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We study a single-lane traffic model that is based on human driving behavior. The outAow from a
traffic jam self-organizes to a critical state of maximum throughput. Small perturbations of the outAow
far downstream create emergent traffic jams with a power law distribution I'(t) —t of lifetimes t. On
varying the vehicle density in a closed system, this critical state separates lamellar and jammed regimes
and exhibits 1/f noise in the power spectrum. Using random walk arguments, in conjunction with a cas-
cade equation, we develop a phenomenological theory that predicts the critical exponents for this transi-
tion and explains the self-organizing behavior. These predictions are consistent with all of our numerical
results.

PACS number(s): 05.40.+j, 89.40.+k, 05.60.+w

I. INTRODUCTION

Traffic jams are annoying, and they have negative
economic impact. For example, it may be noted that in
1990 (1980), 14.8% (16.4%) of the U.S. Gross National
Product was absorbed by passenger and freight transpor-
tation costs [1]. Rather than increasing the supply of
transportation, perhaps by adding new highways or a
train-based transit system, or decreasing the demand for
transportation, for example by making it more expensive,
it is desirable to use existing transportation structures as
efficiently as possible. One would, perhaps, want to keep
a freeway in the regime of maximum vehicle throughout.

However, it turns out that this regime is not very well
understood. Recent numerical simulations using grid
based particle models for traffic flow have found indica-
tions for a phase transition separating low-density lamell-
er flow from high-density jammed behavior, where parti-
cles either stop moving or move very slowly [2—4]. It has
been observed numerically that this transition occurs at
or near the point of maximum throughput [5] and that
the flow behavior in this region is complex. Continuum
fluid-dynamical approaches similarly predict instabilities
in this region [6—8], consistent with real world observa-
tions [9,10].

Here, we demonstrate that maximum throughput cor-
responds to a percolative transition for the traffic jams.
It occurs at the point where emergent traffic jams are
barely able to survive indefinitely. This implies that the
intrinsic flow rate for vehicles leaving a jam equals max-
imum throughput. As a result, the outflow from a large
jam (at large distances or times) self-organizes to the
maximum throughput critical point. Numerical results
show that slow perturbations in the outflow lead to traffic
jams, downstream, of all sizes —a particularly simple ex-
ample of self-organized criticality (SOC) [11].If the sys-
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tern is "driven" with more frequent random perturba-
tions, then the jams will interact. This induces a finite
correlation length for the jams and pushes the system off
criticality. Similarly, the size of a jam induces a finite
size cutoff in its outflow. These considerations imply that
trafFic in a complicated network is likely to be poised near
the critical state determined by the largest jam in the sys-
tem, and thus susceptible to small perturbations. The
characteristic power law associated with the jam lifetimes
makes prediction of flow behavior more difficult. Steps
that are taken to reduce random fluctuations or perturba-
tions, such as cruise control or automatic car-following
systems, in fact, push the traffic network closer to its un-
derlying critical point, thereby making it more likely to
have large jams.

We study a simplified version of an original discrete
model proposed by Nagel and Schreckenberg [4]. This
simplification can be described as a "cruise control lim-
it," since at sufficiently low density all vehicles move
deterministically at maximum allowed velocity. This
deterministic motion is interrupted by small perturba-
tions at a vanishingly slow rate; i.e., the system is allowed
to relax back to a deterministic state before it is kicked
again. The emergent traffic jarns are the transient
response to the perturbation.

In the model, the forward motion of vehicles in a single
lane is mimicked by the forward motion of particles on a
one-dimensional lattice. The essential features of this
model are (a) hard-core particle dynamics; (b) an asym-
metry between acceleration and deceleration which, in
connection with a parallel update, leads to clumping
behavior and jam formation rather than smooth density
fluctuations; (c) a wide separation between the time scale
for creating small perturbations in the system and the re-
laxational dynamics, or the lifetime of the jams. The
model is studied with both closed and open boundary
conditions.

This model exhibits behavior that is characteristic of
granular systems [2,12,13—16]. These include phenome-
na ranging from the rather mundane example of flow of
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sand in an hour glass [17] to the large scale structure of
the universe [18].Recent studies of clustering instabilities
in one-dimensional many particle systems in which parti-
cles interact via inelastic collisions [19]may also be relat-
ed.

