r)] -dimensional matrix

4n j = An+u —iAn+u —2 ' ' ' An+j+iAn+j (10)

for j = 1,2, . . . , (u —1), and O' „=I. We wish to
place the deviation of the state vector bY +„onthe lin-
earized stable subspace E,(Y*+ ) at Y*+ . Assuming
that this is accomplished, there exist (s + r) coefficients
ag) o.2). . . ) o.,+„suchthat

n (@n iBn ~ @n,2B +1n' ' @n,u iBn.+u —2 —Bn+u —l.vn+u, l vn+u. , 2 ~
' + )n+vu~)8 (14)

is the "controllability" matrix with a similar meaning as
in linear control theory such that the invertiblity of C„
implies the controllability of the periodic point Y

The construction of our control law Eq. (12) is based
on the linearized Eq. (6) and in general we expect it to
apply in the local neighborhood N(Y*) near Y*. On
the other hand, since we envision applying only small
parametric perturbations ~p

—
p~ ( hp in our control

algorithm, we shall define the control region to be the set
of all points Y within the slab,

K~[Y„—Y„']& bp

For a given value of bp, the slab defined above inter-
sects the local neighborhood N(Y') and its preimages.
Points in the local neighborhood N(Y ) will in general
be controlled by Eq. (12) and we expect that, under for-
ward applications of the control law Eq. (12), points in
the preimages of N(Y*) will eventually fa'll into the lo-
cal neighborhood N(Y') and be controlled also. In our
following numerical experiments, we have chosen to acti-
vate control according to Eq. (12) only when the values
of Y are within the slab defined by Eq. (15) and the

I

control parameter is left at its nominal value p other-
wise. However, because of nonlinearity not included in
the linearized Eq. (6), the control might not be able to
bring the orbit to the desired periodic point for all points
in the slab. In this case, the orbit will leave the slab and
continue to wander chaotically as if there was no control.
Since the orbit on the uncontrolled chaotic attractor is
ergodic, after a chaotic transient [4], the orbit will once
again enter the slab and may also be suKciently close to
N(Y„*)so that control is achieved.

In our derivation of the control law Eq. (12), although
we only gave an explicit expression for the required para-
metric perturbation p at time n, we can, in principle,
solve for all the control parameter values to be applied
in the next u iterates p„,p„+i,. . . , p +„i from Eqs. (9)
and (11). In the presence of noise, however, this is not a
good idea (assuming u ) 1) since it does not take advan-
tage of the opportunity to correct for the noise on each
iterate. Therefore, we believe that, in the presence of
noise, it is best to perform the calculation of p via Eq.
(12) on each iterate.

In the paper by Dressier and Nitsche (see Ref. [3]),
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past parametric dependence (r = 1 in their work) in the
dynamical equation using delay coordinates embedding
introduces a possible instability in their proposed con-
trol laws. For certain instances, it is possible that the
required perturbations bp will grow in time even when
the system state is arbitrary close to the periodic orbit.
This instability will eventually force the orbit to exit the
control region. Their solution is to apply controls only at
every other steps instead of at every step so that bp can
be reset to zero every other step. This is equivalent to
eliminating the term in the control law that depends on
the previous parameter. By utilizing the stable subspace
E, (Y'*) of the combined state-plus-parameters system,
the required perturbations in our control law are linearly
related to the deviations of the system state Y from
the periodic orbit Y . Thus the instability related to the
increase of bp as in Dressier and Nitsche's method will
not occur here.

III. NUMERICAL RESULTS

As a demonstration of our control method, we will use
the Ikeda map as our first example. The Ikeda map de-

t

scribes the dynamics of a nonlinear optical cavity and
is given by the following two-dimensional map in state
space:

,( n +q & t'a + 0.9(u cos s —v sin s )l
n+i =~ 0.9(u sin s + v„cos s )

(16)

where s„=0.4 —6.0/(1 + u2 + v2). The magnitude and
angle of the complex quantity u +in defines the ampli-
tude and phase of the nth light pulse inside the cavity and
a is the amplitude of the light pulse entering the cavity
at time n. We will be using a as our control parameter
in this numerical example. (For a detailed physical de-
scription of this map, refer to Hammel et al. [15].) At
the nominal value of a = a = 1, this dynamical system
possesses a chaotic attractor with a Lyapunov dimension
of 1.71. Embedded in this attractor, we have chosen the
following three unstable periodic orbits for our numerical
experiment [16]:

