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Discrete stochastic models for trafBc How
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We investigate a probabilistic cellular automaton model which has been introduced recently. This
model describes single-lane trafBc Bow on a ring and generalizes the asymmetric exclusion process mod-

els. We study the equilibrium properties and calculate the so-called fundamental diagrams (Bow versus

density) for parallel dynamics. This is done numerically by computer simulations of the model and by
means of an improved mean-field approximation which takes into account short-range correlations. For
cars with a maximum velocity of 1, the simplest nontrivial approximation gives the exact result. For
higher velocities, the analytical results, obtained by iterated application of the approximation scheme,
are in excellent agreement with the numerical simulations.

PACS number(s): 05.40.+j, 05.60.+w, 89.40.+k

I. INTRODUCTION

Recently, there has been considerable interest in the in-
vestigation of traffic flow using methods of statistical
physics. Independently in [1] and [2], cellular automaton
models [3] for the description of traffic fiow have been
proposed. Due to their computational simplicity, lattice
gas automata [3] have already been applied successfully
to other problems, e.g. , the simulation of ffuids [4] (for
further applications, see the book by Wolfram [3]).

A similar class of discrete models —which may be in-
terpreted as traffic models or as models for surface
roughening —have also been used for the description of
the so-called asymmetric exclusion process (driven
diffusion) [5—13]. Here several exact solutions have been
obtained for processes where the particles can move at
most one lattice spacing per update step. A natural gen-
eralization would allow particles to move over larger dis-
tances. This is more realistic with regard to modeling
traffic since one usually has a whole spectrum of allowed
car velocities. These generalized exclusion models are
thus more appropriate for comparison with "experi-
ments" (i.e., measurements on freeway traffic [14]).

In addition there have been a number of publications
dealing with traffic Aow in the framework of statistical
mechanics, especially using cellular automata
[1,2, 15—17]. In most of these works, two-dimensional
traffic has been studied, which corresponds to modeling
the complex situation of traffic in the street network of a
city. Again the cars were allowed to move at most one
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lattice site per time step. It could be shown numerically
[1] that relaxing this constraint, i.e., the cars can have in-
teger velocities up to an upper speed limit larger than
one, results in behavior that is in good qualitative as well
as quantitative agreement with real traffic (with an ap-
propriate upper speed limit). It will be shown in this pa-
per that, from an analytical point of view, the situation
changes drastically when turning from a maximum veloc-
ity of one to higher speed limits. In this case real long-
range correlations occur even in the stationary state,
which is not true for models with a maximum velocity of
one.

The exclusion models mentioned above may be
classified according to the boundary conditions and dy-
namics used. There are two relevant types of boundary
conditions: periodic and open. Using periodic boundary
conditions one considers a ring on which the cars or par-
ticles can move ("Indianapolis situation"). Open boun-
daries correspond to the so-called "bottleneck situation"
where one imposes certain input and output Qows at the
chain ends.

Basically one has to distinguish four types of dynamics.
The dynamical variables may be updated one after the
other in a certain order (sequential update), one after
another in random order (random-sequential update), in
parallel for all sites of a given sublattice (sublattice up-
date), or in parallel for all sites (parallel update). In the
case of asymmetric update rules and sequential dynamics
one has to distinguish at least two cases: update in or op-
posite the direction of the traffic motion. Note that for
open boundary conditions, sequential and parallel dy-
namics are identical if the update direction is the same as
the direction of traffic Qow. For periodic boundary con-
ditions, however, they are not identical. Here parallel dy-
namics correspond to sequential dynamics with a special
site which closes the ring. This site memorizes a car even
if it moved away one time step before. This creates an
obstacle in the ring, giving rise to a lower Aow through
this site compared with sequential dynamics in the direc-
tion of the motion.
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In the present paper we use periodic boundary condi-
tions and parallel update. In this case not much is known
exactly since all of the previous works [5—13] used either
random-sequential or sublattice update. The advantage
of parallel update with respect to sublattice or sequential
update is that all sites are equivalent, which should be the
case in a realistic model with translational invariance.
On the other hand, parallel update enhances the possible
system sizes in numerical simulations, especially because
parallel or vector computers can be used easily.

The paper is organized as follows. In Sec. II we intro-
duce the model. In Sec. III the results of computer simu-
lations are presented. We describe the different simula-
tion techniques which have been used and compare their
performance. In Sec. IV we present a mean-field analysis
of the model for arbitrary velocities v,„. In Sec. V we
introduce the so-called n-cluster approximation [18].
This improved mean-field method takes into account
short-range correlations. In the case v,„=1 we show
that the two-cluster approximation already gives the ex-
act result. For v,„=2we compare the results of the n-
cluster approximation (n =1, . . . , 6) with the computer
simulations of Sec. III and find excellent agreement. In
Appendix A the exact solution for the case v,„=1 is de-
rived and in Appendix B the equivalence of this case to
an Ising model with repulsive interactions is shown.

II. MODEL

In the following we study single-lane traffic on a ring of
length J with periodic boundary conditions. The model
which has been introduced in [1] is defined as follows.
Each of the I. sites can either be empty or occupied by
one vehicle with velocity v =0, 1, . . . , v,„. At each
discrete time step t~t +1, an arbitrary arrangement of
Xcars is updated according to the following rules.

(I) Acceleration. If the velocity u of a vehicle is lower
than u,„,the speed is advanced by one ( u = u + 1).