In Sec. II, the traffic model is defined, and its current-
density relation is derived. The outAow from a large jam
is marked by a power law scaling of the distribution of
jam lifetimes with exponent —,'. This outAow operates at
the point of maximum throughput. Section III presents
random walk arguments, which are exact for a version of
the model with maximum velocity, U „=1.This theory
predicts the critical exponents for the emergent jams.
The number of jammed vehicles, n, , scales with time as
r '~ . The space-time jam size (or mass of the jam cluster)
s —n, t, and the spatial extent m —n, . On varying the densi-
ty, p, away from the maximum throughput value, p„ the
jams have a characteristic lifetime t„, or cutoff, which
scales as r„—(p, —p) . It is important to note that jams
with v „&1are allowed to branch, unlike U „=1. In
Sec. IV, this branching behavior is analyzed in terms of a
cascade equation for the size distribution of intervals be-
tween parts of the jam. The distribution of interval sizes,
x, is predicted to decay as 1/x . This result suggests that
the jams are marginally dense and the random walk
theory is valid up to logarithmic corrections, e.g. ,
w-t' lnt. Also, since the jams drift backwards, this
distribution of interval sizes gives rise to 1/f noise in the
power spectrum of local activity. In Sec. V, we present
the rest of our numerical results. These results are con-
sistent with our phenomenological theory. In Sec. VI, we
discuss the potential relevance of this work to real traffic.

II. THE MODEL

The closed model is defined on a one-dimensional array
of length L, representing a single-lane freeway. Each site
of the array can be in one of the U,„+2 states: It may
be empty, or it may be occupied by one car having an in-
teger velocity between zero and U „.This integer num-
ber for the velocity is the number of sites each vehicle ad-
vances during one iteration. Movement is restricted to
occur "crash free. " Unless otherwise noted, we choose
v „=5, but any value U „~2 gives the same large scale
behavior when lengths are rescaled by a short distance
cutoff. This short distance cutoff corresponds roughly to
the typical distance required for a vehicle starting at rest
to accelerate to maximum velocity.

For every configuration of the model, one iteration
consists of the following steps, which are each performed
simultaneously for all vehicles (here, the quantity n,
equals the number of empty sites in front of a vehicle).

(i) A vehicle is stationary when it travels at maximum
velocity v „and has free headway: ng p

U „.Such a
vehicle just maintains its velocity.

(ii) If a vehicle is not stationary, it is jammed. The fol-
lowing two rules are applied to jammed vehicles.

Acceleration offree uehicles: With probability —,, a vehi-

cle with n
g p U + 1 accelerates to U + 1, otherwise it

keeps the velocity u. A vehicle with ng p
v just main-
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FIG. 1. The fundamental diagram, j(p), for U „=S. The
dotted line is valid for deterministic traKc, i.e., when the initial
state is prepared such that for each car n,„)U,„and u = U

The points are measurement results starting from random initial
conditions; each point corresponds to one run of a closed system
of length L =30000 and an average over 2. S X 10 iterations.

tains its velocity.
SIoming down due to other cars: Each vehicle with

n,„&v —1 slows down to n, : U ~n. ,„. With probabil-
ity —,', it overacts and slows down even further:

u ~max[n, —1,0).

Mouement: Each vehicle advances U sites.
Randomization takes care of two behavioral patterns:

(i) Nondeterministic acceleration. This is the source of
the scaling behavior of the jam lifetimes. (ii) Overre-
actions when slowing down. This is considered to be
realistic with respect to real traffic [20,21].

While in the original model studied by Nagel and
Schreckenberg [4,5], vehicles at u, „slowed down ran-
domly with probability pf„„here only the jammed vehi-
cles move nondeterministically. This corresponds to the

pf„,~0 limit, or the "cruise control limit, " of the previ-
ous model and completely separates the time scales for
perturbing the system and the system's response.

Our fundamental diagram, or current-density relation,
j(p), was determined numerically as shown in Fig. 1 for a
closed system of size L =30000. Starting with a random
initial condition with N cars (i.e., p=N/L) and after dis-
carding a transient period of 5 X 10 iterations, we mea-
sured (j )L (t)=X;,u;/L every 2500 time steps up to the
3 X 10 th iteration. Each data point corresponds to the
average over current measurements for a single initial
condition, with the following exception: When a run be-
comes stationary (i.e., no more jammed cars in the sense
of the definition above), then the future behavior is pre-
dictable. In this case, the run is stopped, and the current
will be equal to Jdet pvm„, see below.

For a spatially infinite system, the following results
hold: For p(p„jams present in the initial configuration
are eventually sorted out and the stationary deterministic
state is jam free with every vehicle moving at maximum
velocity. Thus, in the lamellar regime the current is a
linear function of density with slope U „=5. Lamellar
behavior is observed up to a maximum current j,(p, )

For p) p„and p(pd„, „(defined below) the system is
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bistable. Starting from an initial configuration which has
many jams, the jams in this case are never sorted out.
The steady state is an inhomogeneous mixture of jam free
regions and higher density jammed regions. Clearly,
these jammed regions decrease the average current in the
system. It is possible, nevertheless, to prepare initial
configurations that have no jams. Since all motion is
deterministic in this state, the steady state will also have
no jams and the current will still be a linear increasing
function of p (the dotted line in Fig. l). This is possible
up to densities of

Pdet, max
U max

leading to a maximum current of
U max

Jdet, max
Umax

(2)

This clearly is much higher than the current j, for ran-
dom initial conditions. It is in this sense that our system
is bistable (cf. also [3]). This effect allows us to produce
outAows with densities above p, .

