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A linear non-Markovian process driven by additive exponentially correlated Gaussian quadratic noise
is considered. An exact master equation for a probability distribution of the process is presented. A
Kramers-Moyal-type expansion of the master equation is studied. Some limiting cases of the expansion
are investigated. It is demonstrated that any finite truncation of the expansion fails. An alternative and

correct Fokker-Planck modeling is constructed.

PACS number(s): 05.40.+]

I. INTRODUCTION

A modeling of dynamics of noise-driven systems by
stochastic differential equations has been the subject of
intensive studies in the past decades (it is impossible to
quote all papers; for recent surveys see Refs. [1,2]). For
one-dimensional systems, it is given by an equation of the
form

dx

at F(x,t;4(2)) , (1)
where x =x(t) is a “‘relevant” variable characterizing the
system and £(¢) is noise (a random perturbation). If £(¢)
is taken to be white noise, then the function Fin (1) has to
be linear in £(z) [otherwise Eq. (1) makes no sense]. Then
x (t) is a Markovian process and its dynamics is deter-
mined by two quantities: its initial probability distribu-
tion p(x,0) and its conditional distribution p(x,tlxo,s),
t Zs. If £(t) enters nonlinearly in (1), then £(¢) must not
be white noise, implying that x(¢) is a non-Markovian
process. Its dynamics is determined not only by
p(x,t|xg,s) and p (x,0), but also by all finite-dimensional
distributions.

Nonwhite- (colored-) noise-driven processes are de-
scribed by equations that cannot be analyzed analytically
for general cases. Therefore a variety of approximation
methods have been proposed [3-5], most of which are
based on an expansion of some expressions and a trunca-
tion of the series obtained. When dynamics is described
by differential equations with a linear noise term, then the
white-noise limit exists and the equations simplify. The
white-noise limit is the simplest test of correctness of the
approximations imposed. If the noise term is a nonlinear
function of noise, then the white-noise limit does not exist
in general and a simple criterion of testing the validity of
applied approximations is not yet available.
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In most of papers on colored-noise-driven systems, a
linear noise case has been investigated [1,3-5]. Non-
linear noises have been rather seldom treated. In [6,7],
limit theorems on convergence of the process (1) to a
diffusion process were presented. This asymptotic theory
of stochastic differential equations [6,7] is founded on
some general properties of processes such as, e.g., an
asymptotic independence property (strong mixing) and it
has found a great number of applications in different
branches of science. In [8—11], processes driven by quad-
ratic noises were treated, but not with full mathematical
rigor. In the paper we consider one of the simplest
differential equation with a nonlinear noise term, namely,
a first-order differential equation with a nonlinear deter-
ministic part and an additive quadratic noise part com-
posed of colored noise in the form of an exponentially
correlated Gaussian process (an Ornstein-Uhlenbeck pro-
cess) [8—10,12]. By use of this model one can discuss all
significant problems concerning, among others, (i) a
Kramers-Moyal expansion [13,14] of a master equation
for x(¢) and (ii) the existence of limiting cases and
correctness of Markovian as well as diffusion approxima-
tions.

The paper is organized as follows. In Sec. II we
present a model and an exact master equation for
p(x,t|xq,0) with its explicit solution. The master equa-
tion has the same structure as a space-nonlocal diffusion
equation [15]. In Sec. III a Kramers-Moyal expansion of
the master equation is derived and a few coefficients of it
are depicted explicitly. The limits of a weak intensity and
a short correlation time of noise is considered in Sec. IV.
Section V is devoted to the problem of a diffusion approx-
imation of the process. It is demonstrated that a trunca-
tion of the Kramers-Moyal expansion yields an incorrect
description. The correct construction of the Fokker-
Planck approximation is presented in Sec. VI. Final re-
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marks, conclusions, and a summary are contained in Sec.
VII.

II. MODEL

The model we are considering is a linear dynamically
stable flow given by the equation [9,10,12]
%=—ax+g2m, x(0)=x,ER" , @)
where x ER!, a >0, and £(t) is an exponentially correlat-
ed Gaussian process (an Ornstein-Uhlenbeck process)
with the properties

(E(1))=0, (E&(t)E0))=aD exp(—at),
a,D>0. (3)

The parameter 7.=1/a is a correlation time of the noise
and D denotes its intensity.