(2) Slowing down (due to other cars). If the distance d
to the next car ahead is not larger than v (d ~u), the
speed is reduced to d —1 (u =d —1).

(3) Randomization. With probability p, the velocity of
a vehicle (if greater than zero) is decreased by one
(v =v —1).

(4) Car motion. Each vehicle is advanced v sites.
These rules are applied to all cars in parallel (parallel

update). The rules ensure that the total number N of cars
is conserved under the dynamics (which is not true in the
bottleneck situation). Note that even for parallel update
the randomization yields nondeterministic behavior. For
random-sequential update the probability p &0 is not
essential because it only rescales the time axis [1].

In the simplest case v,„=1 the cars are allowed to
move only one step during an update. For this situation
several results are known [5—13]. In particular, it can be
shown that for random-sequential update the mean-field
ansatz yields the exact equilibrium state [1,6], which is
equivalent to the fact that for a fixed number of cars,
every arrangement of cars occurs with the same probabil-
ity. Therefore it is quite natural to take the mean-field
approach also as a starting point for the investigation of

higher velocities v,„&1 and parallel update.
Our main interest will be the calculation of the so-

called fundamental diagram (fiow q vs density p=N/L).
As described in [1],these results can be compared direct-
ly with measurements of real traffic [14]. One expects a
transition from laminar flow to start-stop waves with in-
creasing car density. For v,„=1it is easy to see that the
fundamental diagram is symmetric with respect to p= —,

'

due to particle-hole symmetry. This is not true for realis-
tic traffic where one finds a distinct asymmetry, i.e., the
maximum of the flow is shifted to lower values of p
( -0.2).

The rules given above take into account the basic
features of real traffic. First, they allow for a spectrum of
velocities which seems to be necessary in order to break
the particle-hole symmetry of the model with only two
velocities v,„=1.The maximum velocity still enters the
system as a free parameter, but it can be argued [1] that
most realistic are values around v,„=5. Second, the ac-
celeration of the cars is very smooth compared to the de-
celeration, which can occur in only one time step. For
simplicity we assume the same maximum velocity for all
cars, but this condition is not essential. Finally, the ran-
dornization step is necessary to avoid purely deterministic
dynamics and to take into account natural fluctuations of
dr1vlng.

The order of the update rules given above is crucial.
Changing it would also change the performance of the
model. The randomization step could, e.g. , be placed be-
tween acceleration and deceleration (1-3-2-4), but then its
influence is lowered drastically since every decelerating
car does not "feel" any randomness. On the other hand,
one could also change the starting step. This will not
influence the properties of the model, but can simplify the
calculations. If one begins with step 2 (as we will do for
the n-cluster approximation) and proceeds 3-4-1, then
one has the advantage that no cars with velocity zero
occur since all cars were just accelerated by one unit.
Therefore the number of possible states of a site is re-
duced by one.

III. SIMULATIONS

Computer simulations were an integral part of our
research. Simulations allow one to obtain quantitative in-
sight into a model in relatively short time. In this way,
they complement the analytical work: Simulations are
first used to test a variety of models until one has some
overview and the most useful model is found; high quality
simulation data are used to confirm analytical results (see
Figs. 6 and 7). Further on, simulations are used to go
beyond the analytically treated cases: either for varia-
tions or extensions of the myel, or for more coinplicated
quantities and issues such as the lifetime distribution of
the simulated traffic jams [19] or the possibility of self-
organized criticality [20]. Last, but definitely not least,
this work is a first step towards an ultrafast microscopic
simulation model for large traffic networks. We already
have results for two-lane traffic [21—23] and for real
world network implementations including ramps, inter-
sections, and junctions [21,24,25].
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A. Simulation technicalities

Initially, we used a simple code on a workstation (and
sometimes its replication on several nodes of a parallel
computer) for getting an overview over the model's prop-
erties and for estimating its relevance for real world
traffic [1]. Later, we implemented vectorizing and/or
parallelized versions in order to obtain faster simulation
speeds.

Besides the advantage of getting high quality data in
relatively short time, we have taken advantage of the sim-
plicity of the model to implement it with different algo-
rithms on many difFerent supercomputers. This gives us
intuition on how to implement more complex models [26]
and to make predictions on how fast our simulations will
be in comparison to other microscopic traffic simulation
models [27]. In the cases of two-lane traffic and the net-
work implementation, our predictions were quite accu-
rate.

For the practical coding, we considered three different
approaches: site oriented, particle oriented, and an inter-
mediate scheme. Site oriented directly implements the
cellular automation: A street is represented by a chain v
of integers with values between —1 and v,„,where —1

means that there is no particle at this site, whereas the
other values denote a particle and its velocity. In con-
trast, particle oriented means that two lists (x;);
and (v; ); i N contain position x; and velocity v; of
each particle i (i = 1, . . . , N). This is similar to a molec-
ular dynamics algorithm, except that particles are con-
strained to integer positions and velocities.

Obviously, the particie-oriented approach will always
be faster than the site-oriented one for sufficiently low
vehicle densities. The particle-oriented approach is more
flexible and since in single-lane simulations passing of
vehicles is not possible, the particle lists are always or-
dered, making efficient codes for all kinds of computers
easy to write. In additiog. , an extension to continuous po-
sition and velocity is straightforward [28].

