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Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain
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We study the energy transitions and time scales, in the Fermi-Pasta-Ulam oscillator chain, at which
the energy E, initially in a single or small group of low-frequency modes, is distributed among modes.
The energy transitions, with increasing energy, are classi6ed. At low energy the linear parts of the ener-
gies are distributed in a geometrically decreasing series EI, =p EI, », with y the mode in which most of
the initial energy is placed and p= (3PEr )/(4m y). A transition occurs at R =

6PEr (N—+ 1)/mt- 1, with
N the number of oscillators and P the quartic coupling constant. Above this transition there is strong lo-
cal coupling among neighboring modes with a characteristic resonant frequency 0„-4PyE„/N . There
is a second transition at a critial energy PE, -0.3, above which stochasticity among low-frequency reso-
nances transfers energy into high-frequency resonances by the Arnold diffusion mechanism. Above this
transition we numerically determine a universal scaling for the time scale to approach equipartition
among the modes. The universal time scale is qualitatively explained in terms of the driving time scale
~b =2m/Qb and a diffusive filling time.

PACS number(s): 05.45.+b

I. INTRODUCTION

Coupled oscillator chains form good test systems for
investigating energy exchange among degrees of freedom,
diffusion, ergodicity on energy surfaces, and equiparti-
tion. In particular, the Fermi-Pasta-Ulam (FPU) system,
consisting of a set of equal masses coupled to nearest
neighbors by nonlinear springs, has been extensively stud-
ied. Fermi, Pasta, and Ulam [1], in 1954, reported the
first numerical study on a chain of coupled oscillators,
with a quartic nonlinearity. They observed, for a particu-
lar initial energy distribution, that the oscillators did not
relax to the equipartition state, but displayed a persistent
recurrence to the initial condition, contrary to the
equipartition hypothesis of statistical mechanics. The re-
sults were later explained in terms of beating among the
system modes (superperiod) and the superperiod was
theoretically calculted using perturbation theory [2—5].
A theoretical prediction of a threshold to equipartition
was obtained by Izraelev and Chirikov [6] using an
"overlap" criterion for the modes. They predicted a crit-
ical energy E,', of the initia1 excitation, for widespread
stochasticity. For energy in a few low-frequency modes
they found E,' ~N, where N is the number of oscillators
(number of modes) in the chain.

Subsequently there have been many studies of the in-
terchange of energy among modes and of energy thresh-
olds to give approximate equipartition among modes
[7—11]. Pettini and Landolfi [10]have studied the depen-
dence of the time to equipartition on the energy of the ex-
citation at relatively high enersies, finding a relaxation
time ~~ N and a threshold for eIquipartition E,' ~ N. The

observed scaling agreed with the mode overlap hy-
pothesis. However, equipartition that takes place on a
slower time scale, at lower energy, would not have been
readily observed. Kantz, Livi, and Ruffo [11](henceforth
KLR) studied the transitions and time scales to equiparti-
tion. For energy in initial modes around mode number y,
with y ~ N, they found a transition to equipartition at a
critical energy E„independent of N. For this initial con-
dition they found that a time scale ~ ~ N (at constant E)
was requied to attain some constant measure of equiparti-
tion. As we shall see in Sec. II, this is consistent with
theoretical predictions and results using other initial con-
ditions.

In another study DeLuca, Lichtenberg, and Lieberman
[12] (henceforth DLL) developed theoretical descriptions,
valid in various energy ranges, which were compared to
numerical results. Both the transition, with energy, to
observe equipartition and the time scale required to at-
tain a constant measure of equipartition were studied.
The results of theory and numerics were in qualitative
agreement and also in general agreement with results by
KLR. We reserve the presentation of the details of these
results to Sec. II. The main idea is that resonant interac-
tion of a few low-frequency modes in which most of the
energy resides can lead to local superperiod beat oscilla-
tions that are stochastic. The transition to stochastic lo-
cal interaction occurs at

R =(N+1) E=1,6
~2

where P is the nonlinearity parameter of the FPU Hamil-
tonian [see Eq. (3)]. Since R ~ N + 1, the energy at which
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this transition occurs becomes vanishingly small as
With increasing local energy, the oscillation fre-

quency increases until a strong Arnold diffusion mecha-
nism can transfer energy to the higher-frequency modes,
leading to equipartition. The transition was predicted to
occur at a value of E =E„independent of N, which was
confirmed numerically. The beat frequency has the form

Qb -ypE/N (2)

whose inverse gives a centrally important time scale for
the analysis.