In view of possible applications of Eq. (2), let us men-
tion input-output systems [8] as they occur in engineering
sciences, thermoelectrical instruments [9], turbulent fluid

flows [16], or quantum optics [17]. The stochastic pro-
|

:_1__ e —ikx
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cess x () in (2) is non-Markovian, but the pair {x(2),&(2)}
constitutes a Markovian process with a degenerate
diffusion tensor. The statistics of the pair process is
determined by a two-dimensional Fokker-Planck equa-
tion, which is, however, not tractable. An evolution
equation for the conditional probability distribution
p (x,1]x40) of the process x () alone has been derived in a
previous paper [18]. However, its explicit form was
presented for the case a =4a only. Thus we could not
carry out a systematic analysis for the general case. Re-
cently, however, using the same methods as in [18], we
have succeeded in obtaining an evolution equation for
p(x,t]xy,0), valid for all values of parameters a, a, and
D. It has the explicit form

d
B;p(x,t |x0,0)

d
=Ec—(ax—-aD)p(x,t|xo,0)

3? @
+aDa 2 f H(x —y,t)p(y,t|x4,0)dy , @)
X — o0

where

(5)

—at/Z)

Joo (s W — oy (spe
I?(k,t)=—1— 188k +1\8k

ik Jv+l(sk )J_.V+1(Sk€ _at/z)—J..v__l(Sk )Jv_l(ske ~at/2) ’

sy =2vViDk, v=—2a/a ,

and J ,(z) stands for the ordinary Bessel function.
Equation (4) is exact. Its interesting structure can be
interpreted as follows. The first term of the right-hand
side of (4) is the drift with a noise-induced part aD. This
noise-induced part is solely due to the nonvanishing
second mean [cf. (2)] with (£%(¢)) =aD. Thus the condi-
tional average in (2) readily yields the same drift. If the
kernel H(x,t) were proportional to the Dirac & function,
i.e., H(x,t)~8(x), then the second term would be purely
diffusional. Hence H(x,t) can be termed a space-
nonlocal diffusion function and Eq. (4) could be interpret-
ed as a space-nonlocal diffusion equation [15]. With the
diffusion operator being nonlocal one expects at the same
time a retarded (time-nonlocal) evolution over time [19].
Note, however, that the operator A (k,t) intrinsically cor-
]

P(X,t|x0,0)=%[sin(ﬂ-v)/ﬂ'v]l/z

(6)

@)

f

responds to a time-convolutionless (but not memoryless)
form of the evolution operator [20].

Equation (4) seems to be complicated. Nevertheless, it
can be solved. A Fourier transform of p(x,t]x,,0) (.e.,
its characteristic function) obeys a first-order partial
differential equation of two variables and it can be solved
by the usual method of characteristics. But here we need
not do this because the explicit form of p(x,?|x,,0) is
known [12,18] (it has been obtained by use of the “cur-
tailed” functional method) and full one-dimensional dy-
namics of the system can be determined. Hence we can
test various previous approximative methods put forward
in the literature [8-10]. To make the paper self-
contained, let us present the solution of Eq. (4). It explic-
itly reads

X [° dk exp[ —ik(x —xge )+ (2a+a)t /4]

XSk—l[JV+1(Sk )J_V+1(Ske —at/2)__J_v_1(sk )Jv_l(ske —at/2)]—1/2 . (8)

Representative cases of Eq. (8) are illustrated in [18].

III. KRAMERS-MOYAL EXPANSION

A Kramers-Moyal expansion [13,14] of the master
equation (4) can be obtained by use of the property of

'7 g .
commutativity of convolution in (4) and utilizing the

identity
o0 ( —_— 1 )Il

f(x-—y)=2 n!

n=0
Then Eq. (4) can be rewritten as

dn
"L f(x). 9)
y dx,,fx
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9 d
—_ _—— —_— 0
atp(x,tlxo,O) ax (ax —aD)p(x,t|x,,0)

+aD 3 Kn(t)—a%p(x,ﬂxo,O) , (10

n=2
where
J
l_e—(a+2a)t
K,(t)=2aD
2(1)=2a a+2a
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in*2 "
(n—2) 3k™