On the other hand, for the site-oriented (cellular au-
tomaton) approach, single-bit coding [29] is possible.
This means that the model is formulated in logical vari-
ables, which may be stored bitwise into computer words.
Logical operations on computer words treat all bits of the
word simultaneously, giving a theoretical speedup of b,
where b is the number of bits per word (usually 32 or 64).
However, the practical gain for traffic simulations on a
workstation is much lower because the bit-oriented ap-
proach cannot take advantage of the fact that only a frac-
tion of all sites is occupied by a particle. Nevertheless,
we found that, on a workstation, the single-bit algorithm
is faster for densities above 0.05 (for v,„=5). In addi-
tion, the single-bit code runs very efficiently on a Think-
ing Machines CM-5 using data parallel CM-Fortran and
on a NEC-SX/3 traditional vector computer. The simu-
lation data for the fundamental diagrams have been ob-
tained this way.

Once passing of vehicles is allowed (multilane traffic),
for the particle-oriented approach efficient memory allo-
cation for parallel and/or vector processors become more
difficult and single-bit coding for the site-oriented ap-

proach becomes tiresome. These observations led to a
third, intermediate approach. As in the site-oriented ap-
proach, each site is in one of (v,„+2)states, but for the
update only the relevant sites are considered. It turns out
(see below) that on parallel but not vectorizing computers
this algorithm is about as fast as the single-bit version.

In Table I we give an overview of the computational
speeds on selected computers (see [27] for more details on
most of these results). All values are valid for a vehicle
density of p=0. 1 and system size of L =1 333 333 sites,
corresponding to 10000 single-lane kilometers. MUPS
corresponds to megaupdates per second, i.e., the number
of sites updated per second divided by 10 . These values
are useful in order to compare with other implementa-
tions of similar cellular automata or particle hopping sys-
tems. The other number is the extrapolated real time sys-
tem size, i.e., the extrapolated system size (assuming
linear speed-up} where the computation would be just as
fast as reality.

The most noteworthy features of the table are em-
phasized in boldface.

(a} On vectorizing computers such as the SX-3 and the
CM-5, the single-bit algorithm has a notable advantage
over the other algorithms. On all other machines, the in-
termediate algorithm is never more than a factor 2.5
slower than the single-bit algorithm.

(b) Already on a relatively modest machine such as an
Intel Paragon with 64 nodes, our real time limit is
280000 single-lane kilometers. Since, e.g., the whole
freeway network of Germany is about 60000 single-lane
kilometers long (12000 km X 2 directions X 2. 5 lanes), the
real use of this computational speed will be (i) real time
applications, where the traffic forecast has to be comput-
ed before the situation arrives, and (ii) Monte Carlo simu-
lations, where many runs are necessary.

(c) The by far fastest "realistic" traffic microsimulation
worldwide to date is the PARAMICS microsimulation
project [30]. Their real time limit is =20000 km on 16k
CM-200, a machine which is, in terms of peak perfor-
mance, slightly faster than a 128-node Paragon. In other
words, it seems that our not completely realistic car fol-
lowing 1ogic buys us about an order of magnitude in per-
formance.

B. Simulation results

Figures 1 and 2 show typical time evolutions of
different versions of the model. Figure 1 shows parallel
update with v,„=I on the left-hand side and random
sequential update with v,„=5 on the right-hand side,
both at density c =0.5. The random sequential update
for v,„=1looks the same as the left-hand side picture.
Obviously, neither using parallel update for v,„=1nor
taking a v,„&1 for random sequential update changes
the phenomenological behavior from the stochastic asym-
metric exclusion process. For v,„=1,p=0. 5 corre-
sponds to maximum flow and, in consequence, wave
structures do not move in space [31]. For v,„)1, the
point of maximum throughput is shifted to lower densi-
ties and, in consequence, in the left-hand plot the waves
are moving backwards.
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The situation is difFerent when one combines parallel
update and U,„&1 (Fig. 2). Here, in the regime of max-
imum throughput (left-hand plot), waves are only sparse
and they clearly move backwards. And even at higher
densities (right-hand plot), waves are much more distinct
than in the random sequential case.

In short, one can divide the models between random
sequential update with arbitrary maximum velocity, on
the one hand, and parallel update with maximum velocity
U,„~2, on the other hand. Parallel update with U,„=1

phenomenologically is an intermediate case. Interesting-
ly, it will turn out that this structure is reAected in the
analytical calculations below: For random sequential up-
date, the mean-field solution is already exact. For paral-
lel update and U „=1, the situation is only slightly
different because already the first step beyond the mean
field is exact. The situation is completely different for
higher velocities in connection with parallel update,
where the analytical approximations only converge slow-
ly towards the simulation result.

In addition, Fig. 2 allows an interesting comparison
with Quid-dynamical models. Starting from ordered ini-
tial conditions, one clearly sees how instabilities develop
and produce the start-stop waves, very similar to results
in [32]. Working out these connections is a topic of
current research [25].

Figure 3(a) shows current vs density curves for max-
imum velocities U,„between 1 and 5, plus for a different
Quctuation parameter p =0.25 at U,„=5. One clearly
sees that the maximum throughput increases with in-
creasing v,„, whereas the density of maximum
throughput decreases. In reality, the density of max-
imum throughput lies between p=0. 15 and 0.2; it is
given by the maximum speed of trucks which dominates
the speed distribution for traffic near capacity [21]. For
that reason, having a higher speed limit for passenger
cars does not help throughput; in many cases, it actually
makes things worse [33].

