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A detailed Monte Carlo and integral-equation study of the behavior of the restricted primitive
model of electrolytes near the critical region is presented. Our simulation results furnish informa-
tion concerning cluster formation in the low density —high ionic strength region. Additionally, bridge
functions have been extracted from the simulated pair correlation functions by means of an itera-
tive procedure. These "exact" bridge functions have been compared with the results of a recently
proposed integral equation [D.M. Duh and A.D.3. Haymet, J. Chem. Phys. 97, 7716 (1992)] which
has been solved using both a Coulombic and an optimized decomposition of the interionic potential.
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I. INTRODUCTION

Recent debate on the critical behavior of ionic fluids
[1] has given rise to renewed interest in the theoretical
study of the restricted primitive model (RPM), the sim-
plest system in which these questions can be investigated.
In particular two independent Monte Carlo (MC) stud-
ies [2,3] have succeeded in establishing the gas-liquid co-
existence curve and critical point with a high degree of
confidence. An essential feature of the low density —low
temperature ionic fluid is the strong tendency of the ions
to associate into dipolar pairs, triplets, and higher order
clusters [4,5], and any theory which aims at describing
with some success its critical behavior will have to cope
with this fact. A recent Debye-Hiickel-Bjerrum type the-
ory extended to allow for association of the ions into neu-
tral dipolar pairs has indeed proven [6] to be able to give
a reasonable representation of the simulated coexistence
curve.

The purpose of this paper is to investigate the struc-
tural behavior of the RPM when approaching the critical
temperature along an isochore of density approximately
one-third of the critical density. Special emphasis is
placed on the determination of the bridge functions from
the simulation results. Recently, related works focused on
nonionic systems [11,12], have been published. In fact,
the bridge function is the necessary ingredient to improve
integral equation theories, such as the hypernetted-chain
(HNC) equation [7], extensions of the mean spherical

approximation (MSA) MSA [8,9], or the crossover and
hybrid MSA (HMSA) approximations [10], which per-
form poorly in the low density —high ionic strength region,
where one should expect to find criticality.

The rest of the paper can be sketched as follows. Our
most representative simulation results are presented in
Sec. II. The integral-equation approach to the problem,
as well as the iterative procedure for the extraction of the
bridge functions &om the simulation data, are discussed
in Sec. III. Here we also compare the "exact" bridge
functions with the results of a recently proposed integral
equation [13],using both a Coulombic and an optimized
decomposition of the interionic potential. Finally, our
main conclusions are summarized in Sec. IV.

II. MONTE CARLO SIMULATIONS

A. Model potential and simulation details

The Monte Carlo simulations were performed in the
canonical ensemble for a system of 512 positive and 512
negative ions in a cubic box with periodic boundary con-
ditions. The particles interact through the potential,

(2 1)

1063-651X/95/51(1)/289(8)/$06. 00 51 1995 The American Physical Society



290 F. BRESME, E. LOMBA, J. J. WEIS, AND J. L. F. ABASCAL

sum of a hard sphere (HS) repulsion and a long-range
Coulomb term, de6.ning the RPM model.

In Eq. (2.1), Z = +I is the ionic charge, e the di-
electric constant of the solvent, e is the electron charge
in esu, and 0 the hard sphere diameter. The long-
range Coulomb interactions were taken into account us-
ing Ewald's method [14]. The density of the system
was p* = po. = 0.0 jL. and the inverse temperature
P* = e2/ekT was varied from 4 to 18. We recall that
the best estimates of the critical parameters presently
available for the RPM are P,* 18.9 and p,' 0.025
[2(b)] and P,* 17.5 and p,

* 0.04 [3]. The sampling
of configuration space was performed using the standard
Metropolis algorithm, i.e. , a particle trial move consisted
of a random displacement inside a cube of edge 2b cen-
tered at the old particle position. The value of b was
chosen to obtain an acceptance ratio of 0.45—0.50. Typi-
cal values range from b = o at the highest temperature to
b —0.2o at the lowest. With these values substantial dif-
fusion of the ions was observed along the simulation runs,
which involved between 20 000 and 48 000 trial moves per
particle after equilibration of the system.

FIG. 2. Same as Fig. 1 but for P" = 10.