K, ()= Ak, — - (1)
Although the expansion coefficients K, (¢) are given for-
mally upon combining (11) and (6), the calculation of
their explicit form presents a hopeless task. To gain in-
sight into their structure, here we present the first three
higher-order generalized diffusive terms, i.e.,

(12)

2a +a)e—(a +2a)t+(a +2a)e—2(a+a)t

= — 2a~—
Ks(1) 4aD) a(a +a)a—+2a)

K,(t)=8(aD)a%/C)F (1),

where
C=2(a +2a)*a +a)3a +2a)2a—a) , (15)
F(t)=(5v—6)(v+1)— (12— 5v+6)e 20171
—(2v*—11v*+ 1442+ 9y—18)e ~a(1—¥)
+(4v*+ 16V — 82— 16v+12)e ~227)
—(2v*—5v3 =22+ 11y —6)e a3~V (16)

with v defined in (7).

The higher-order terms are very complex. With our
interest being the long-time asymptotics of (10), we ask
the challenging question, is it possible to rescale Eq. (10)
in such a way that any nontrivial limit exists which
reduces Eq. (10) to a simpler form? With a nontrivial
limit we mean that not only the drift term in (10) sur-
vives, but also a diffusive term so that K, does not van-
ish.

IV. LIMITING BEHAVIORS

In the long-time limit, i.e., K,(t)—>K, as t— o, we
obtain

I?_ 2aD

27 a+2a ’ (17)
= 4(aD)?
K _—— =l

3 (a+a)a+2a)’ (18)
R,=8(aD)’ 3a+3a . (19)

(a +a)(3a+2a)a +2a)?

From the general expression in (11) one can infer that
K,~(—vD)" "1 with vin (7).

A. Limit of weak noise

If D is sufficiently small, i.e., D << 1, then from (10) we
get an asymptotic expansion [21] in powers of D, that is,

9 8 . _ n p
a1 ax(ax aD)p+n§1D f,,(a,a)axn ) (20)

where p =p(x,t|x,,0) and f,(a,a) are rational functions

> (13)

(14)

of a and a [cf. Egs. (17)-(19)].

B. Limit of short correlation time

For this case, when a— o (or 7,—0), one finds that

_.a£~_a__ p— D _+_ Dn anp
ot ax(“" aDp a,glg" ax"’

21

where g, are whole numbers. The absolute values of
{g,] increase as n increases. In particular
g,=1,g;=—2, and g,=S5. Note that all higher-order
Kramers-Moyal diffusive terms are of first order in a.

C. Weak-intensity short correlation time of noise

In the limit D —0 and a— o so that aD =7y =const,

Eq. (10) reduces to a pure drift equation, that is,

p_9 . _

3 ax (ax —v)p . (22)
We note that in agreement with the remarks stated in the
Introduction, the limit in (IV B) does not exist for a— «,
except for the case when a is proportional to a, a ~a.
Indeed, rescaling time ¢ —at yields an equation of a form
similar to (21). In this case, the Kramers-Moyal expan-
sion does not reduce to a simpler form. It contains an
infinite number of terms and it is not even an asymptotic
expansion. Therefore the only candidate for further con-
sideration is the case in (IV A) and Eq. (20). Because of
the Pawula theorem [22], one may consider at most three
cases: (i) a truncated version of (20) with a drift term
only, (ii) a truncated version of (20) with a drift and K,
terms, and (iii) the full expansion (20) with infinite num-
ber of terms. The first case corresponds to the Dirac 8
distribution of the deterministic process y (¢)={x(z)},

dy(t) _
dt

We are not interested here in the third case because we
know the exact solution (8) of Eq. (10). Thus we consider
the usual Kramers-Moyal-Fokker-Planck truncation at
second order only.

—ay(t)+aD . ' (23)
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V. DIFFUSION-TYPE TRUNCATION

For the second case (ii), a probability density

P=P(x,t|x,,0) is determined by the equation

d ,_ 0 9?