Above p„ the current-density relation can be derived
by assuming that the system phase separates into jammed
regions separated by jam free gaps. The jam free gaps are
the outflow of a jam and thus have current j,(p, ), as ar-
gued in the next section. Conservation of the number of
cars and of volume [22] leads to

(p —p, )(aj, —
U~ )

J Jc
1 —ap,

(3)

A. The outAow from a jam occurs at maximum throughput

A striking feature of the mode1 is that maximum
throughput is selected automatically when the left bound-
ary condition is an infinitely large jam and the right
boundary is open. This situation was described for the
original model in [5]. An intuitive explanation is that
maximum throughput cannot be any higher than the in-
trinsic Aow rate out of a jam. Otherwise the Aow rate
into a jam would be higher than the Aow rate out, and the
jam would be stable in the long time limit, thus reducing
the overall current. By definition, of course, maximum
throughput cannot be lower than this intrinsic Aow rate.

In Fig. 2, the cars on the left Aow out from a region of
high density, where they move with zero velocity. This
high density region is not plotted here; only the interface
or front separating the high density region and its deter-
ministic outAow is plotted. This is the branched struc-

where a is the average number of lattice sites per jammed
vehicle, and U,. is the average velocity ( &U,„) of a
jammed vehicle (see [23] for a similar calculation). Thus,
the current-density relation is linear both above and
below the critical point, as demonstrated in Fig. 1.

The discontinuity in the current at the critical point, as
seen in figure, is a finite size effect due to the fact that
each point in the figure represents a single initial
configuration. In a finite system, there is a finite proba-
bility that even a system with supercritical density p) p,
finds the deterministic state, and then has a current of
Jdet +Jc.

FIG. 2. OutAow from a dense region (left); only the front, or
interface, from the dense region is shown as the structure on the
left hand side. Dots represent vehicles which move to the right.
The horizontal direction is space and the vertical direction
(down) is (increasing) time. In the outAow region, an emergent
jam is triggered by a small distrubance. This is the structure on
the right hand side. "Deterministic" vehicles to the right of the
emergent jam are not plotted.

ture on the left hand side of the figure. The vehicles Aow-

ing out of the large jam ultimately relax to the deter-
ministic state when they have moved sufFiciently far away
from the jam.

This feature of maximum throughput selection is
characteristic of driven diffusive systems [24—26]. How-
ever, in our case the left boundary condition is unusual:
the front of the infinite jam drifts backward in time. If
the left boundary is fixed in space and vehicles are insert-
ed at velocities less than U „,then the outAow from a
jam cannot reach maximum throughput (cf. bottleneck
situation in [4,27]). This point warrants further investi-
gation, since it corresponds to the real world observation
that disturbances which are fixed in space, such as
bottlenecks or on-ramps, lead to much lower throughput
downstream than would be possible theoretically [28].

B. Tra%c jams
in the outAow show self-organized criticality

The outAow situation, as described above, produces
deterministic Aow asymptotically at large distances. This
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means that sufficiently far downstream from the large
jam, the jam flow has sorted itself out into deterministic
flow. In the deterministic region, one car is randomly
perturbed by reducing its velocity to zero. Many
different choices for the local perturbation, however, give
rise to the same 1arge scale behavior. The perturbed car
eventually reaccelerates to maximum velocity. In the
meantime, though, a following car may have come too
close to the disturbed car and has to slow down. This ini-
tiates a chain reaction —the emergent trafric jam.

Figure 2 also shows the first 1400 time steps of such an
emergent jam, as the structure on the right hand side of
the figure. Qualitatively, the jam clearly shows a tenden-
cy to branch with complex internal structure and a frac-
tal appearance [29]. The emergent traffic jams drift back-
wards; so it is possible for a sufficiently long-lived emer-
gent jam to eventually intersect with the outflow jam in-
terface, on the left in Fig. 2, that is itself becoming
broader with time. It is likely that the branching
behavior of the emergent jams is the same as the branch-
ing behavior of the original jam interface. In this work,
however, we do not explicitly study the interface. Con-
trary to the figure, in the computer code, the interface re-
gion to the left and the emergent jam to the right are kept
completely separate using methods described in Appen-
dix A.