The modified Korteweg —de Vries (mKdV) equation ap-
proximately describes low-frequency modes of the FPU
system if p) 0 and N is sufficiently large. Driscoll and
O'Niel [13] showed that an instabilty of a low-frequency
mode (soliton) of the mKdV equation corresponds to ex-
ponential growth in the FPU system. However, we
would not expect this instability to be directly related to
equipartition involving the high-frequency modes, as the
differential equation does not describe these modes. DLL
compared the onset of instabilty in the rescaled parame-
ters of the mKdV equation, as found by Driscoll and
O' Neil, to the parameters governing the interaction
among the low-frequency FPU modes. The rescaling
gives the relationship R =(g/~ )(y/2) q K (q ), where
q is the argument of the cnoidal function that describes
the soliton, y —1 is the number of nodes of the cnoidal
function, and K(q ) is the complete elliptic integral. The
instability appears for q ~0.25 (K =1.7) for y=2, ob-
taining R 0.6, which is approximately the same value as
that which produced a separatrix layer in the local reso-
nance interaction. (See Sec. II B.) We note also that a re-
lation is found to exist between the existence of an insta-
bility in the sine-Gordon equation and mode spreading in
an oscillator chain which corresponds to the discretized
sine-Gordon equation [14].

In recent work [15] the mKdV differential equation
was studied in the large-amplitude limit in which the
nonlinear term dominates over the dispersion. In this
case a shock develops rather than a soliton. The time
scale to form the shock from an initial traveling wave was
determined and found to be the inverse of Qb given in (2).
The shock is, of course, mode mixing, reinforcing the im-
portance of the inverse beat frequency to the stochastic
transfer of energy among modes in the finite-N system.

The overlap of two adjacent low-frequency modes,
which also leads to stochastic diffusion, occurs at a much
higher value of energy, i.e., with E/X-1. Although this
criterion does not necessarily predict transfer of energy to
high-frequency modes on computationally observable
time scales, the energy satisfying mode overlap is general-
ly much higher than E, and furthermore increases con-
tinually with increasing X. The time scale for the in-
teraction is ~-2m/co~ =2%/my, which gives much faster
diffusion to higher modes. As already mentioned, obser-
vations on this fast time scale, e.g. , [7—9], have found a
transition to equipartition from a single low-frequency
mode scaling as E,' ~ N. This emphasizes the importance
of observing equipartition on the correct time scale for
the relevant phenomenon. Along with the measure of
equipartition, Pettini and Landolfi [10] also looked at the

largest Lyapunov exponent A, ,„of the system, finding a
change of scaling with E at E/N-1. In the work that
follows we are concerned primarily with energies for
which E/N (1.

In the following section we will organize, by increasing
energy, the various interaction phenomena that occur in
the FPU oscillator chain and the time scales associated
with these phenomena. The proposed mechanisms will
be explained in terms of previous theoretical results and
the numerical evidence. Outstanding questions, resulting
from either a lack of correspondence between theory and
numerics or from convicting numerical results, will be
brought out. Then, in Sec. III, numerical reuslts will be
presented to answer some of the open questions. In the
numerical work we concentrate our attention on initial
conditions in which the energy is placed in one or a few
of the lowest-frequency modes.

II. BASIC PHENOMENA, ENERGY
TRANSITIONS, AND TIME SCALES

We study the quartic FPU Hamiltonian, representing a
linear chain of equal masses coupled by nonlinear springs
with a quartic nonlinearity [1,16],

H = g —,'p; + —,
'

( q; + t
—

q; ) +—,'P( q;+, —
q; ) (3)

We consider the case of strong springs (p) 0) and fixed
boundaries qo=qz+, =0. In the linear case (p=0) the
chain of oscillators may be put in the form of N indepen-
dent normal modes and is therefore integrable and noner-
godic. Those normal modes are [3,5]

1/2

m'a

2(N+1) (4b)

+ g G(r, s, m, n)Q„Q, Q Q„,
r, s, m, n

(5)

where r, s, m, n are integers running from 1 to 1V and G is
defined by

G(r, s, n, m) =—Q„Q,Q„Q g B (r +s +n +m), (6)
P

with 8 given by

1 if @=0
B(a)= —1 if a=+2(N+1)

0 otherwise

where Q is the frequency of the ath linear mode, Q is
its amplitude, and a= 1, . . . , X. We will refer to those
coordinates as the "linear modes" of the system, even
though they are not separable modes if we include the
quartic term. The FPU Hamiltonian in the linear mode
coordinates is calculated to be

N

H = g —,'(P; +Q;Q; )
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and gt, in (4) represents the sum over all eight permuta-
tions of the sign of s, n, and m. We see then that there is
a selection rule for mode coupling via the quartic term.