EP__é;(ax —aD)P+aDK2—a?P . (24)
We ask whether (24) is an approximate form of Eq. (10)
and whether (24) describes approximately the original
process x (¢) in (2). To answer this question, let us con-
sider a solution of Eq. (24) with appropriate boundary
conditions. To construct them correctly, let us notice
that from (2) it follows that for any realization of the
noise,

)= —at 4 L o—a(t—s)g2 . 25

x(t)=xqe foe E(s)ds (25)

The integrand in (25) is non-negative. Hence
x(t)=xge ™ for t=0. (26)

Therefore for any probability distribution characterizing
x (t), the relation

P(x,t|xy,0)=0 for x <xge % 27)

should hold. Of course it is not possible to solve (24) with
the boundary condition (27). Instead, let us focus on its
stationary solution. In this case

4 (4x —aD)P, (x)+aDK, 2P (x)=0
ax (@x TaD)Py(x)ta 2703 «(x)=0,
P, (x)=0 for x <0 . (28)

A solution of the problem (28) reads

Py (x)=Ne ‘B(")foxem”)dy, x20, (29)
where
(ax —aD)?
B =— 0
(x) 2aaDK, (30)

The constant N is a normalization factor. Unfortunately,
the solution (29) is non-normalizable and therefore should
be ruled out in the case considered. So, the problem (24)
with the boundary condition (27) does not have a solution
in the class of normalizable distributions. One can try to
save the truncation (24) by use of natural boundary con-
ditions on the interval x €(— o, o ), but then the solu-
tion is a Gaussian function on this interval [18] and the
probability that x (z) <xg,exp(—at) is nonzero, though
from (27) it follows that it must be zero. Therefore (24) is
unacceptable and such a truncation of a full Kramers-
Moyal expansion is incorrect.

V1. FOKKER-PLANCK MODELING

The shortcomings of the above Fokker-Planck approx-
imation obtained by the truncation of the Kramers-
Moyal expansion of the master equation are serious. A
correct approximation to the master equation (4) by a
diffusion parabolic equation can be constructed following
Refs. [23,24]. Instead of (24), let us consider an equation
of the form
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3 _ 9,
5P (%:11%0,0)=="(ax —aD)p(x,tx0,0)

2
+ K 0p(xtlx,0), (D)
ox

with the diffusion function K (x,1).

A general theory of how to obtain K (x,¢) from equa-
tions such as (2) or from corresponding two-dimensional
Fokker-Planck equations, the form of which is known,
has not been elaborated. In our particular case (2), one
can observe that Eq. (4) may be rewritten in a form simi-
lar to (31) if one defines

K (x,t)=K (x,t;x4,0)

f_°° H(x —y,t)p(y,tlx,,0)dy

=aD
. D (x,t]x4,0)

(32)

Because p(x,t|x,,0) depends on x, and the initial time,
K (x,t) therefore depends on x, and the initial time as
well. It may not be named a diffusion function in the
usual sense and (31) with (32) is not a Fokker-Planck
equation because its coefficients depend on an initial state
of the system. This is because the process (2) is non-
Markovian. For long times, in states close to stationary,
one can approximate the process (2) by a diffusion pro-
cess, taking a stationary value of the function (32) as a
diffusion function,

K(x)=lim K(x,2;x,,0) . (33)

t— 0

Its equivalent form can be obtained from a stationary ver-
sion of Eq. (31). It reads

K(x)=p“l(x)fox(aD—ay)p(y)dy , (34)
where
p(x)=lim p (x,t|x,,0) (35)
t— 0

is a stationary distribution of the process (2), which does
not depend on an initial state of the system.
From (34) it follows that

K(x)—0 as x —0+ (36)
and
K(x)—>o asx—oo . (37)

The first property is obvious and results from, e.g., the
mean value theorem of integral calculus [25]. This prop-
erty also follows from the observation that the noise
should not drive the system in (2) towards negative state
values. The property (37) is a consequence of the fact
that

xnn:ofo"mu —ay)p(p)dy =aD —a{x),=0  (38)
and p(x)—0as x — .

