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Method of false nearest neighbors: A cautionary nate
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The method of false nearest neighbors [M. B. Kennel, R. Brown, and H. D. I. Abarbanel,
Phys. Rev. A 45, 3403 (1992)] has been proposed for detecting deterministic structure in empirical
time series and for estimating the embedding dimension if the series is deterministic. We show
that the method can falsely indicate that a stationary random process is deterministic. Remedial
modifications of the method are proposed.

PACS number(s): 05.45.+b, 05.40.+j

I. INTRODUCTION

Let x(1),x(2), . . . , z(N) be a scalar time series. Ken-
nel et al. [1], hence referred to as KBA, proposed the
method of false near neighbors for the determination of
a minimal embedding dimension. In this paper we discuss
certain shortcomings of this procedure as a method for
distinguishing stochastic processes (which do not have fi-
nite embedding dimensions) from dynamical systems and
propose and examine possible remedies.

For a given time delay T and proposed embedding di-
mension d, one forms the collection of d-vectors

y(k) = [x(k), x(k + T), . . . , x(k + (d —1)T)]

sis is then conducted to examine this hypothesis and to
elucidate the geometry of the attractor.

To make this idea operational the criteria under which
a neighbor is declared false must be specified. KBA pro-
pose that a neighbor be declared false if

[x(k+ dT) —x(n(k) + dT)]'
II y(k) —y(n(k)) II'

or if

II y(k) —y(n(k)) II'+[z(k+ dT) —x(n(k) + dT)]'

and Ands the nearest neighbor in the Euclidean metric of
each such vector. We denote the nearest neighbor of y(k)
by y(n(k)). If the series is a projection of a dynamical
system with an attractor of dimension dA and d ) 2dA,
then the embedding is sufFicient to unfold the geometry of
attractor [2] so that points that are close together in the
collection of y(k) are also close together in phase space.
On the other hand, if d is too small, members of the
collection of y(k) that are quite separated in phase space
may be neighbors in B" because the attractor has been
projected onto a low dimensional space.

The method of false near neighbors makes the de-
termination of whether d is sufBciently large by com-
paring the (d + l)st coordinates of y(k) and y(n(k)):
z(k + dT) and x(n(k) + dT). If many of the distances
Ix(k + dT) —x(n(k) + dT)I are large, many of the near-
est neighbors are "false" and have been pulled apart by
increasing the dimension from d to d + 1, and implying
that d is too small. On the other hand, if the distances
are predominantly small, only a small proportion of the
neighbors are false, and d is deemed to be a sufhcient
embedding dimension. A common value of d found con-
sistently while varying T is taken as evidence that the
series is a projection of a deterministic dynamical system
with an attractor of dimension dA & 2d. Further analy-

»t.i (2)

where

N

&~ = ~ ).[z(k) —*l'.

The second criterion was proposed in order to provide
correct diagnostics for noise and KBA demonstrated its
efFectiveness in correctly identifying white noise as non-

deterministic. On the basis of considerable numerical
experimentation, they found that the procedure was ro-

bust with respect to the choice of Bt ~ and At ~, in our

computations below we used Bt ~
——17.3 and At ~

——1.81,
following their recommendations.

Our discussion is motivated and illustrated by the anal-

yses of three time series each of length N = 30 000, which
we will refer to as series A, B, and C. For each series we

used several time delays T and computed the percent-
age of false near neighbors. The results, shown in Fig.
1, suggest that the series are deterministic, not stochas-
tic, with embedding dimensions of about 6, 3, and 10,
respectively.
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FIG. 1. Percent false nearest neighbors as a function of embedding dimension d for each of the three series. The results for
time lags (T) of 10, 10, and 100 sample units are plotted as open circles and those for T=20, 20, 200 are shown as asterisks.
These values were chosen based on the mutual information functions shown in Fig. 2.

The remainder of the paper is organized as follows:
In Sec. II we explain why stochastic processes can and
demonstrably do give rise to results such as those shown
in these figures. In Secs. III and IV we propose and inves-
tigate two possible remedies. Some concluding remarks
are made in Sec. V.

II. THE EFFECTS OF AUTOCORRELATION

Figure 2 shows autocorrelation and mutual informa-
tion functions [3] for the three series. By either measure
there is considerable short term memory in each of the
series. In this section we argue that high autocorrelation

can cause the method of false near neighbors to incor-
rectly indicate that a stationary random time series is
deterministic.

Suppose that x(n) is obtained by sampling from a
smooth trajectory, either stochastic or deterministic,
and hence has substantial autocorrelation. The nearest
neighbor of y(k) will tend to be adjacent in time, since
for small r, y(k+ r) will be close to y(k). For a stochas-
tic process, it can be argued that this tendency becomes
stronger as d increases. Since ix(k + dT) —x(k + r + dT)

~

will be small, such a nearest neighbor will not unfold
as the embedding dimension is increased and will be ac-
cepted as "true" by the method of false near neighbors.
Such neighbors are not useful for discriminating between
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FIG. 2. Autocorrelation

functions (top row) and mutual
information functions (bottom
row) of the three series. The
smallest lag (in sampling units)
is zero for autocorrelation and
one for mutual information.
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FIG. 3. Average time sepa-
rations (in sampling units) of
nearest neighbors for the three
series as a function of embed-
ding dixnension. The results for
time lags (T) of 10, 10, and
100 sample units are plot ted
as open circles and those for
T=20, 20, 200 are shown as as-
terisks.

stochastic and deterministic processes.
Since a stochastic process cannot be embedded in a fi-

nite dimensional space, and a d dimensional projection
will occupy a d dimensional volume, a finite sample will
be ever thinner as d increases and the chance of seeing
nearest neighbors which are not adjacent in time (and
would hence unfold) diminishes. A smooth stochastic
process may consequently appear to have a finite embed-
ding dimension and be accepted as deterministic.