However, reducing the fluctuation parameter p in-
creases throughput enormously. This is mostly due to

TABLE I. Computational speed of different algorithms and different machines. The machines are a
SUN Sparc10 Workstation, five coupled Workstations Sparc10 under PVM, a NEC SX-3/11 traditional
vector computer, a Parsytec GCel-3 massively parallel computer with 1024 relatively slow T805 CPUs,
an Intel iPSC/860 Hypercube with 32 nodes, an Intel Paragon XP-10/S with 64 nodes, and a Thinking
Machines CM-5 with 32 nodes, each node containing one Spare processor and four vector units. s. bit
refers to the single-bit coded site-oriented algorithm, particle and intermed. refer to the particle-
oriented and the intermediate algorithm, and netw. refers to a network implementation of the freeway
network of Germany. All values are valid for a vehicle density of c =0. 1 and system size of
L =1 333 333 sites, corresponding to 10000 single lane kilometers. MUPS corresponds to megaupdates
per second, i.e., the number of sites updated per second divided by 10 . The other number is the extra-
polated real time system size, i.e., the extrapolated system size (assuming linear speedup) where the
computation would be just as fast as reality. Values in square brackets are estimates.

Sparc10

s. bit (F77)

4.0 MUPS
30000 km

particle (F77)

3.4 MUPS

intermed. (C)

1.9 MUPS
14000 km

netw. (C)

1.2 MUPS
8800 km

PVM
(5 X Sp10)

19.0 MUPS
140000 km

8.9 MUPS
65000 km

SX-3/11'
1 CPN

GCel-3
1024 CPNs

iPSC
32 CPNs

533 MUPS
4000000 km

102 MUPS
750000 km

83 MUPS
630000 km

211 MUPS
1550000 km

2.8 MUPS
21000 km

121 MUPS
900000 km

35 MUPS
260000 km

Paragon
64 CPNs

CM-5'
32 CPNs

173 MUPS
1300300 km

30 MUPS
220000 km

CM-5'
1024 CPNs

'CPN(s) has (have) vector units (SIMD instruction set).

[)1.7X106&~]
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space {road) space (road) u,„=1 (see Sec. V A and Appendix A). Therefore some
approximation is necessary when one tries to study this
model analytically for U „&1. The following mean-
6eld-type theory wiH be the first step of such an analytical
approach.

The calculation starts from the stochastic description
of the traKc model. Instead of specifying the cars' posi-
tions and their velocities, we analyze the probability dis-
tribution of each site at each time step. We denote the
probability that there is no car at site i (i = 1,2, 3, . . . , L)
at time step t by d (i, t) and the probability that there is a
car with velocity a (a=0, 1,2, . . . , u,„) at site i and
time step t by c (i, t) Th. e c and d distributions together
take into account all possible states of the difFerent sites.
Therefore one has the normalization condition for all
sites and all time steps

d (i, t)+c(i(i, t)+c, (i, t)+c~(i, t)

+c (i, t)+ +c (i, t)=1 .3 'm (4.1)

v,„=l, parallel update v „=5,md. seq. update

FIG. 1. Evolution of difterent automata rules from an or-
dered initial state of density c =0.5. Particles are moving to the
right. Left: same as (stochastic) asymmetric exclusion, except
that the update is parallel. The same plot for exact asymmetric
exclusion looks similar. Note that waves do not move in space.
Right: same as asymmetric exclusion, except that the maximum
velocity is 5. Waves are now moving backward, indicating a
density above maximum Aow. Neither the parallel update nor
the higher maximum velocity alone is sufhcient to change the
qualitative dynamics of the asymmetric exclusion model.

space (road) space (road)

Denoting with c (i, t) the total probability for site i to be
occupied at time step t, i.e

& g~™o c~(i, t), one»mpiy has
d (i, t)+c (i, t) = 1.

According to the update rules in four stages (see Sec.
&&) the time evolution of these probability distributions

the better acceleration behavior in that case [34].
In general, one sees that by varying the parameters

U,„and p, the fundamental diagram can easily be adapt-
ed to real traKc situations, although some of the underly-
ing vehicle dynamics remain somewhat unrealistic, e.g. ,
average acceleration from 0 to 100 km/h takes place in
10 s. The fact that the fundamental diagram is neverthe-
less quite realistic is due to the fact that the first time
steps for the acceleration matter most [3S]. Here, 4 s for
an acceleration from 0 to 40 km/h is far more realistic.

Another quantity of interest for traKc engineers are
the velocity fluctuations

1/2
0'(Vi ):= (Vi V] )

where U&„ is the "local" velocity of vehicles crossing a
fixed line. (The average of the local velocity is different
from the usual ensemble average. For example, cars with
velocity zero never enter the local average. ) According
to measurements and fiuid-dynamical arguments [33],
these fluctuations are a good indicator of traftic near
capacity. Indeed we do find for our model [Fig. 3(b)] that
these fluctuations very abruptly increase near capacity.