X„*2= (u„*2,v„*~)= (0.509 84, —0.608 37)(0.621 60, 0.605 93),
X„*s——(u„*s,v„*s)= (0.085 797, —0.883 23) (0.777 97, 0.767 17)(1.0140, —0.983 24),
X„*s——(u„*s,v„*s)= (1.0447, 0.8002) (1.4917, —1.0775) (0.962 44, —1.6557) (0.394 62, —1.6138)(—0.221 33, —0.862 58).

As indicated by their subscripts, X„*2,X„'3,and X„*5,are
periodic points of Eq. (16) with period 2, 3, and 5, re-
spectively.

To generate our time series (( j, we have chosen

as our experimental output [17]. In this case, the dynam-
ical equation in delay coordinates Eq. (2) depends on a„
as well as on a q (r = 1 in this case). Since we know the
exact map Eq. (16) and the scalar output function Eq.
(17), we can directly calculate the matrices A, B~, and
B, appearing in Eq. (4). (As we have mentioned earlier,
we can also obtain these matrices from time series using
methods described in Refs. [5—10]. There is a good de-
scription in Ref. [3] to calculate the matrices B~ and B2
explicitly from experimental time series. ) Choosing the
maximal allowed perturbation ba to be 0.01, Figs. 1
and 2 summarize our main results for the Ikeda map.

We plot the values of the scale output ( as a function
of time n in Fig. 1(a) and we plot the applied parametric
perturbations bp as a function of time n in Fig. 1(b). In
these figures we turned on the control for the first peri-
odic orbit X„2at n = 0. After a chaotic transient (lasting
until n 3700), the orbit X„*2was stablized. Then, we
successive switched our control to the other two periodic
orbits X„*3and X„*5.The times at which the control was
switched so as to stablize X„*3and X„*5are indicated in
the Fig. 1 by arrows. In this figure, one can clearly see the
fIexibility ofFered by this method in controlling difI'erent
periodic orbits embedded in a chaotic attractor recon-
structed from time delay coordinates. Although the time
to achieve control varied from case to case, in all cases,
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the parametric control was able to bring the orbit close
to the desired periodic point within a couple thousands
of iterations.

This brings us to the issue of chaotic transient between
the time when control is activated and the time when
control is achieved. To study the time to achieve control,
we begin with a large number Mp ——20 000 of random
initial orbits uniformly chosen on the attractor and we
calculate the number of orbits remaining uncontrolled
M(n) as a function of time n. An orbit is considered to
be under control when the required parametric perturba-
tions ha remains within the range [O, ba ] for at least
ten consecutive iterations. %'e expect the quantity M(n)
to decrease according to an exponential law

where (n) is the average time to achieve control [4].
In Fig. 2(a) the periodic orbit being controlled is X„s

and we have plotted ln[M(n)/Mp] (denoted by a plus
sign) as a function of n, From .this graph, one can clearly
see the expected exponential behavior for the time to
achieve control. The slope of this graph gives the ex-
pected average time to achieved control (n) for a ran-
domly chosen orbit on the attractor to be approximately
2500 iterations. To illustrate the eKect of noise on this

average time to achieve control, we plot three additional
graphs Figs. 2(b) —2(d) showing again 1n[M(n)/Mo] vs n
for the cases where the output function Eq. (17) has an
additional noise tezm

where b is a random variable distributed uniformly be-
tween 0 and 1 and e is the magnitude of the noise. Fig-
ure 2(b) shows data with e = 10,Fig. 2(c) shows data
with e = 10, and Fig. 2(d) shows data with e = 10
In these graphs, we can see that except for the case when

10 the other three data sets, within expected er-
rors, give the same average time to achieve control. The
much slower convergence and the nonexponential behav-
ior exhibited in the case with e = 10 indicate that the
noise is large enough so that many probably controllable
orbits are being kicked away from the control region by
noise.