In Fig. 1 the distribution p (x)—which by construction
coincides precisely with a stationary probability of the
Fokker-Planck approximation in (31) with
K (x,t)—K (x)—1is shown for a =4a and three values of
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7.0 D=0.8
D=1.0
6.0
5.0 1
p(x)
4.0

FIG. 1. Some selected examples of the stationary probability
distribution (8) for @ =4a are depicted at various values of the
noise intensity D.

the noise intensity D. In Figs. 2 and 3 the corresponding
diffusion function K (x) is presented for small and “large”
x, respectively. It is seen that for small x, K (x) is a non-
linear function [a good approximation of it is K (x)~x2].
On the other hand, for large x, K (x) seems to be linear in
its argument. It is a result of our numerical analysis.
Unfortunately, we have not been able to get these findings
from analytical evaluation of the Fourier integral in (8)
(its integrand is two valued).

Equation (31) with the diffusion function K (x) is relat-
ed to the Ito stochastic differential equation

& —ax+aD+ VT, (39)

where 7)(t) is standard Gaussian white noise with unit in-
tensity. Equation (39) is an equation with multiplicative
noise. The property (36) guarantees that noise cannot
drive the system below the boundary X =0 because noise
tends to zero as X —0.

0.18
K(x) D=1.2
0.15 o D=1.0
D=0.8
0.12 A
0.09 -
0.06 -
0.03 -
0.00 T T T T T 1
0.00 0.03 0.06 0.09 0.12 0.15 0.18

X

FIG. 2. The diffusion function K (x) for a =4a, a=1, i.e.,

v=— %, and various values of the noise intensity D: the small-x

case. For fixed v=—2a/a, K (x) depends linearly on a.
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12.0 -
K(x)
10.0 -
8.0
6.0 -

4.0 1

2.0 A1

O-O T T .
0o 1 2 35 4 5 &6
X

~J-
oo

FIG. 3. Same as Fig. 2, but for “large” x.

VII. FINAL REMARKS

In this paper we have studied the non-Markovian pro-
cess (2) driven by quadratic exponentially correlated
Gaussian noise £(¢). The evolution equations (4) and (10)
for its probability density have been constructed. In the
Langevin-type equation (2), the phase space of the pro-
cess x (¢) is a real line R!. The noise £(¢) causes that the
state space of x (¢) is restricted to a half line (26) and is
bounded from below. This feature is not visible in the
master equation (4) or in its Kramers-Moyal expansion
(10). It is reflected in the exact solution (8) because the
relation (27) holds for (8). Nevertheless, this fact is not so
obvious when looking at (8). It would be simple (by ap-
plying the Jordan lemma [26]) if one could prove that the
integrand in (8) had singularities on the lower half com-
plex plane [18].

We have shown that there does not exist a nontrivial
limit that simplifies the Kramers-Moyal expansion (10).
The weak noise intensity limit (D <<1) yields the power
series in D and the (deterministic) limit D —O0 is trivial.
For short correlation times (7, <<1), the expansion (10) is
not a power series in 1/7,. The limit 7,—0 does not ex-
ist unless the constant a is proportional to a=1/7,.
Truncation of the Kramers-Moyal expansion after the
second term produces a diffusion-type modeling based on
the Fokker-Planck equation (24) with a constant (x-
independent) diffusion coefficient. This equation was de-
rived and discussed in [10]. If one applies the Stratono-
vich theorem [6] to Eq. (2), then Eq. (24) is rederived.
The same approximation was used in [9].

Truncation of the series (10) at any order higher than
the second leads to incorrect description because of the
Pawula theorem [22]. So, the problem seems to be un-
solved. Fortunately, an alternative Fokker-Planck
description is accessible and acceptable [23,24] assuming
an x dependence of a diffusion coefficient K (x). The func-
tion K (x) in (34) guarantees that the stationary distribu-
tion and boundary conditions are correctly reconstructed.
The diffusion function is fixed by the correct drift term
and the correct stationary probability as in [23]. The
corrected Fokker-Planck equation (31) corresponds to the
Ito equation (39). One can say that the Markovian pro-



2938 JERZY KUCZKA, PETER HANGGI, AND ADAM GADOMSKI 51

cess X(t) defined by (39) is an approximation of the non-
Markovian process x (¢) in (2).

Unfortunately, a general scheme of construction for
the x-dependent diffusion coefficient for general flows
driven by nonlinear noise functions has not been found.
This task thus remains an open problem which we hope
will attract future attention.
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