IV. MEAN-FIELD THEORY

The complete analytic solution of the tra%c model is
not possible except for the case of maximum velocity

v,„=5,parallel update v,„=5,parallel update

FIG. 2. Evolution of our tra%c model (maximum velocity
U „=5, parallel update) for density c =0.3 (left) and c =0. 1

(right) from ordered initial conditions. Random sequential up-
date with U „=5at density c =0.3 (not shown) looks qualita-
tively similar to the left-hand side of Fig. 1, whereas at density
c =0.1 and random sequential update the waves are moving to
the right (not shown). The density of maximum throughput is
much lower for the parallel update and instead of the waves
switching from backward to forward motion at this point, they
tend to vanish completely (cf. [20]). Moreover, the picture on
the right-hand side illustrates the instability mechanism similar
to the continuous model of [32].
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0.6 c (i, t+1)=c (i —a, t3}, 0&a u (4 5)

V0

0.4

0.3

0.2

0 '

0

1.6
1.4

0.8
0.6
0.4
0.2

v,„=5,p=0.25
vmax=5~ p=0.50

I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density c

(b)
I I I I I I I I

The time t is assumed to take on only integer values. t„
t2, and t3 denote the intermediate time steps between t
and t + 1 (solnetimes defined as t + —,', t + —,', and t + —,', re-
spectively). These time-evolution equations conserve for
periodic boundary conditions the total number of cars at
each stage. This formulation of the dynamics neglects
spatial correlations completely since one assumes that all
expectation values factorize into local terms.

The variables c and d are real valued between 0 and 1.
The stochastic description originates from the stochastic
nature of the third randomization step. The other three
steps are purely deterministic.

These time evolution equations are nonlinear and fur-
ther analysis of the full system has not been successful up
to now. However, in the stationary state, i.e., in the limit
t ~~, the c and d distributions become homogeneous in
space (for periodic boundary conditions) and therefore,
apart from the time dependence, also the site dependence
can be omitted. Using this and combining the four up-
date steps one gets the following set of v,„+1 equations:

"max
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.? 0.8 0.9 1
density c

cp=(c+pd)cp+(1+pd)c g c&,
P=1

can be described by the following four sets of equations:
The acceleration stage

cp(i, t, )=0,
c (i, t, )=c &(i, t), 0&a&v

c, (i, t, ) =c, (i, t)+c, &(i, t);
max max max

the deceleration stage

(4.2)

max

cp(i, tz)=cp(i, t&)+c(i+I, t&) g cp(i, t&),
P=1

max

c (i t )2=c(i +a+I t&) g d(i+j t ) g c&(i t&}
j=1 P=a+ 1

+c (i, t, ) + d(i+j, t, ), 0&a&v
j=1

(4.3)

FIG. 3. (a) Fundamental diagrams flow f vs density c for
maximum velocities U,x

= 1,2, . . . , 5 and for a diferent Quctua-
tion parameter p =0.25 instead of 0.5 at v,x =5. (b) Fluctua-
tions of local speed as a function of density (v,„=5 and
p =0.5).

max

c =d qc, +(qc+pd)c +(q+pd)c g c&
P=n+1

0(a(v,„—1

(4.6)

c, , =d '" [qc, 2+(qc+pd)(c„&+c„)],
c„=qd '"[c, , +c, ] .

These equations essentially describe the motion of a sin-
gle car with statistical (density dependent) "obstacles. " A
remarkable feature of the equations is that they are linear
when one specifies the density c =1—d of cars. There-
fore (4.6) can be recast in matrix form as Ac=c. The
matrix A can be read off from (4.6); c is the vector with
elements c, a=0, . . . , v,„. For small v,„we can find
the densities c explicitly. For large values of v,„ it is
more convenient to write down a recursion relation in or-
der to obtain the steady state solution.

From the first equation in (4.6) one can determine cp
directly without knowledge of the other c~ to give

2 1+pd
(4.7)

1 —pd
max

c, (i, t2)= + d(i+j, t, )c„(i,t, );
j=1

the randomization stage (q = 1 —p)

Cp(l& r3 ) =Cp(l& t2 )+pCl (l& r2 )

c (i, t~)=qc (i, tz)+p +c, (i, t2), 0&a&v (4.4)

Using this result and the second equation of (4.6) one can
also write down the expression for c1

2 1+d +pde1=qe d
(1—pd )(1—pd )

(4.8)

For a larger than one a recursion relation can be derived
calculating c —dc 1 using again the second equation of
(4.6)

c, (i, t3)=qc„(i,t2);

and the motion stage
1+(q —p)d qd (4.9)
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u —2. Therefore, starting with the ex-for a=2, 3, . . . , umax e
can estimatepressions (4.7 an) d (4.8) for c and c„one can est'

recursively. These results o nocz, c3, . . . ,c„2recu

of u and thus are valid gen-pend on the actual value o u,„an
erally (provided U~» ~ 2).

Finally, from the last two equations of (4.6) one gets

0.35

0.3

0.25

mean field for v „=oo; p=0. 1, 0 3, 0 5, 0 7, 0 9
II I

~v
max

xIRK

—1 max
d "max

(4.10)
O

0.15

0.1

CU

mRx

&U
U max

1 —d

The v,„dependence only occurs in these two uantities.q
me of the densities are shown for large u

The densities of the fast cars go to zero rapi y, s'

expects an exponen ia yp t' ll fast decay from the recursion re-
ars withions 4.9 —4.11). The contributions from cars wi

li ible. We will mainlyh' h velocities therefore are neg igi e.
be interested in the fiow f (c,p), defined y

ig v
b

0.05

0
0 0.2 0.4 0.6

density c
0.8

= ao in the mean-field approximation.FIG. 5. Flow for v~»= ao in e m
is 0.1, 0.3,From bottom to top, e rth randomization parameter p is

0.5, 0.7, and 0.9.

max

f(c,p)= g ac (4.12)

it of u ~00 it is possible to carry on the
(4.7)—(4.9) d hanalysis using the iteration equations

generating function (4.15)

ich makes it impossibled'ff t arguments (z and dz), w ici eren
x licitl .to so ve is1 this (linear) equation for g (z) exp

' '
y.

or '(1) is obtainedAfter di6'erentiation an expression for g
d2

'(1)=d (1—pc) —g (d)

g(z)= g z c
a=0

(4.13)

u is infinite, one does not have to wor yr aboutSince um, x is in ni e,
d (4.11) for c„the upper boundary equations (4.10) an

and c, whose contribution is negligib e.le. One should

notice that the generating function g occ
max

occurs with two

c mean field, v=0, 1, 2, ..., 5V

CA

O

CQ

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

I~F:—
10 8 0.90 0.1 0.2 0.3 0.4 0.5 0.6 0.7

density c

(c) . . . c (c) (i.e., for veloc-FIG. 4. Partial densities co(c),c &
&c„.. . ,

ities 0—5) for the mean-field approximation. p =0.5.