To numerically study the FPU system, initial condi-
tions have been used for which all the energy is concen-
trated in a few modes around some mode y or in which a
packet of modes has been used of width hy in which both
y and hy are proportional to N. In numerical experi-
ments the time average of the linear energies E, ,
i =1, . . . , N, is usually calculated (see Sec. III for de-
tails). The information entropy [17,18]

N
S = —g e, lne, , (8)

n,z=—expS . (10)

The normalized parameter n, tt/N is related to il, for a
single mode initial condition, by

1nN —inn, z
lnN

—ln( , n/Ns)

lnN

We see that q~0 as n,z/N~1, but g also becomes
small as N becomes large, even if n, ttIN is significantly
less than one.

We consider the scaling of the energy transitions be-
tween various physical phenomena observing, as ap-
propriate, individual linear mode energies and using the
macroscopic parameter n,z/N. We concentrate our at-
tention on initial conditions in which the energy is initial-
ly in one or a few low-frequency linear modes. In Sec. III
we give more detailed numerics for this initial condition.

A. Low energies

At low energies, for which no significant long-time en-

ergy diffusion among modes is numerically observed, per-
turbation theory describes the overall pattern of the
mode energy distribution. DLL found that the average
linear energies decay in a geometric progression

= 2
Eh ph Eh —2y (12)

where an average value of ph over modes p is given ap-
proximately by

where e, =E, /+PE; are the normalized average energies,
is then introduced. Two normalized measures of equipar-
tition have been employed. The most often used measure
is [7—11]

S,„S(t)—
S,„—S (0)

where S,„=lnN (equipartition). We see from (9) that
i) = 1 when S (t) =S(0) and i)~0 as S (t)~S,„, al-
though Iluctuations limit il to some finite value [18]. For
N large and the initial energy in a few modes, g does not
distinguish between equipartition and a plateau in which
only some fraction of the N modes are occupied, but is
well behaved if some fraction of N initial modes are excit-
ed. An alternative measure used by DLL is to define the
effective number of modes by [17]

rrR 3f3E
8y(N+ I) 4my

(13)

DLL checked the scaling for two values of y, at constant
E and for a single value of X =32, obtaining a geometric
energy fall-off among the most strongly coupled modes,
in qualitative agreement with (12) and (13). However, the
scaling with E and any possible scaling with N was not
checked. There is also a secondary effect of local spread-
ing among adjacent modes that is not well understood.
In an earlier work [7], in which the energy was placed in
a few adjacent low-frequency modes, the geometric fall-
off was also observed, but with additional local broaden-
ing as expected from the additional couplings. In Sec. III
we numerically investigate the scaling in (12) and (13)
both with the initial energy in a single mode and in addi-
tional neighboring modes.

A related question is the time scale to establish the
geometric pattern. Since the time scale is related to the
establishing of the nonlinear mode, it would be expected
to be related to the inverse mode frequency
~~

' =2N /~y. This is indeed the case for the low-
frequency modes. However, perturbation theory shows
that a longer time t -2N lory(y + 1) is required to estab-
lish the geometric progression among the highest-
frequency modes. We will present some evidence for this
two-time-scale behavior in numerical results given in Sec.
III.

B. I.ow-energy transition

A single nonlinearity parameter R =6P(N+1)E~/m.
governs the local interactions among low-frequency
modes, where R measures the nonlinear correction
(wNi =yRIN ) of the linear beat (wL=yir /N ) of
modes (y —1, y, and y+I). Examining the reduced
Hamiltonian of four consecutive modes around mode y,
DLL found for the two strongest resonances of this Ham-
iltonian that for R = 1, an elliptic and hyperbolic pair of
fixed points appear in one resonance, giving rise to a
local libration frequency 0b —-6.2yR /N =3.7/3yE~ IN
around the elliptic fixed point. The interaction between
Ab and the second low-frequency resonance produces a
stochastic separatrix layer connecting the hyperbolic
points, which becomes large at R =4. For large N nu-
merical studies indicate that most initial conditions lie in
these stochastic layers [19]. The exact values of frequen-
cy and R vary with initial conditions, but only weakly.
The criterion that R be sufficiently large to give
widespread stochasticity within a resonance could be re-
ferred to as an "overlap criterion. "The system is, howev-
er, intrinsically degenerate, such that the stochasticity
arises from a more complicated set of interactions (see
[16], Sec. 2.4). The overlap of these four modes does not
lead to equipartition on computationally observable time
scales. Numerically it is found that increasing R leads to
an increase in the effective number of low-frequency
modes that are stochastically interacting, giving approxi-
mately n,z ——0.5R + 1. This is readily understood in
terms of local mode interaction in which an increasing
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number of neighboring mode resonances can form as
their associated energies exceed R —1.