To appreciate the importance of past parametric con-
sideration in controlling systems using delay time coordi-
nates, we now blindly assume that the surface of section
map Eq. (2) depends only on the current parametric per-
turbation. Then, the required control parametric pertur-
bation ba, for the Ikeda map in delay time coordinates
with the output function given by („=u„,would be

{c)
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FIG. 2. Ikeda map: the natural logarithm of the fraction of uncontrolled orbits verse time. A sample of 20 000 initial orbits
were chosen randomly over the attractor. An orbit is said to be controlled if 0 ( ba ( ba for at least ten consecutive
iterations. The periodic point controlled is X„*~.(a) + denotes data calculated with e = 0, (h) 0 denotes data calculated with
e = 10, (c) o denotes data calculated with e = 10 (d), and D denotes data calculated with e = 10
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a„-a = —(I 0)[B„':v„'] A„[Z„—Z„'],

where the two-dimensional column vector B and the
two-dimensional matrix A„aredefined as in Eq. (3), v„'
is the stable eigenvector of A A q

. A ~T q~, and
the delay vector Z„is equal to ((„,(„i) = (u„,u„i).
Figure 3 shows a section of the history of („for the two
control methods: (a) Eq. (12) and (b) Eq. (20). In both
cases, all parameters in the dynamical system were the
same and we started the procedures with the same initial
condition. The initial condition was chosen such that the
initial orbit was within a distance of 10 4 away from the
desired periodic orbit Xp5 While our control method was
able to further decrease the measured deviation g„—(„'
down to the machine accuracy (= 10 is), the control
method without past parametric consideration was not
able to stabilize the orbit. This result tells us that in
typical cases when delay time coordinates are involved,
paraxnetric control methods xnust take past parametric
dependences into consideration.

To demonstrate our method in a high-dimensional sys-
tem, we will apply it to a periodically kicked xnechanical
system known as the kicked double rotor [4]. On the
"stroboscopic surface of section, " this mechanical system
can be represented in state space by a four-dimensional
map in the form
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where O = (8,0 ) are the two angular position co-
ordinates, O = (8, 0 )+ are the corresponding angular
velocities, and H(O) is a nonlinear function. Wi and
Vf2 are two constant matrices de6ned by the friction co-
efBcients and moments of inertia of the rotor. We take
as the control parameter of this system the strength of
the kick f„Setting th. e nominal value of f„to f = 9
and the other parameters of the system to the ones in
Ref. [4], the system processes a chaotic attractor with a
Laypunov dimension of 2.838. To generate a scalar time
series (( ), we will use

(22)

FIG. 3. Ikeda map: logiO~Y'„—Y'„'~vs n The perio. dic orbit
being controlled is X„5.The test orbit was initialized within
a radius of 10 away from the periodic point. (a) Control
method introduced in this paper. (b) Control method without
past parametric consideration.

With the choice of this output function, the correspond-
ing dynamical equation in delay time coordinates Eq.
(2) will depend on bf„as well as on the three past
parametric perturbations bf i, bf 2, and bf„s,where
bf = f —f (r = 3 in this case). The unstable periodic
orbit

XR (~1 ~2 ~l 02 )
= (3.1402, 0.481 05, —2.0364, 0.742 49)(2.3090, 0.565 80, 4.4182, 4.6514)(—0.834 74, —1.5220, —2.3818,—5.3938),

(23)

which we are attempting to control, is a period three or-
bit embedded in the attractor and it has two unstable
directions and two stable directions. In our control al-
gorithm, we have set the maximum allowed parameter
perturbation bf to be equal to 1 x 10 4. Figure 4
shows a history of the observed scalar output &om the
map as a function of time n. At time n = 0, the orbit
Grst enters a neighborhood of radius 10 4 around the
periodic point X& and parametric control is activated at
this time. One can see that the orbit quickly converges
to the desired periodic orbit as n increases. As indicated

by the small size of the neighborhood within which the
orbit converges, we expected the average time to achieve
control in this case to be quite large (on the order of 10i2
iterations). This decrease in the size of the controllable
region is mainly the consequence of using delay time em-
bedding. In general, to uniquely deterxnine a state of
the system, we need to wait at least d iterations (d is
the dimension of the system) to form the delay vector.
Thus, even if the orbit is at a distance 8 away &om the
periodic orbit at time n, the orbit will be at a distance
of A"b away &om the periodic orbit when the orbit can
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[20,21]). In this method, one attempts to achive stabi-
lization by an ad hoc feedback perturbation that is pro-
portional to the difFerence between the state of the sys-
tem and its desired periodic state (the parameter of the
system is assumed to be fixed at its nominal value), i.e.,