B. Simulation results

Snapshots of configurations of the system are shown in
Figs. 1—4 for P* = 4, 10, 15, and 18. Whereas at P* = 4
the system is fairly homogeneous, substantial clustering
of the ions is visible at P* = 10 and lower temperatures.
Formation of two-, three-, and four-body clusters is also

reflected in the pair correlation functions: In g+ the
large contact value (see inset in Fig. 5) expresses the
strong tendency of the ions to associate. The emergence
of a peak near r = 3o (cf. Fig. 5) indicates formation of
chainlike clusters. This is compatible with the develop-
ment in g++ ——g (with decreasing temperature) of a
strong peak at r = 20 which results &om the increasing
probability for the ions to form, at least, linear triplets

FIG. 1. Snapshot of a configuration of 512 positive and
512 negative ions in a cubic box of side 46o with periodic
boundary conditions at p' = 0.01 and P' = 4. The positive
and negative ions are represented by black and gray dots,
respectively. FIG. 3. Same as Fig. 1 but for P' = 15.
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sity. Finally we can remark that an appreciable fraction
of dimers is already present in the system at the inverse
temperature P = 7 and that in the vicinity of the criti-
cal temperature an important fraction of ions associates
into clusters involving more than six particles.

The density matrix p has elements p p ——p
With these definitions the OZ equation (3.2) can be

rewritten in renormalized form involving only short-range
functions. To do so it is convenient to introduce the
functions

III. BRIDGE FUNCTIONS
AND INTEGRAL EQUATIONS

Our next task was to determine the bridge functions
B p(r) of the system from the knowledge of the pair cor-
relation functions. This can be achieved by solving the
relation

IISR( )
hSR

and their density-scaled Fourier transforms

f SR k( )1/2 hSR(k) -SR(k)

(3.9)

(3.10)

(3.11)
h P(r12) = exP[—Pu P(r13) + P P(r12)

+B-n(»2) 1
—1

coupled with the Ornstein-Zernike (OZ) equation,

(3.1) and similarly for JI
& (k). Further writing V p(k)

(p pp) 8 p(k), the renormalized OZ equation takes
the simple form, in Fourier space,

P ( lr)2c P (+12) ) PA c A (+13)~AP (+32)drs

(3.2)

where h p ——g p —1 is the total correlation function, c p
the direct correlation function, p p

——h p
—c p, and p

the density of ion species o..
For Coulombic systems it is customary to split the in-

teraction potential into short- and long-range contribu-
tions,

SR( ) + LR( (3.3)

where

P LR( ) P* ~ P (1 (3.4)

The Yukawa term in the previous equation is merely
introduced for numerical purposes, to suppress the sin-
gularity at k = 0 in u

& (k) [7,15]. This Yukawa parame-
ter ( is determined empirically to minimize errors in the
transforms (see [16]) although its choice is not crucial,
and in practice Eq. (3.4) represents essentially nothing
but a Coulombic potential.

It is convenient to separate in a similar way the direct
and total correlation functions into short- and long-range
parts according to (using matrix notation)

C T = C T (3 5)

and

hsR(r) = h(r) —q(r), (3.6)

v (k) = p (r) —Q(k) (3 7)

through the relations

pq(k)p = v(k) —p. (3.8)

where Q p = —PuL&(r) and q p(r) is a modified Debye-
Hiickel chain bond whose Fourier transform q p(k) is re-
lated to the hypervertex matrix function [7]

h p(r)=h p M(r)ifr(r„

c p(r) = Pu p(r)if r )—r„
(3.13)

which is closely connected to the Duh-Haymet scheme
[13]. The resulting set of nonlinear equations were solved
by a method originally proposed by Labik, Malijevsky,
and Vonka [18] and extended by Hpye, Lomba, and Stell
[7]. The reader is referred to this work for a detailed
description of the method. The cutoÃ values r, were
chosen to be r, = 4.5o for P* = 7, r, = 5o for P* = 10,
r = 7.0o' for P* = 12, r, = 7.00 for P* = 15, and r, = 9cr
for P* = 18.

The variation of the bridge functions with inverse tem-
perature is shown in Fig. 7. For r ) o the bridge func-
tions for unlike species are always positive and decay ex-
ponentially with distance; those for like species are neg-
ative and present a discontinuity at r = 2o, the dis-
tance at which a maximum is observed in the g++ and
g correlation functions. Notice that these functions
have essentially the same qualitative behavior that was

I' (k) = k'[H' (k) + kV(k)]-' —kV(k)-'+ H' (k).