A jam is sorted out when the number of jammed cars is
zero. This defines the lifetime, t, of an emergent tra%c
jam. In order to obtain statistics for the properties of
noninteracting tra%c jams, the deterministic outflow is
disturbed again, after the previous jam has died out. In
our simulations we measure the lifetime distribution,
P(t), the spatial extent w of the jam, the number of
jammed vehicles n, and the overall space-time size s
(mass) of the jam. These properties of the traffic jam are
analogous to other branching processes such as directed
percolation [36], branching annihilating random walks
[31], or nonequilibrium lattice models [32], although the
precise behaviors are different. Figure 3 shows 1400 time
steps in the middle of the life of a larger jam. Here, vehi-
c1es that are stationary are no longer shown; the plot only
shows the "particles, " or jammed vehicles, that propa-
gate the disturbance.

For a quantitative treatment, we start by measuring
the probability distribution of jams as a function of their
lifetime, t. Figure 4 shows that for t & =100, this distri-
bution follows a power law,

FIG. 3. Space-time plot of an emergent jam. The horizontal
direction is space and the vehicle direction is time, as in Fig. 2.
Only vehicles with v & u, „,i.e., "particles, "are plotted.

P,„„(t)=f dt'P(t')-t ' for 5&0.
t

(5)

1
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We again emphasize that no external tuning is necessary
to observe this scaling behavior. The outflow from the
infinite jam self-organizes to the critical state.

P(t) —t + with (5+1)=1.5+0.01, (4)
10

P(~) 10-4—

very close to 6= —,'. This figure represents averaged re-
sults of more than 65 000 jams.

Here, scaling is observed over almost four orders of
magnitude as determined by our numerically imposed
cutoff: For this figure, if jams survive longer than 10
time steps, they are removed from the database. It is
very important to note that these emergent jams are pre-
cisely critical. Their power law scaling persists up to any
arbitrarily large, numerically imposed cutoff. The life-
time distribution is related to the survival probability
P,„,„(t)by

1O-'—
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FIG. 4. Lifetime distribution P(t) for emergent jams in the
outQow region; average over more than 65 000 clusters
{avalanches). The dotted line has slope —'. Numerically im-

posed cuto6' at t = 10 .
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III. RANDOM WALK ARGUMENTS
FOR CRITICAL BEHAVIOR

It is, perhaps, surprising that such a seemingly compli-
cated structure as shown in Fig. 2 is described by such a
simple apparent exponent. Numerically, the exponent
6+1 is conspicuously close to —'„ the first return time ex-
ponent for a one-dimensional random walk. In fact, for
u „=1 this random walk picture is exact, as shown
below.

Let us consider a single jam in a large system with
u „=1. The vehicles in the jam form a queue, and all of
these cars have velocity zero. When the vehicle at the
front of the jam accelerates to velocity one, it leaves the
jam forever. The rate at which vehicles leave the jam is
determined by the probabilistic rule for acceleration.
Vehicles, of course, can be added to the jam at the back
end. These vehicles come in at a rate which depends on
the density and velocity of cars behind the jam. Given
the rules for deceleration, the spacing between the
jammed cars is zero so the number of cars in the jam, n,
is equal to the spatial extent of the jam, w. This contrasts
with the branching behavior for u „&1. The probability
distribution, P(n, t), for the number of cars in the jam, n,
at time, t, is determined by the following equation:

P(n, t +1)=(1 r;„r,„,—)P(n,—t)

number n„, etc. From Eq. (7), t„-n„(r,„,—r, )
Assuming that near the critical point r,„,—p,„-p,—p,
then using n

t„-(p,—p)

If the left boundary condition is such that p) p„vehicles
on average enter the emergent jam at a faster rate than
they leave. In this case, there is a finite probability to
have an infinite jam, P, which vanishes as p —+p, as

In a closed system, the steady-state density of jammed
cars, p =p

—p„so that the order parameter exponent is
trivially P= 1. From the random walk Eq. (7), and in
analogy with other branching processes such as directed
percolation [30j,P,„,„ follows a scaling form

(10)

near the critical point. Here, b,:~p
—p, ~

and t„—b,

From this scaling relation, P=5v, . For U,„=1, 5 =
—,',

v, =2, and again P= l.
The number of jammed vehicles, n, averaged over all

jams, including those that die out, has the scaling form,

+r;„P(n —l, t)+r,„,P(n+l, t) . (6)

Here, the quantities r;„and r,„, are phenomenological
parameters that depend on the density behind the jam
and the rate at which cars leave a jam. They are indepen-
dent of the number of cars in the jam. For large n and t,
one can take the continuum limit of Eq. (6) and expand to
lowest order

()P QP ~ „t+~; $2P

When the density behind the jam is such that the rate
of cars entering the jam is equal to the intrinsic rate that
cars leave the jam, then the first term on the right hand
side vanishes, and the jam queue is formally equivalent to
an unbiased random walk in one dimension [33], or the
diffusion equation. The first return time of the walk then
corresponds to the lifetime of a jam. This leads immedi-
ately to the result P(t) —t ~ for the lifetime distribu-
tion.