the low-frequency modes interact strongly to create sto-
chasticity on a time scale

C. Intermediate-energy transition r-N/E
y

(16)

In addition to the stochastic diffusion among the low-
frequency modes we expect the stochasticity to drive Ar-
nold diffusion along stochastic layers to other modes,
with the particular channels and rates to be determined
by the coupling coefIicients. Since the driving frequency
for diffusion is associated with Qb, a fundamental time
scale for numerical observations is

r =2m /Ab ~ N /y f3Er . (14)

D. High-energy transition

For an energy such that

(15)

Using resonant normal form perturbation theory to in-
vestigate the couplings to the high-frequency modes,
DLL found that, above a critical value E)E„the ratio
of the stochastic drive frequency Qb to a high mode num-
ber beat frequency b,Q,2=yet /N becomes of order uni-

ty. The Arnold diffusion rate depends exponentially on
the frequency ratio as exp( orb. Q, ,2—/2Qb). Hence, for
0,b -b,A&2, we would expect to obtain a strong diffusion
of energy to high-frequency modes and equipartition on
computationally observable time scales. Numerically
both KLR and DLL find this transition, with a value of
E, =3, for @=0.1, giving Qb=0. 2bQ&z. This is con-
sistent with a transition to numerically observable
diffusion.

The time scales to obtain some fractional equipartition
were investigated by plotting g(t) versus a normalized
time scale in KLR and by plotting n,s(t) versus a nor-
malized time scale in DLL. The normalized time scale in
KLR, for the initial energy in modes with y ~X, was
Et/N. This is equivalent to normalizing to ~b, since
Et/N ~ yEt!N . How well the normalization made the
data at different values of E and N coincide was some-
what obscured by the fact that g only weakly discrim-
inates among time scales near equipartition. For E-E,
the normalized time scale in DLL was yt/N . Since for
E-E, the E scaling is not studied, this scaling is also
coincident with normalizing the time to ~b. The results
by DLL were in reasonable agreement with the expected
t ~ 7.

b scaling, but were only checked over a small range
of N between 32 and 128.

For E ))E, (but E/N (1) KLR found, for an initial
condition with the energy in a few low-frequency modes,
that by setting ~=t/N the scaling became nearly univer-
sal when rt(t) was plotted vs E/N. We note that this re-
sult rl(t /N, E/N) =const can also be interpreted, through
rescaling, as the existence of a universal time scale
g(t/rz )=const, where rb -N /yPE&. This —is consistent
with the scaling by DLL at a fixed energy E=E,. The
result can be somewhat obscured at large X, near
equipartition, because of the relation given in (11). We
investigate this scaling in detail in Sec. III.

Since the mode containing most of the energy has a fre-
quency shift comparable to the frequency spacing be-
tween modes, this interaction has been referred to as an
overlap criterion. However, as previously mentioned, the
actual interaction is more complicated for this intrinsical-
ly degenerate system. For large N, the energies satisfying
(15) are much higher than those involved in the reso-
nance interactions. Investigating equipartition on the
fast time scale of (16), Pettini and Landolfi [10] found
that equipartition occurs when (15) is satisfied. They also
examined the largest Lyapunov exponent k, finding a
transition with increasing energy from A, ,„o-E to
A, ,„o=E, the latter associated with a random matrix
approximation. This indicates diffusion across reso-
nances, through the entire phase space. In the next sec-
tion, we limit our numerical investigation to energies
below the transition given in (15), so that the scaling re-
sults are not contaminated by the fully stochastic regime.