(3.12)

This equation, combined with the relation (3.1), could
in principle be used directly to determine the bridge
functions &om the known simulation results for h p.
In practice this way to proceed is generally somewhat
awkward because even for the largest distances r calcu-
lated in the simulation (generally half the box length L),
6 p(r) has not yet reached its asymptotic limit. In the
present calculations, although h p was calculated up to
r = 23o' = (L/2) small statistical errors in the correla-
tion functions at large r give rise to numerical instabilities
and preclude an accurate calculation of the Fourier trans-
forms of h p (or 6 &) at low k values. For this reason we
resorted to an iterative scheme in which information on
h p over a limited range of distances is combined with
knowledge of the exact asymptotic behavior of the di-
rect correlation function [13,17]. The iterative method
we have used reduces to solving the renormalized OZ
equation (3.2) together with the closure relation
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G
FIG. 7. Evolution of the bridge functions with inverse tem-

perature. Positive values correspond to unlike interactions
and negative to like ones.

obtained by Duh and Haymet for a model of soft-core
electrolyte solutions [13]. As the temperature decreases
both the range and amplitude of the bridge functions in-
crease; however, their shape remains largely unchanged
so that some temperature scaling is expected to hold. In
a preliminary study we have found that bridge functions
either for like or unlike interactions can be fitted to the
expression

Along with this decomposition we have considered the
simple Coulombic decomposition as explained in Sec. III.
This approximation will be denoted hereafter by INV-C.
Hence we will explore to what extent the INV functional
form can also be used with a di8'erent choice of potential
split ting.

In Fig. 8 we compare the "exact" simulation results for
the bridge functions with the predictions of the INV and
INV-C (Coulombic) integral equations. For P* = 7, it
is apparent that even though the INV closure underesti-
mates the inagnitude of B(r) it reproduces the essential

B p(r) = + exp [s(r)] (P*)'("), (3.14)
with + and —for unlike and like interactions, respec-
tively.

The choice of the s(r) and t(r) functions might be made
in several ways. We have found that for unlike inter-
actions a second degree polynomial is enough to repro-
duce with reasonable accuracy the "experimental" bridge
function up to r = 70.. For like interactions the func-
tionality becomes more complex, mainly because of the
singularity at r = 2o. Nevertheless we have found that
simple linear equations for s(r) and t(r) are able to repro-
duce the "experimental" data for o. ( r ( 2o.. Similarly
linear functions predict the correct behavior at distances
larger than 30.. Obviously, one could resort to more elab-
orate fittings, but our purpose here is only to show that
a simple temperature scaling holds for this system.

According to the findings of Duh and Haymet [13] and
Llano-Restrepo and Chapman [12] it might be possible
to find a "universal" functional for the bridge functions
in terms of the short-ranged p . Here, we will consider
the Duh-Haymet INV approximation (so called since it
may be viewed as an inversion of molecular dynamic sim-
ulation data), which is particularly well suited for elec-
trolytes [13],
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FIG. 8. "Experimental" bridge function (circles) together
with results obtained using the INV (full lines) and INV-C
(dotted lines) closures, for two representative temperatures.
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TABLE II. Excess energy and osmotic coeKcient for the RPM. Results for HNC, INV, and
INV-C were obtained with 2048 grid point and a mesh Ar = 0.02.

4.0
7.0

10.0
12.0
15.0
18.0

HNC
—0.9385
—2.1073

UIINIcT
INV

—0.9488
—2.2213
—4.2216

INV-C
—0.9383
—2.1148
—3.4541
—4.4259
—5.9520
—7.5461

MC
—0.945
—2.219
—3.918
—5.191
—7.226
—9.405

HNC
0.7961
0.5962

PP/p
INV
0.7955
0.6066
0.6063

INV-C
0.7959
0.5911
0.3778
0.2328
0.0054

—0.2377

MC
0.79
0.60
0.43
0.40
0.32
0.23

1.0-
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features of the simulation results quite well. The INV-C
closure is clearly inferior, but still is able to predict the
correct sign of the like and unlike bridge functions. At
temperature P' = 10, none of the closures investigated
is able to predict the "exact" bridge function. The INV
equation yields too large values at short distances, but
still reproduces the shape of the bridge function in a qual-
itative way. The INV-C fails to predict the correct sign of
the unlike bridge function and the magnitude of the like
one is largely underestimated. Consequently, both ap-
proximations can be expected to perform poorly in the
very low temperature regime.