For a deterministic process there exist many nearest
neighbors that are well separated in time because the or-
bit returns many times to any neighborhood of any of its
points, which lie on a low dimensional manifold. These
time separated neighbors do not unfold when the embed-
ding dimension is increased above the correct value.

A smooth stochastic process may consequently appear
to have a finite embedding dimension and be accepted as
deterministic if time adjacent near neighbors are allowed.

To demonstrate that this is not a purely hypothetical
concern, Fig. 3 shows the average time separation ~k-
n(k)

~

as a function of d for each of the series. For series
A and C, our fear is realized, while a substantial number
of the nearest neighbors for series B are well separated
in time.

search for the nearest neighbor of each point y(k) should
be restricted to m such that ~k —m~ & w;„, where r
is greater than the correlation time of the series. Figure
4 shows the effects of imposing this constraint on each of
the three series. With this modification, the method gives
no evidence that series A and C can be embedded in a
low dimension. For series B with T = 10, the results are
consistent with a low dimensional deterministic system.
However, when T = 20, the percentage of false nearest
neighbors falls below 170 at d = 3 but increases for higher
dimensions, becoming greater than 1% for d & 11. One' s

conclusions will be aH'ected by moderate variation in T.

IV. PREWHITENING

We have seen that a stationary random process can ap-
pear to be embeddable in a low dimension if it is strongly
autocorrelated. This suggests that a combination of lin-

ear filtering and decimation be used to transform the
series into one which has little autocorrelation. If a finite
impulse response filter is used, these operations will not
aKect the dimension of the attractor of a deterministic
system. We thus seek filter coefficients a(k) such that

III. IMPOSING A MINIMUM TIME
SEPARATION u(t) = x(t) + ) a(k)x(t —k)

k=1

The analysis of the preceding section suggests that in
order to avoid the spurious eKects of autocorrelation, the

has little autocorrelation. If necessary, filtering can be
followed by decimation to achieve this end. If the coef-
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FIG. 4. Percent false nearest neighbors as a function of embedding dimension d for each of the three series with the constraint
that nearest neighbors be separated in time by at least r;„=100, 50, 1000 respectively. The results for time lags (T) of 10,

10, and 100 sample units are plotted as open circles and those for T=20, 20, 200 are shown as asterisks.
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row) of the three prewhitened
series. The prewhitening filters
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ficients a(1), a(2), . . . , a(M) are such that the sequence
u(t) is white noise, then the coefficients a(k) are related
to the autocovariance function r(k) of the sequence x(t)
by the Yule-Walker equations

Figure 6 shows the results of the method of false near
neighbors on the decorrelated series. As in the preceding
section, there is little evidence that series A and C can
be embedded.

M

r(n) + ) a(k)r(n + k) = 0, (4) V. SUMMARY AND CONCLUSIONS

We determine the coefficients &om (4) and then use them
in (3) to generate the sequence u(t). In general, we do
not expect x(t) to be an autoregressive process of order

M, so u(t) will not be exactly white.
Figure 5 shows the resulting autocorrelation and mu-

tual information functions. For series A, prewhitening
decorrelated the series quite electively. For series B,
it was found necessary to follow filtering by decimation
(every fourth point) in order to construct a decorrelated
series. Prewhitening was reasonably successful for series
C.

Series A is an autoregressive process satisfying the
equations

x(t) = 1.59x(t —1) —0.60x(t —2) + u(t),

where u(t) is a white noise sequence. We have seen that if
no precautions are taken the method of false near neigh-
bors erroneously suggests that it can be embedded in a
space of dimension d = 6. When appropriate safeguards
against autocorrelation are taken, one is not led to this
conclusion.
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FIG. 6. Percent false nearest
neighbors as a function of em-
bedding dimension d for each
of the three prewhitened series.
The prewhitened series B was
further decimated by a factor
of 4. The results for time lags
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Series B is generated by the Lorenz system

x = o (y —x),
y = —xz+ px —y,
z =xy —bz,

with r = 45.92, 6 = 4.0, 0. = 16.0 and initial conditions
2:(0) = y(0) = z(0) = 1.0. The differential equations were
solved using RKsUITE [4] with nominal relative accuracy
10 s and the series consists of the values x(kit), k =
0, . . . , 30000 with Lt = 0.01. We have seen the e6'ects
of safeguards against autocorrelation. The percentage of
false nearest neighbors is quite small (less than 1%) at
dimension 3 and well beyond, but eventually increases.
The amount of increase is quite sensitive to the precise
value of the time lag T.

Series C is a recording of the current passing through
an NMDA [(N-methy)-D-aspartate] receptor from a rat
hippocampal slice [5]. Figure 1 suggests that the dynam-
ics of this channel are deterministic rather than stochas-
tic, but after the efFects of autocorrelation are removed,
no evidence for this remains.

The method of false nearest neighbors can serve two

functions. First, it can provide an estimate of the em-
bedding dimension for a process that is known to be de-
terministic and in this function it is robust against the
addition of noise, as shown in KBA. Second, the method
can be used to assess whether an empirical time series is
deterministic. We have seen that in this role it is neces-
sary to safeguard against the efFects of autocorrelation.
However, the price that is paid is that the results for even
one of the most classical low dimensional chaotic systems
are ambiguous.

Figure 3 suggests that deterministic and stochastic se-
ries difFer in the dependence of time separation of nearest-
neighbors on dimension. This phenomenon may thus pro-
vide a useful and simple diagnostic.
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