III. NUMERICAL EVIDENCE

We present the following numerical evidence in sup-
port of the picture developed in the preceding section.
Although considerable numerical results are available
from earlier work, some of it summarized in the previous
sections, specific calculations help to clarify the individu-
al physical concepts. As in Sec. II, we systematically
scan through the energy ranges, with particular emphasis
on energy transitions and time-scales. We concentrate
our attention on initial conditions in which energy is
placed in one or a few of the lowest-frequency modes. In
all numerical studies P is held to a fixed value P=0. 1.
The theory indicates that P is simply a scaling factor such
that all energy transitions scale inversely with P.

Two numerical procedures are used to obtain the data.
In the first, following KLR, the leapfrog algorithm is
used to integrate the equations of motion. The mode en-
ergies are determined in a time window suSciently wide
to average over mode oscillation times, but not over
longer-time resonance frequencies. To smooth the data a
set of initial conditions (typically ten), with the same en-

ergy but different oscillator phases are separately in-
tegrated and averaged. In the second numerical pro-
cedure, following DLL, a fourth-order symplectic in-
tegrator is used to integrate a single initial condition,
with the smoothing obtained by long-time averaging of
the energies. For a steady-state mode distribution the
two procedures give very similar results, with the long-
time averaging being smoother, i.e., mode fluctuations or
oscillations on all time scales but the integration time it-
self are averaged over. For an evolving mode distribution
the results are somewhat different, as the long-time in-
tegration is an integral of the results obtained in a time
window. Thus, for evolving mode distributions we have
used the first procedure to unambiguously present results
at a given time, but recognize that oscillations longer
than the averaging time may make the interpretation
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more difficult. The second procedure is generally used
for steady-state observations, except when a specific com-
parison calls for the use of the first procedure. For Figs.
1 —4, in which an equilibrium is reached, the integrated
procedure is used to obtain results independent of local
Auctuations. For Figs. 5 —8, in which time-dependent
phenomena are presented, the first procedure is em-
ployed.

A. Low energy

0

-12
(a}EW. 1

-24

-36

-48
16

+x~
+ x~Jf

32

Mode No

In Fig. 1 we investigate the scaling of p with E and N.
Equations (12) and (13) indicate that the geometric ratio
is proportional to E and independent of N. We use the
same initial condition as DLL in which 90% of the ener-
gy is in mode y =3 and 10% is divided between modes 2
and 4. In Fig. 1(a), for E =0. 1 and N =32, 64, and 128
(R =0.2, 0.4, and 0.8), numerical results are compared
with the predicted value of p (solid line), obtaining
reasonable agreement. In Fig. 1(b), for E = 1.5 and
N =32, 64, and 128 (R =3, 6, and 12), the numerical re-
sults no longer agree with theory. Perturbation theory no
longer holds, as there is a strong low-frequency interac-
tion, when R ~ 1. We have also numerically investigated
the time scale to form the geometric ratio, finding that

the low-frequency modes attain the energy in a time
T„„—2N/my, while the highest-frequency modes require
a longer time TH„-2N /m. y(y+1), results which are in
good agreement with perturbation theory.

B. Above the low-energy transition

In Fig. 2 we show the energy in all of the linear modes,
for two initial conditions, with E =3 and N =64. Since
R =12, low-frequency modes that are coupled can in-
teract strongly. For the circles all of the energy is initial-
ly in mode y=3. At time T=N /E the mode energies
have essentially saturated. The general structure of the
coupling in which mode h is strongly coupled to mode
h —2y as described by (12) is clearly seen. The decrease
is geometric as given by (12) and as shown in Fig. 1 at
smaller E. There is also a strong coupling between modes
63 and 61, as described by DLL, such that a reverse
geometric decreasing regression also takes place, which
has imprtant consequences at higher energy as described
in Sec. III C below. The couplings do not allow energy to
couple to other modes which display zero energy to
machine precision. For the pluses, 10% of the energy is
placed in modes 2 and 4. This breaks the symmetry,
leading to a strong local interaction among the low-
frequency modes and consequent multiple geometric cou-
plings that fill in the spectrum. Furthermore, high-
frequency peaks appear above the continuum spectrum.
As found by DLL, these peaks will continue to grow in
time, due to the Arnold dift'usion mechanism [20,16,12],
but on a time scale that is much longer than that of this
figure.