Table II summarizes the thermodynamic properties

4 I I

&om the INV and INV-C closures compared with the
simulation results. Prom moderately low to high tem-
peratures (P* ( 10) the INV approximation is the best
in reproducing the thermodynamics and the structure
of the system. At P* = 7, which, for an ionic diam-
eter cr = 4.2 A. , would correspond to a 0.1M aqueous
2:2 electrolyte solution at room temperature, the radial
distribution functions (Figs. 9 and 10) are in very good
agreement with the simulation results. More important
is the prediction of the peak around 2o for like interac-
tions (see Fig. 9). The superiority of the INV equation is
also supported by the excellent estimates of the contact
values, g++(o) and g+ (o), at that temperature (Table
III). Otherwise the INV-C closure yields essentially the
same results as the HNC approximation for this range of
temperatures.

At lower temperatures (P* ) 10) the results worsen
irrespective of the closure used. The INV equation over-
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lines INV-C closure. Dash-dotted lines for P' = 7.0 corre-
spond to HNC theory and dash-dotted lines for P' = 15 rep-
resent the pair correlation function as predicted by the INV-C
theory for P' = 23.
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TABLE III. Contact values for g++ and g+

4.0
7.0

10.0
12.0
15.0
18.0

HNC
0.111
0.073

9++
INV
0.111
0.069
0.194

INV-C
0.111
0.061
0.055
0.052
0.051
0.053

MC
0.11
0.07
0.08
0 ~ 10
0.16
0.24

HNC
10.29
28.45

INV
10.56
33.07
96.59

INV-C
10.27
28.21
50.48
67.57
94.43

121.95

MC
10.1

33
71
108
165
226

200

150

100

50

ii 18
15
12
10
7

-50

-100
0 10

FIG. 11. Evolution of the p p function when approaching
the critical region.

estimates the energy, pressure, as well as the correlation
functions (see Figs. 9 and 10). We have found that this
approximation fails to converge for inverse temperatures
larger than P* = 10, whereas the INV-C has solutions for
the entire range of P' considered in this work. From in-
spection of Figs. 9 and 10 one can readily appreciate that
the INV-C equation underestimates the Quid structure.
For a given temperature the INV-C predicts a structure
that would correspond to that of a system at a somewhat
higher temperature. In particular, the use of an inverse
temperature P* = 23 gives a much improved represen-
tation of the MC pair correlation functions at P* = 15.
Eloquent support to this improvement is given by the de-
velopment of a hump in g+ near r = 2.5o (cf. Fig.
10) having its origin in four-particle association. This re-
sult suggests that a simple reparametrization of the INV-
C approximation could lead to an improved agreement
with the MC results. Besides, from the above results one
might speculate on the use of a hybrid between the two
decomposition schemes, i.e. , Coulombic and optimized,
as a way to improve the theoretical estimates in these
harsh thermodynamic conditions.

Finally, in Fig. 11 we show p p(r) as a function of

temperature. For every P*, p++ presents a singularity at
r = 2o characteristic of the formation of linear triplets.
This cusp at 2o (which also appears in B++) is a math-
ematical consequence of the nearly Dirac b-like behavior
of g+ close to the core. From Eq. (3.2) one sees that

7++ (r12) P h+ ——(r13)h —+ (r32)dr3 + '

and a convolution of two 8(r —o.) functions gives rise to
a step function with the singularity at 2o, II(r —2o.).
Since the h+ does not really diverge at the core, the
step function singularity is smoothed into a cusp.

IV. SUMMARY

We have used MC simulations to determine the cluster
population and the bridge functions of the RPM near the
critical region. The cluster analysis was based on configu-
rations separated by 1000—4000 trial moves per particle.
Over such a "time" span appreciable migration of the
ions and evolution of the clusters is established. This is
in accordance with previous studies of model electrolyte
solutions [19I (our RPM model with P* = 7 is roughly
equivalent to a 0.1M aqueous solution of a 2:2 electrolyte
at room temperature). Clusters are not stable entities
but dissociate and reform. In particular we have verified
that in configurations separated by periods of the order
of 100 trial moves per particle a given ion had a different
environment and generally belonged to a different cluster.
This finding gives support to the adequacy of the simple
sampling scheme used despite the rather strong interac-
tions between the ions. It does not seem necessary, at
least for the temperature domain here considered, to in-
voke more complicated sampling schemes involving, for
instance, displacement and rotation of full clusters.