This argument shows that the outAow from an infinite
jam is in fact self-organized critical. This can be seen by
noting that the outAow from a large jam occurs at the
same rate as the outAow from an emergent jam created
by a perturbation. This also shows that maximum
throughout corresponds to the percolative transition for
the traffic jams. Starting from random initial conditions
in a closed system, the current at long times is deter-
mined by the outAow of the longest-lived jam in the sys-
tem.

When r;„=r,„, one also finds from Eq. (7) that n -t '~~

and the size of the jam s -nt -t . If the density in the
deterministic state is below the critical density p„ then
the jams will have a characteristic lifetime, t„, size s„,

The number of jammed vehicles averaged over surviving
jams, scales with a different exponent,

(12)

The mapping to the random walk gives g=O. The clus-
ter width, averaged over surviving clusters, scales as
w —t ' ', and the mapping to the random walk gives z =2.
The average cluster size s-t"+ +', s-t in the ran-
dom walk case.

In the numerical measurements, we averaged the quan-
tities t =lifetime of the cluster, w maximum width of
cluster during cluster life, n =maximum number of
simultaneously jammed vehicles during cluster life, s =
total number of jammed vehicles during cluster life.

Our theoretical results should describe the emergent
traffic jams not only at u,„=1 but also for any v,„&1

as long as the traffic jam itself remains dense. If this is
the case, then the dynamical evolution is determined sole-
ly by the balance of incoming and outgoing vehicles as
described by Eq. (7). The ratio w ln should go to a finite
constant at large times if the theory is valid. If the emer-
gent jams break up into a fractal structure, and w/n
diverges, internal dynamics must also be included. Since
the jams displayed in Figs. 2 and 3 appears branched and
at least qualitatively fractal, one might doubt that such a
simple theory could describe this behavior. Nevertheless,
the close numerical agreement of the lifetime distribution
exponent for the SOC behavior suggests the possibility
that the random walk theory is a valid description of the
branching jam waves.
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IV. A CASCADE EQUATION
FOR THE BRANCHING JAMS

We now analyze the branching behavior of jams with
U „&1 in terms of a phenomological cascade equation.
A very large emergent jam, at a fixed point in time, con-
sists of small dense regions of jammed cars, which we call
subjams, separated by intervals, "holes, " where all cars
move at maximum velocity. If the jam is dense, then the
holes have a finite average size. Otherwise, the jammed
vehicles may comprise a fractal with dimension d& &1.
We will consider the subjams to have size one.

Holes between the subjams are created at small scales
by the probabilistic rules for acceleration. Each subjam
can create small holes in front of it. We will ignore the
details of the injection mechanism, and assume that there
is a steady rate at which small holes are created in the in-
terior of a very long-lived jam. We also assume that the
interior region of a long-lived jam reaches a steady-state
distribution of holes sizes. We do not explicitly study the
distribution of hole sizes at small scales.

In order to determine the asymptotic scaling of the
large holes in the interior of a long-lived jam, it is neces-
sary to isolate the dominant mechanism in the cascade
process for large hole generation. This mechanism is the
dissolution of one subjam. When one subjam dissolves
because the cars in it accelerate to maximum velocity, the
two holes on either side of it merge to form one larger
hole. Holes at any large scale are created and destroyed
by this same process. This mechanism links different
large scales together, and we propose that it gives the
leading order contribution at large hole sizes. In the
steady state, the creation and destruction of large holes
must balance. This leads to a cascade equation for holes
of size x:

(h(x)h(u —x))= g (h(x')h(x —x' —1)) .

Thus the distribution of hole sizes decays as

Pi, (x)-x " with r„=2 .

It is interesting to note that the cascade equation (13) is
identical to the dominant mechanism in the exact equa-
tion for forests in the one-dimensional forest fire model
[34]. The exponent ri, =2 is the same as the distribution
exponent for the forests, which has been obtained exactly
[35]. Curiously, ri, =2 can also be regarded as another
example of Zipf's law [36].

The exponent ~& is related to the fractal dimension d&
of jammed vehicles by

7 II 1+df
as long as r& & 2 [37]. Thus, r& (2 implies that the equal
time cut of the jam clusters is fractal, otherwise not. The
point ~I, =2 is the boundary between fractal and dense
behavior. At this special point, the random walk theory
can still be expected to apply, although with logarithmic
corrections.