In Fig. 3 we explore the dependence of n, ff on
R =6P(N + 1)E~ /m. for values above R —1, but for
E =E,= 3 (P=0. 1). For large N there is a large range of
R for which these inequalities hold. The proportionality
was already investigated by DLL, but over a narrower
range of N. For long times we find n,z~aR +b with
a =0.5 and b = 1, in agreement with previous results. In
Fig. 4 a single mode spectrum for N =128 and R =20
(E (E, ) is shown to illustrate the distribution of mode
energies that go into a particular n,s (in this case

0
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0 I I 1
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FIG. 1. Natural logarithm of mode energy versus mode num-
ber for %=32 (pluses), 64 (crosses), and 128 (circles): (a)
E =0.1 and (b) E =1.5.

FIG. 2. Natural logarithm of mode energy for E =3.0 and
N =64 and initial energy in mode 3 (circles} and 90% in mode 3

(pluses).
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scale, which is dependnet on the size of the system. We
have explored this scaling over a wide range of values of
E and X, but holding E/X & 1 such that strong mode in-
teraction is not involved. In Fig. 5 we plot n,s(t) vs nor-
malized time r ~ t/ri, N' over a range of 10 & E & 1000
and 16&%&1024. The data are essentially within the
expected statistical error, indicating that a factor N' is
a reasonable approximation to the size-dependent filling-
factor time scale.

The following argument is used to understand this fac-
tor. Suppose the energy is all in the initial mode y.
From (5) it is easy to calculate the Hamiltonian

0
0 2+ +2 (17)

FIG. 3. n, ff versus R for four values of N: N =128 (crosses),
N =64 (diamonds), N =32 (circles), and N = 16 (pluses).

n, tt/N =0.072). The time is sufficiently long that an
equilibrium energy distribution has been reached. We
shall compare an asymptotic distribution of this type
with one at higher energy, for which Arnold diffusion al-
lows equipartition on a longer time scale, but at a time
for which a similar value of n, ff/N is obtained.

The nonlinear term of (17) corrects the linear frequency

~~, obtaining coz+Qb. If we evaluate the Hamiltonian
taking into account that the energy is distributed among
the X oscillators we get a time-dependent function con-
taining X independent terms related to the independent
angles of the oscillators. Every nonlinear term gives an
oscillatory correction to the linear frequency co, with
amplitude of order ( I/N)Q&. The root-mean-square
value of a sum of X such terms is

C. Intermediate-energy range

Near the low- to intermediate-energy transition
(E & E, to E & E, ) the Arnold diffusion rate is exponen-
tially slow and long observation times are required to ob-
serve equipartition. This was done by both KLR and
DLL. Here we numerically investigate the scaling well
above the energy transition, but within the energy range
for which the stochastic diffusion is driven by the funda-
mental resonance of the mode or few modes that contain
most of the initial energy. The time is thus expected to
scale with rb ~Ah as in (16). However, kicks on this
time scale are driving Arnold diffusion through the cou-
pled chain of N oscillators. We might expect an addition-
al diffusion factor (phase-space filling factor) in the time

where HNL stands for the nonlinear term of the Hamil-
tonian. This result gives the V'N /Qs time scaling in
agreement with our numerical calculations.

The microscopic details o' how n,s( t) is established
must still be investigated. In Fig. 6 we give the time-
dependent mode spectrum, similar to Fig. 9 of DLL, but
for a larger chain (N = 127) and higher energy (E =32).
The process of energy transfer into a set of high-
frequency modes, followed by transfer to neighboring
high-frequency modes, is qualitatively evident. This is in
contrast to the result of Fig. 4 for E & E, in which the en-

ergy generally decreases with mode number. The ques-
tion remains of how the energy locally distributes itself in
the two regimes (E & E, and E )E, ) at a given value of
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FIG. 4. Natural logarithm of energy vesus mode number for
N = 128 after t = 300N /E (E = 1.5 ).

FICJ 5 pl ff /N for initial conditions with 16 (N ( 1024 and
10(E ( 1000 versus &=Et /N
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FIG. 7. Mode spectrum at the same n,ff/N =0. 1 and
N =127 for E =32 (pluses) and E =3 (diamonds), at a longer
time.

n ff We explore this in Fig. 7 by comparing the mode en-

ergy distribution at n,ff/N =0 lobta. ined for E, =3 with
an early-time snapshot for E =32 with the same
n,ff-—0. 1. The mode spectra in Fig. 7 show that the
high-frequency modes have acquired energy by diffusion,
in the E = 32 case, but are not yet contributing
significantly to n, ff.