As usual one simply has g'(1)=f c,p . Equations
(4.7)—(4.9) now can be combmed to give

'
go ive one single equa-

tion for g (z)

z 1 —dz] — (dz)d (1—z)[p+qz]=c +pc d(1 —z

(4.14)

n —1

f(c,p)=qcd 1+ g d "Q (p+qd'
1 1=0

(4.16)

In Fig. 5 the fiow f is shown as a func
'

nction of the concen-
'

n c of cars for various deceleration probabilities p.

ram is infinite, whereas the slope for c —1 is —q. is
1 ields compared with the simulation

data shown above, much too smmall va ues o e
d since the reduction to a sin-This can easily be understood sin

s of theol i nores all spatial correlations o t egle car pro em ignore
ant andwith hi h velocities tend to be equidistancars. Cars wit ig ve

it with a larger prob-therefore maintain a high velocity wi acan ere
where it is mucabi ity an

'
th in the mean-field system w

hi h velocitiesmore dificult to accelerate and stay at hig
over a certain period.

= 1, the mean-field solutionFurthermore, even for v,„=1, the mean- e so u
'

the exact result shown be ow.does not coincide wit the e
-fi ldNote that for random sequential upddate the mean- e

solution is exact for Umax
=

V. IMPROVED MEAN-FIELD THEORIES

In order to improve the simple mean-fie ld theor of the
section we have to take into account correla-

tice in o set segments or clusters o ength n n =
rs have n —1 sites inh that two neighboring clusters avesuch a

t f finding in equilibrium acommon. The probabi ity o n
'

Th roblem therefore is reduced to find an expression
ffor (d). This can be found by success' pp

'
e pr

ssive a hcation o
=d", =1 2 3 . . . . The final result isE . (4.14) with z =d", n =

an asymptotic expression for g =,p
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g W'(ir, , . . . , iT„l~, ~„.. . , r„„„)
max max

J

XP2, +„(r „+„.. . , r„+, ),
max max max

(5.1)

where the probability P2„+„(r, +„.. . , r„+„)
max max max

for clusters of length 2v,„+n has to be expressed
through the n-cluster probabilities P„(r„.. . , ~„). This
enlargement of the cluster length occurs since all cars
which can drive into or out of the cluster (o.„.. . , o„)
within the next time step contribute to the transition
rates W( [o J ] l [rj ] ). Thus we have to take into account
not only the given cluster, but also the U,„sites to its left
(with state variables r „+i,. . . , ro) and the v,„sites

max

to its right (with state variables r„+„.. . , r„+„).The
max

decomposition of the (2v,„+n) cluster can be carried
out by introducing the conditional probabilities

n( i& i +&1'''& i' +—i)
P(+i i+i+I& ' ' & ri+n —1) ~ pZr n & +i++1& ' '

& +i+n —I

cluster in state (o „.. . , o „) will be denoted by
P„(o.„.. . , o„). Due to the translational invariance of
equilibrium state of the system with periodic boundary
conditions, one does not have to specify the actual loca-
tion of the n-spin cluster. In order to simplify the calcu-
lations we apply, as mentioned above, the four update
rules in the order 2-3-4-1 instead of 1-2-3-4 [18]. This has
the advantage that after one update cycle one ends up
with step 1 and therefore no car has velocity 0. It follows
that every site j is in one of the U,„states
o. . =0, 1, . . . , U,„where now 0 denotes an empty site.
This change in the ordering finally has to be taken into
account in the calculation of the Row.

The equilibrium probabilities for an n-site cluster are
then determined by

P„(o.„.. . , o.„)

W(oi, . . . , o„l~, +„.. . , r„+, )
max max

depends on the probability p and vanishes if the
configuration (r „+i,. . . , r„+„)cannot evolve in

max max

one time step into (o „.. . , o.„) according to the rules

1 —4 of Sec. II. If S' is nonzero it is of the form p 'q '
with integers n i, n2 describing how many cars have to be
decelerated (n, ) through the randomization step when
total number of cars which can drive is n 1+n2. With the
approximation (5.4) it is possible to write down a closed
system of equations for the n-cluster probabilities
P„(o„.. . , o „). The number of the equations is given by
(v,„+1)",the total number of possible configurations of
n site variable with v,„+1 possible states [without
change of the order of the update steps, one would have
(v,„+2)"equations]. In practice some of these equa-
tions turn out to be trivial so that the relevant number is
less than (v,„+1)". Due to the exponential growth with
respect to n one is, especially for larger U,„,restricted to
only small cluster lengths n (for the realistic value of
U,„=5, one has, for the two-cluster approximation, al-
ready 36 equations). The above approximation converges
for n ~ oo to the exact solution for an infinite system (i.e.,
in the thermodynamic limit L, —+ ~. This approximation
scheme is well known in the literature. It is analogous to
the (n, n —1)-cluster approximation of [36], the n —1

step Markovian approximation of [37], or the local struc-
ture theory of [38]. It goes back to the probability path
method introduced by Kikuchi [39].