The width of an emergent jam, at a given point in time,
w ( t), can be expressed as

w(t)= w + f dx xPI, (x, t)
n (t)

N)

Here, w~ is the av. erage width of a subjam; it is 0 (1). The
quantity Pi, (x, t) is the probability distribution to have a
hole of size x in a jam that has survived to time t. It is
natural to assume that this distribution corresponds to
P&(x) up to a cutoff'which grows with t Insert. ing the ex-
pression for PI, (x) gives

w(t)-n(t) 1+f dxx (19)
1

where the upper bound x ' represents a time-dependent
cutoff. Using ~& =2, n —t +", and assuming x*—t' gives

(13) w (t) t+"(-1+c1nt) for ri, =2 . (20)

Here, the angular brackets denote an ensemble average
over all holes in the jam, and the quantity h (x)h (u —x)
denotes a configuration, where a hole of size x is adjacent
to a hole of size (u —x). The right hand side of this equa-
tion represents the rate at which holes of size x are creat-
ed, and the left hand side represents the rate at which
holes of size x are destroyed.

Now, we make an additional ansatz, namely, for large,
x, (h(x')h(x —x' —1))=G(x), independent of x' to
leading order. That is, to leading order the probability of
having two adjacent holes, whose sizes sum to x is in-
dependent of the size of either hole. G(x) then also
scales the same as Pi, (x), the probability to have a hole of
size x. Thus Eq. (13), to leading order, can be written

g G(u)-xG(x) .

In other words, if ~& =2, as the above arguments suggest,
spatial quantities such as w(t) will exhibit logarithmic
corrections to the random walk results. In the following
section, we test these theoretical predictions with further
numerical studies.

V. SIMULATION RESULTS

We now present the rest of our numerical results. Un-
less otherwise noted, these results were obtained for sys-
tems with U „=5.

A. At the self-organized critical point

We study the critical properties of the outfIow of a
large jam by driving it with slow random perturbations as
described in Sec. II. Numerically, we find (Fig. 5)

Differentiating leads to

X
BG(x) = —2G (x); G (x)—

Bx X

n(r)=—(n ),„,„(r)—r~+, q+5=0. 5+0. 1

and (Fig. 6)

s(r)-n(r)r-r'+"I+', 1+q+5=1.5+0.1,

(21)
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FIG. 5. Number of jammed particles at time t, n(t), averaged
over surviving clusters, in the outflow situation. Numerically
imposed cutoff at t = 10;more than 165 000 clusters were simu-
lated. The dotted line has slope —'.

FIG. 7. Survival probability for the jam clusters, P,„,„(t), for
different inAows. Note that this distribution is highly sensitive
to the inAow, reconfirming that the self-organized outAow is
indeed precisely critical.

B. Off criticality

By changing the left boundary condition (i.e., the
inflow condition) of the open system, simulations were
performed both above and below the critical point. This
is achieved by replacing the mega jam by the following
mechanism: Vehicles are inserted with u=u „, at a
fixed left boundary. After each vehicle, u,„sites are left
empty and then the following sites are attempted to be
occupied with probability p;„„„until a site is occupied.
The rate p;„„„determines an average density p by

1
p

U max + I ~p insert
(23)

in agreement with the random walk predictions. Howev-
er, the simulations do not converge to power law scaling
before t =3 X 10, and since the simulation is cut oA' at
t =10, the exponents are obtained from less than two or-
ders of magnitude in t. Figures 5 and 6 contain the aver-
aged results of more than 160000 avalanches, typically
corresponding to approximately 200 workstation hours
(see Appendix and figure captions for further informa-
tion).

v, =2+0.2, (24)

which, again agrees with our random walk predictions.

C. Explaining previous results

These findings put us in a position to view simulation
results of the original model [5] in a new context (see also
[38]). In that model, multiple jams exist simultaneously.
Jams start spontaneously and independently of other
jams because vehicles fluctuate even at maximum speed,
as determined by the parameter pt„,&0.

which can go as high as p=pdet, max 6
=0.166 66. . . for

u,„=5, much higher than the critical density of
p, =0.0655.