Z„+i——G(Z„,p) —K(Z„—Z„'),
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where K is an adjustable gain matrix and Z' = Z'+& is
the desired periodic orbit. The stability of the periodic
point Z' depends on the spectrum of eigenvalues of the
following stability matrix [22]:

FIG. 4 Rotor inap: &ogio~Y —Y'~ vs n The .periodic
orbit being controlled is X&. Parametric control is activated
at n = 0. (f = 9 and bf = 0.1)

be represented uniquely by the delay vector. (Here A
is the largest multiplier of the periodic point. ) Thus,
typically, we should expect the size of the controllable
region in delay time coordinates to be a factor of (1/A) ~

times smaller than the controllable region in regular state
space coordinates. This efFect will become more evident
in higher-dixnensional systems. With this long chaotic
transient time, we believe that some kind of targeting
techniques [11—14] will be essential in controlling these
high-dimensional systems in delay time coordinates.

where A„is the Jacobian of C(Z) [see Eq. (3)] eval-
uated at Z with p fixed at p. The periodic orbit can
be stabilized if the magnitude of the largest eigenvalue

(K) of L(K) is less than one. In most experimen-
tal cases, K is simply a scalar factor K multiplied by
a projection operator P. To illustrate this proportional
feedback control scheme, we will agian use the Ikeda map
Eq. (16) and the output scalar function („=u to gen-
erate our time delay vector Z„.In Figs. 5(a) and 5(b),
the projection operators that we have chosen for K are

lnl X, I

IV. CONCLUSION

In this paper, we have presented a method for con-
trol of chaotic systems using time delay coordinates.
To take the dynamical dependence of past parameters
into consideration, our parametric control law is con-
structed based on the combined dynamics of the state-
plus-parameters system. In our numerical example using
delay time coordinates, we have found that parametric
control of unstable periodic points can only be achieved
if we take past parametric perturbations into considera-
tion (except the case when past parametric dependences
are absent from the dynamical equation [23]). We found
that our method is efficient in controlling and fIexible in
switching among difFerent unstable periodic points em-
bedded in an attractor of low dimension (the Ikeda map).
However, while the method is able to control unstable pe-
riodic point embedded in a higher-dimensional attractor
(the double rotor map), the chaotic transient time re-
quired for the orbit to come near the control region will
in general be unacceptably long. While progress is being
made in controlling high-dimensional systems [18],we be-
lieve that targeting and multivariant control [19] (using
more than one control parameter) are two key issues in
developing control schemes for high-dimensional systems
with delay time coordinates.

(a)

-20

-10

-10

lnl X m~l

K
5

K
10

APPENDIX

An alternative route to stabilizing unstable periodic
orbits is via empirical proportional feedback (see Refs.

FIG. 5. Ikeda map: 1n~A (K)~ vs K. (a) K = KP . (b)
K = KPg. The periodic orbit being considered is X.„*3and it
can be stabilized by the proportional feedback scheme for the
values of K such that 1n~A (K)~ ( 0.
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(a) P =
] 0 0 ~

(b) Pg=
[ 0 I ~

andthePeriodicfl 01 fo 01
(0 0) (0 I)

orbit being considered is X„3.In this graph, the loga-
rithm of ~A (K)~ is plotted as a function of the scalar
factor K. The periodic orbit X„3can be stabilized by the
proportional feedback scheme depending on the values of
K. In particular, the proportional feedback scheme works

for the values of K such that ]A (K)[ & l. In our first
example, Fig. 5(a), there exist two small ranges of values
of K such that the condition [A (K)[ & 1 [or, equiva-
lently, in[A (K)[ & 0] is satisfied, while in our second
example, Fig. 5(b), the condition is never satisfied in the
range of values of K considered.
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