With the knowledge of the n-cluster probabilities
P„(o„.. . , o.„)it is then easy to calculate the fundamen-
tal diagram, i.e., the flow f as a function of the density c
of cars. Since we have changed the order of the update
steps, one has to take this into account by performing the
steps 2-3-4 at the end since the last step must be 4 (—:car
motion). After that one simply can calculate the density
c of cars which will drive a sites in the next time step

(5.2) c = g P„(a,o.~, . . . , cr„) (5.5)

on the left-hand side and

Pn ( +i & ri + 1 &
' '

& +i + n —1 )
& +n 2l&;+n -i)=-

P„(r;, . . . , r, +n 2, r)

and then one proceeds as in the mean-field approximation
Eq. (4.12) and calculates f =g ac

(5.3)

on the right-hand side. With this definition we rewrite
P2„+„(in the n-cluster approximation) in the following

max

form:

P2u +n(r —u +1~ ' ~rn+ umax max max

il i t+'i' & i+n —1)

In the case U „=1the site variables take on only the
values o. =0, 1 where o =0 means no car and o.=1 a car
with velocity one. In the two-cluster approximation
[(5.1) with n =2] one has, according to the above argu-
ments, a system of four equations. This can be reduced
to only one equation for P(1,0) very easily with the help
of the relations

i= —v +1max

XP„(ri, . . . , r„)
max

x Q P( , „. . . , , „ , l , „) . (5.4)

P (1,0)=P (0, 1),
P (0,0)= 1 —c P(1,0), —

P (1,1)=c P(1,0) . —
(5.6)

The transition probability
The first equation is due to the particle-hole symmetry
P (1,0)=P (0, 1) [in a closed ring one must have the same
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number of (0,1) and (1,0) pairs, therefore occurring with
the same probability]. The other two equations describe
the conservation of cars in the system. The remaining
equation for P(1,0) reads

0.16

0.14

0.12

mean field
2-cluster----

simulation

qP (1,0)—P(1,0)+c(1—c)=0 .

In the thermodynamic limit we therefore find [18]

(5.7) 0.1

0.08

P(0, 1)=P(1,0)=
2g

(5.8) 0.06

0.04
Going to the three- and higher-cluster approximations
one finds that the solution remains the same, indicating
that this is the exact result. In Appendix A we indeed
prove that the solution (5.8) is exact in the thermodynam-
ic limit. For finite systems the proof is also valid, but one
has to take into account an additional correction (nor-
malization) due to the constraint of a fixed number X of
cars.

The correct result, valid for any system size, is given by

0.02

0.2 0.4 0.6
density c

0.8

FIG. 6. Convergence of the n-cluster approximations to the
simulation result for the case v,„=1 and p =0.S. Already the
two-cluster approximation is exact.

1
P(N, I.)= g' g P(o, cr , ), .

t~l
(5.9)

1 for O~c ~
—,
'

(1 —c)/c for —,
' &c ~ 1, (5.13)

where JV denotes the normalization constant and the sum
g' runs over all configurations with a fixed number E of
cars (i.e., g~, o~ =X).

In contrast to random-sequential dynamics parallel dy-
namics leads to an efFective attraction between particles
and holes [i.e., P (0)P(1)=c (1—c) ~ P (0, 1)] and thus to
a higher Bow. In Appendix B the mapping of this model
to an equivalent Ising model with antiferromagnetic
next-nearest-neighbor interactions and a nonvanishing
external field is shown. Due to the antiferromagnetic in-
teractions the system shows an effective attraction of cars
over two lattice sites, thus taking into account the well
known effect of car bunching or platooning [40—42].

In order to calculate the Qow one first has to perform
the steps 2-3-4 yielding the probabilities P(~) to find a
site in the state r = —1,0, 1 (where now an empty site is
denoted by r= —1) after the fourth step of the updating
procedure:

which is the result of [2].

vmax =2

The case u,„=2 is qualitatively very different from
the case v „=I. The Aow diagram is no longer sym-
metric around c =

—,'. The n-cluster approximation seems
not to become exact for any finite n, i.e., in this case
long-ranged correlations are important. We have calcu-
lated the fundamental diagram for n = 1, . . . , 5. As
shown in Fig. 7, the approximation converges fast to the
results obtained by simulations. The difference between
n =4 and 5 is less than 1%.

The observation that the approximation does not be-
come exact for small n rejects the fact that the physics
for u,„~2 is distinctly different from the case v,„=1.
As explained in Sec. II, the regime looks qualitatively
different both from U,„=1 (arbitrary update) as well as

P( —1)=1—c, P(0)=qP(1, 1), P(1)=qP(0, 1) . (5.10)

Therefore the Aow is finally given by
0.25

'Imax=2

()p(10)11—4qc(1 —c)
(5.11)

0.2

In Fig. 6 the exact result for the fiow is shown (from the
two-cluster approximation) in comparison to numerical
simulations and the mean-field approximation (p =

—,').
One can see that the numerical and analytical data are in
excellent agreement. In the deterministic case p =0 the
fiow is a linear function of c: f = (1—

~
1 —2ci )/2 [18].