We have measured the survival probability, P,„,„(t) on
varying the density as shown in Fig. 7. Based on the
same data, we have performed data collapse for the life-
time distribution P(t) on varying the density, as shown in

Fig. 8. By plotting P/t ' +" vs th, ' with the exponents
5+1=1.5, v, =2 was determined by the qualitatively
best collapse. The accuracy of this method is not very
high, though, so that the conclusion from the numerical
results is no better than
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tion, for the same clusters as in Fig. 5. Jams of similar lifetime t
were averaged. The dotted line has slope 2.
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FIG. 8. Data collapse for the lifetime distribution of jams for
the same data as for Fig. 7 with 5+ 1 = 1.5 and vt =2.
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The original model displayed a scaling regime near the
(self-organizing) density of maximum throughout p(j,„),
but with an upper cutoff at t = 10, which was observed to
depend on p&„,. We can now attribute this cutoff to the
nonseparation of the time scales between disturbances
and the emergent traffic jams. As soon as p&„, is different
from zero, the spontaneous initiation of a new jam can
terminate another one. Obviously, this happens more
often when p~„, is high, which explains why the scaling
region gets longer when one reduces p&„,~ Dimensional
arguments suggest that the cutoff in the space-time
volume, V- wt, should scale as V„P&„,—1 (for

p&„, ((1),since this implies that a new jam is initiated in
a space-time volume occupied by a previously initiated
jam. According to the random walk picture V-s, so
that s„-p&„', and t„-p&„, . Measuring these correla-
tion lengths, however, is outside of the scope of the
present study.

D. Spatial behavior

So far, we have only shown simulation results for ex-
ponents describing the evolution of the number of vehi-
cles, but not their distribution in space. Here, our simu-
lation results are less conclusive. The width w(t) vs r

(Fig. 9) is, besides the convergence problems already de-
scribed, best approximated by an exponent,

—=0.58+0.041

z
(25)

instead of —,'. Measurements of other relations (e.g., w vs

n; not shown) confirm these discrepancies for the spatial
behavior of branching jam clusters with U,„&1. How-
ever, the form w(t)-t '/ 1nt vs t (Fig. 9) is also consistent
with the numerics.

In an effort to resolve this question, we analyzed large
jam configurations. We ran simulations with U „=2un-
til a cluster reached a width of, say, 2' =8192, and
stored the configuration of this time step. About 60
configurations of the same size were used. Measuring the
distribution of holes inside the configurations is con-
sistent with the results from the cascade equation
presented earlier.

Figure 10 shows a plot of the probability distribution
for hole sizes, Ph(x) vs x, obtained from these
configurations. We find

E. 1/f noise

We measured the power spectrum by first recording
the time series for the number of vehicles, N&(t), in a
small segment of length I in a closed system, and then
taking the square of the Fourier transform:

S(f)=11Vg(f)/ = /FT[Ni(r)]/~ (27)

Since the jams have a finite drift velocity, the distribution
of hole sizes in space is translated into the same distribu-
tion of time intervals for the activity. In particular, the
hole size distribution in space translates to the first return
time for jammed vehicles when sitting at a fixed position
in space. It has been shown I37] that given a distribution
of first return times of activity P„„,(t) —t ""', the power

spectrum scales as S(f)-1/f ""' . Using the result
rh =r„„,=2 this gives precisely a 1/f power spectrum
for the noise. The power spectrum for the original model
with the parameter p&„,=0.5, 0.005, 0.00005 was mea-
sured in a closed system near the critical density. As
shown in Fig. 11, the numerical results are in general
agreement with this prediction. This result agrees quali-
tatively with the power spectrum results for granular How

both in experiments [17,13] and in simulations [14—16],
and offers an alternative explanation for I/f noise ob-
served in traffic fiow [39,40].

Pi, (x)-x ", ri, =1.96+0.1,
which is indeed consistent with the prediction ~h=2
from the cascade equation.

Nevertheless, our numerical results are not precise
enough to distinguish ~& =2 from ~& &2. Nor do our
measurements for the width distinguish the power law fit
with exponent 0.58 from the theoretically plausible fit
with exponent —,

' and a logarithmic correction.
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FIG. 9. Averaged maximum width of clusters, w, as a func-
tion of their lifetime, t. The dotted line has slope 0.58; the solid
line is a logarithmic fit At ' log&o(t) where A is a free param-
eter.

FIG. 10. Probability distribution Pz for hole sizes x. The
dotted line has slope —2. The average is over 60 configurations,
which all have width m=2' . Contrary to all other figures in
this chapter, these results were obtained with U „=2.
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FIG. 11. Power spectrum, S(f), smoothed by averaging, for
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ted line has slope —1.

VI. APPLICATIONS TO REAL TRAFFIC

With respect to real world traffic, much of this discus-
sion appears rather abstract. A configuration of size
2' =8192, as analyzed in this work, corresponds to more
than 100 km of undisturbed roadway, a situation that
rarely occurs in reality. However, the following results
should be general enough to be important for traffic.

(i) The concept of critical phase transitions is helpful
for characterizing real traffic behavior. Open systems
will tend to go close to a critical state that is determ. ined
by the outAow from large jams. This underlying self-
organized critical state corresponds to a percolative tran-
sition for the jams; i.e., spontaneous small Auctuations
can lead to large emergent traffic jams.