To compare the energy spreading in the few modes
around the initial mode with the spreading among the
high-frequency modes, we divide the data into two
groups, the low-frequency group 1 k 3y —1 and the
complementary group k ~ 3y. The local values of
n', ff/N' for each group are shown in Fig. 8, together with
the total n, ff/N. As expected, each group separately has
larger n', ff/N' than the n, s./N of the total. The few ini-
tial modes that contain most of the energy continue to do
so through most of the equipartitioning process. The
rapid stochastic interchange of energy among a few
strongly interacting modes makes the (n', ~/N')~ of the
primary group initially large. The diffusive energy
transfer from the low-frequency group to a large rather
uniform energy high-frequency group causes the comple-
mentary group value of (n', s./N'), to increase in time, al-
though it lies below that of the primary group.

FIG. 8. n, ff/N versus 7.=Et/N for three subsets of modes:
all the modes (diamonds), low-frequency subgroup (pluses), and

complement (squares) for E = 32 and N = 127.

IV. CONCLUSIONS AND DISCUSSION

We summarize our understanding of the FPU oscilla-
tor chain with strong-spring quartic coupling, in Table I.
Unless otherwise mentioned, the initial energy is in a
low-frequency mode y or in a few consecutive modes
around mode y.

The results present a rather complete picture of energy
distribution among modes, as observed in computations.
Although the numerics have only been presented for en-
ergy in mode y =3 or for energy in a few low-frequency
modes around y =3, the results have also been found to
hold for other y's, provided y/N «1. The results are
also consistent with initial conditions in other studies (see
particularly [11])for which a mode group of initial exci-
tations was used with y ~ X and Ay ~ X, but still satisfy-
ing y /N, Ay /N « 1.

There remain a number of open questions concerning
both more complete explanations for numerical results
and comparisons with other initial conditions or cou-
plings. One aspect of the numerically observed energy
distribution among modes that has not been fully ex-
plained within the existing theoretical picture is a rather
rapid spreading of energy among neighboring high-
frequency modes. The source of this rapid spreading was
seen in the comparison of the two initial conditions in
Fig. 2 to be related to the spreading of energy among the
low-frequency modes. Further study of these couplings
with the system closer to equipartition is necessary to un-
derstand the scaling with system size. The critical energy
for equipartition has been found to be independent of y,
consistent with ergodicity over the energy shell. It would
also be interesting to study the case in which energy is in-
itially in a high-frequency mode. In this case the non-
linear high-frequency beat is proportional to Rk and this
would couple to the low frequencies Q —k at
R /(N+1)-const, which also gives a critical energy in-
dependent of N. However, the time scale to reach a par-
ticular fraction n, ff/1V =const may be different from the
case in which the energy is initially in a low-frequency
mode. Differences in equipartition time scale, for low-
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Phenomena

TABLE I. Phenomena as a function of energy.

Energy range
Characteristic

frequency or time scale

Establishing nonlinear
modes with a geometric
decay among strongly
coupled modes ' 2)i

Eti+znIr 3PEr
E, 4vry

NPE 51 ~-N/y
(low frequencies)

z-N /y(y+1)

(high frequencies)

Formation of local
resonance separatrix

R =(N+1) Er R 1
6

(NPEr ~ 1.6)

Qb ——6yR /N'

Strong stochasticity
at resonance separatrix
n, tt/N =PE

8+4
(NPEr ~6)

Arnold diffusion to
high-frequency modes
on a time scale that
is not exponentially slow

Theoretically
PE &PE, =I

Numerically,
E, =3 (P=0. 1)

At transition,
Qb-AQ]p —-m y/N

Above transition,
Qb -4ylBEr /N—

'

Above transition
diffusion to equipartition
in time ~,q

E »E, =N' /Q ~ N /yEeq 8 r

Mode overlap leading
to rapid equipartition

PE„)4N/3y co~ =my/2N

frequency and high-frequency initial conditions, have
been observed in the related problem of a chain of cou-
pled pendula [18].

We have investigated the FPU P system, which has a
quartic nonlinearity with a positive sign in the Hamil-
tonian (cubic strong-spring force nonlinearity), to com-
pare most closely to the majority of the numerical work.
Recent work with a cubic nonlinearity in the Hamiltoni-
an also indicates the importance of the interaction of the
low-frequency resonances [21]. If the sign of P is changed
(weak spring), unbounded behavior is also possible. It
would be interesting to study this problem in the energy
range in which the solutions remain bounded.
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