The mean velocity per car v is then

0.15

0.1

0.05

"max
U= —g rP(~)=P(1)/p .

~ ~=0

In the deterministic case p = 1 this simplifies to

(5.12)

0.2 0.4 0.6
density c

0.8

FICx. 7. Convergence of the n-cluster approximations to the
simulation result for v,„=2 and p =0.5. Already the 6ve-
cluster approximation gives a good fit of the simulation data.
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from random sequential update (arbitrary U,„). More-
over, in the case U,„~2 (parallel update), jams show
characteristic branching behavior which is not observed
for U,„=1 [20].

VI. CONCLUSIONS

W(0, 111,0)=1—p,
W(1,0i1,0)=p,
W(l, o'~cr, 1)=1,
W(o, 0~0, 0)= 1,
W(0, cr ~0, 1)=1, o,o'=0, 1,

(A3)

We have introduced and investigated a statistical mod-
el capable of accurately describing real trafBc. Through
the introduction of higher velocities it was possible to
produce the asymmetric fundamental diagrams and the
characteristic start-stop waves observed in real trafBc.
Through simulation, different regimes depending on the
type of update and the maximum velocity have been
identified. A realistic model for traftic has parallel sto-
chastic update and a suitable choice of the maximum ve-
locity v,„=5. Already for U „=1the stationary state
is more complicated than for random sequential update.
An effective "antiferromagnetic" interaction between
cars favors equal spacing and in consequence higher
throughput.

Taking into account two-point correlations the case
U „=1can be solved exactly. This is no longer true for
higher maximum velocities where correlations become
long ranged. Nevertheless, it could be shown that the n-
cluster approximation converges fast to the simulation
data.
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APPENDIX A: EXACT SOLUTION FOR u,„=1

In this appendix we show that the stationary state of
the model with v,„=1 is in fact given by Eq. (5.6) with
an appropriate renormalization constant Z. The com-
plete set of evolution equations for parallel update reads

whereas W(~, r'~o, o')=0 in all other cases. [Note that
in Eq. (5) of Ref. [1], due to a misprint, a factor
(1—o;+, )/2 is missing on the right-hand side. ] We now
make the ansatz that the probability in the stationary
state P ( I cr ] ) factorizes into local two-site terms P

i i+1

(A4)

with periodic boundary condition o.L+1=o.l. We will
define n (o ) as the number of pairs of next neighbors
(cr, o') in a particular state cr. Due to the particle-hole
symmetry of the system, one has nol =n 10 and the follow-
ing simple relations for the system size L and the (con-
served) number of particles N hold:

I —2n 01 +n l 1 + tl 0P

X =n01 +n 11

(A5)

(A6)

In the stationary state Eq. (Al) becomes time indepen-
dent and the states [r] in the summation on the right-
hand side can be classified according to the number of
particles l which have to be moved in order to obtain the
new state o.:

(p p )
01p 11p 01 11

01 10 ll 00

"oi
gg(no„l, b. )(1—p)'p "

1=0

(Aj)

The summation index 15, is defined as 6=n» (v) —n i, (tr ).
Therefore the range of the 6 summation depends on the
particular state o. The function g(no„l, h) counts the
number of possible states v leading to state a given fixed
values of no&, l, and 6 and reAects a kind of degeneracy.
Summing g over 6 yields simply

(Al) ~01

g g ( noi l 15 ) = (A8)

where P, ( [o ] ) denotes the probability for state

I cr] = Io „.. . , err ] at time t. The transition probability
W( Io ] ~ [~] ) to move in one time step from state [r] to
state I cr ] factorizes into local terms

Dividing Eq. (A7) by the left-hand side one gets

I n„-I1=g g g (no„l, b, )(1—p) p
"

1=0 S»01~10
(A9)

W(Icr] ~[~] )= g W(o;, cr;+, ~r;, v;, ) . (A2)

The only nonvanishing transition probabilities are given
by ~00~11 7~01~10 (A10)

Setting the expression in the parentheses on the right-
hand side equal to 1, (A9) reduces with the help of (A8) to
an identity. Therefore the condition for P (o,o') reads
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Note that P(cr, o') is not normalized for a finite system
and therefore a normalization constant JV has to be taken
into account.

1 =2Poi +Pi i +P~,

]o=Poi+Pii .

(B1)

APPENDIX B: MAPPING TO AN EQUIVALENT
ISING MODEL

Introducing Ising-variables o.; =+1 instead of the
lattice-gas variables ~; =0, 1 (o; =2~; —1) one can look at
the steady state as the equilibrium distribution
P(cr)-e ~ ' ' of an Ising model with Hamiltonian
H = —J g,. cr;cr;+, +h g; o.;. In order to determine the
coupling constant J and the external field h one interprets
the local probabilities P ~ as transfer matrices
P ~ =ae "' + ' (@=1). From Eq. (A10) it fol-
lows directly that e =p or J =In(p)/4(0. Therefore
the corresponding Ising model has antiferromagnetic in-
teractions. According to Eqs. (A5) and (A6), one has in
addition

Dividing the two expressions on both sides of the two
equations gives one equation without the constant o. to
determine the external field as

&1—4(1—p)p(1 —p) —(1—2p)
2&p (1—p)

(B3)

Therefore the steady state corresponds to an Ising model
with antiferromagnetic (repulsive) interactions. Due to
the conservation of the total number of particles (cars)
one has to impose the constraint of a fixed magnetization
to the Hamiltonian. The normalization is then simply
the partition function calculated under this constraint.
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