(ii) Interestingly, planned or already installed techno-
logical advancements such as cruise-control or radar-
based driving support will tend to reduce the fluctuations
at maximum speed similar to our limit, thus increasing
the range of validity of our results. One unintended
consequence of these How control technologies is that, if
they work, they will in fact push the traffic system closer
to its underlying critical point; thereby making predic-
tion, planning, and control more difficult.

(iii) The fact that traffic jams are close to the border of
fractal behavior means that, from a single "snapshot" of
a traffic system, one will not be able to judge which traffic
jams come from the same "reason. " Concepts like
queues [41] or single waves do not make sense when
traffic is close to criticality. "Phantom" traffic jams
emerge spontaneously from the dynamics of branching
jam waves.

The fact that holes scale with an exponent around —2
means that, at criticality, the jammed cars are close to
not carrying any measure at all. The regime near max-
imum throughput thus corresponds to large "holes"
operating practically at p, and j „,plus a network of
branched jam clusters, which do not change p and j very
much. The fiuctuations found in the 5-min measure-
ments of traffic at capacity [49] therefore refiect the fact
that traffic How is inhomogeneous with essentially two
states (jammed and maximum throughput). The result of
each 5-min measurement depends on how many jam
branches are measured during this period.

APPENDIX A: COMPUTATIONAL STRATEGIES
AND PROBLEMS

Computationally, we use a "vehicle-oriented" tech-
nique for most of the results presented here. Vehicles are
maintained in an ordered list, and each vehicle has an in-
teger position and an integer velocity. Since we model
single-lane traffic, passing is impossible, and the list al-
ways remains ordered.

We simulate a system which is, for all practical pur-
poses, infinite in space. The idea is comparable to a
Leath algorithm in percolation [42], which also only
remembers the active part of the cluster.

As we described earlier, a jam cluster is surrounded by
deterministic traffic. Let us assume that the leftmost car
of this jam has the number i,tt and is at position x&,f,
(similar for the rightmost car). Cars are numbered from
left to right; traffic is Aowing from left to right.

To the right of car i„h„everything is deterministic
and at maximum speed, and, in consequence, nothing
happens which can inAuence the jam. Therefore, we do
not change the properties of the jam if we do not simulate
these cars. Moreover, as soon as car i„gh, becomes deter-
ministic, it can never reenter the nondeterministic re-
gime. Therefore, car number i„h, —1 becomes the new
rightmost car, and car number i„h, is no longer con-
sidered for the simulation.

To the left of car i&,f„ the situation is similar. The only
information that we need is the sequence of the gaps
(ns, ~ ) of the incoming cars. Just before car i&crt 1

t

enters the jam, we add one more car to the left, with

g&p;
left —2

It is obvious that, with this computational technique,
the only restriction for the spatial size is given by the
memory of the computer. Since our model is one dimen-
sional, this has never been a problem.

A remaining question is how to obtain the sequence of
gaps (ns, ~ ); of the incoming cars, especially for the

t

outflow situation. One possibility would be to first run
another simulation of the outAow from a megajam. Cars
leave this megajam, drive through a regime of decreasing
density, and eventually relax to the deterministic state.
One then records the gaps between these cars, writes
them to a file, and reads this file during the other simula-
tion. Apart from technicalities (avoiding the intermedi-
ate file), this is the technique we adopted in our simula-
tions.

Our program runs with approximately 270000 vehicle
updates per second on a SUN-Sparc10 workstation; and
since the critical density is p, =0.0655, for U „=5 this
corresponds to 270000/0. 0655=4. 1X10 site updates
per second. This includes all time for measurements and
for the production of the gaps of the incoming cars.

We showed that our numerical results cannot resolve
the question between logarithmic corrections for the
width w(t) or an exponent difFerent from —,', in spite of
data obtained over six orders of magnitude in time. The
reason for this is a large "bump" in the measurements of
the width. Simulations of larger systems would have
been helpful. The time complexity for our questions is
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O(t}: As shown above, when averaging over all started
clusters, the number of active sites, ( n )„„„d,is constant
in time: (n ),„„„d(t)—t . When t„ is the numerically im-

posed cutoff, then we perform for each started cluster in
the average at„updates of a vehicle. In our experience,
o,'=5 for U „=5.

In order words, in order to add another order of mag-
nitude in time, with the same statistical quality as before,
we would need a factor of 10 more computational power.
However, each of our graphs already stems from runs us-

ing 4 or more Sparc10 workstations for 10 days or more.
And using a parallel supercomputer seems dificult: Stan-
dard geometric parallelization is ineffective because most
of the time the jam clusters are quite small, and in conse-
quence all the CPU's responsible for cars further away

"from the middle of the jam" would be idle. More so-
phisticated load-balancing methods might be a solution.
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