When the critical temperature is approached an in-
creasingly large &action of ions is found to partake in
the formation of neutral clusters of size greater than 4
and even 6 at the expense of dimers and charged clusters
("free" ions, triplets, etc.) in agreement with recent the-
oretical analysis [20,21]. Nonetheless, it can be seen that
even at the lowest temperature considered, a small num-
ber of conducting entities remains present in the system.

A second goal of the present study was the determi-
nation of the bridge functions. This function is shown
to have a rather simple shape depending smoothly on
temperature. For the like species the net effect of the
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bridge function results is an increased repulsion between
particles, whereas for the unlike ions it amounts to an
enhancement of the attractive interactions. A recently
proposed approximation which expresses the bridge func-
tion in terms of p only has been solved using two de-
composition schemes of the interionic potential, namely,
optimized (INV) and Coulombic (INV-C) splittings. It
is found that the INV approximation predicts excellent
results for P* ( 10 but at lower temperatures it over-
estimates the structure of the system. Otherwise the
INV-C yields essentially the same results as the HNC
approximation for low P*. Contrary to the HNC and
INV closures, the INV-C is fully convergent for the en-
tire set of temperatures considered in this work, although
it underestimates the structure of the system. Vfe obtain
fair evidence, however, that a simple reparametrization
of the bridge function or perhaps a hybrid decomposition

scheme of the interionic potential could remedy much of
this de6ciency.

ACKNOWLEDGMENTS

This work was partially supported by Grants No.
PB90-0233 and PB91-0110 furnished by the Direccion
General de Investigacion Cienti6ca y Tecnologica of
Spain. Fruitful correspondence with A.D.J. Haymet is
acknowledged. One of us (J.J.W. ) would like to thank
D. Levesque and J.M. Caillol for interesting discussions.
The Monte Carlo calculations were performed on the par-
allel computer C98 of Institut du Developpment et des
Ressources en Informatique Scientifique (IDRIS), Orsay
(France) .

[1] M.E. Fisher, J. Stat. Phys. '75, 1 (1994).
[2] (a) A.Z. Panagiotopoulos, Fluid Phase Equilibria 92, 313

(1994); (b) G. Orkoulas and A.Z. Panagiotopoulos, J.
Chem. Phys. 101, 1452 (1994).

[3] J.M. Caillol, J. Chem. Phys. 100, 2161 (1994).
[4] J.P. Valleau, L.K. Cohen, and D.N. Card, J. Chem. Phys.

72, 5942 (1980).
[5] M.J. Gillan, Mol. Phys. 49, 421 (1983).
[6] M.E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826

(1993).
[7] 3.S. H@ye, E. Lomba, and G. Stell, Mol. Phys. 75, 1217

(1992).
[8] M. Medina-Noyola, J. Chem. Phys. 81, 5059 (1984).
[9] E. Gonzalez-Tovar, M. Lozada-Cassou, L. Micr-y-Teran,

and M. Medina-Noyola, J. Chem. Phys. 95, 6784 (1991).
[10] F. Bresme, E. Lomba, and 3.L.F. Abascal (unpublished);

detailed results are available upon request.
[11] M. Llano-Restrepo and W.G. Chapman, J. Chem. Phys.

97, 2046 (1992).
[12] M. Llano-Restrepo and W.G. Chapman, J. Chem. Phys.

100, 5139 (1994).
[13] D.M. Duh and A.D.J. Haymet, J. Chem. Phys. 97, 7716

(1992).
[14] See, e.g. , M.P. Allen and D.J. Tildesley, Computer Sim-

ulation of Liquids (Clarendon, Oxford, 1989).
[15] J.F. Springer, M.A. Pokrant, and F.A. Stevens, J. Chem.

Phys. 58, 4863 (1973).
[16] E. Lomba and J.S. Halye, Comput. Phys. Commun. 69,

420 (1992).
[17] L. Verlet, Phys. Rev. 165, 201 (1968).
[18] S. Labik, A. Malijevsky, and P. Vonka, Mol. Phys. 56,

709 (1985).
[19] J.L.F. Abascal and P. Turq, Chem. Phys. 158, 79 (1991);

J.I.F. Abascal, F. Bresme, and P. Turq, Mol. Phys. 81,
143 (1994).

[20] K.S. Pitzer and D R Sch.re.iber, Mol. Phys. 60, 1067
(1987).

[21] D. Laria, H.R. Corti, and R. Fernandez-Prini, J. Chem.
Soc. Faraday Trans. 86, 1051 (1990).


