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We study the discrete self-trapping (DST) equation with three degrees of freedom. By taking the DST
dimer as the underlying unperturbed system we treat the coupling to the additional oscillator as a small
perturbation. Using the generalized Melnikov method we prove the existence of homoclinic chaos in the

DST-trimer dynamics.

PACS number(s): 05.45.+b

I. INTRODUCTION

The discrete self-trapping (DST) system is a set of cou-
pled nonlinear (complex) oscillators, which was intro-
duced by Eilbeck, Scott and Lomdahl [1] as a model to
describe the nonlinear dynamics of small polyatomic
chains such as water, ammonia, methane, acetylene, and
benzene, as well as of larger molecules, such as acetani-
lide. The DST system arises in other fields too, e.g.,
quasiparticle motion on a dimer [2], stabilization of
high-frequency vibrations in the field of acoustic phonons
in the Davydov model [3], and in nonlinear optics to de-
scribe arrays of coupled nonlinear waveguides [4,5].

The dynamical properties and, in particular, the ap-
pearance of chaotic behavior of the DST system with a
few degrees of freedom were investigated in Refs.
[1,6—13]. Most of these studies were performed for the
DST system with three degrees of freedom, i.e., a trimer.
The DST trimer is the first nontrivial case going beyond
the dimer case. The latter is integrable and the solutions
can be expressed in terms of Jacobian elliptic functions
[2,14].

In this paper we study the integrability of the DST tri-
mer. In a recent paper a special integrable configuration
for the disordered DST trimer has been identified with
the help of the Painlevé analysis [15]. The solution and
the localization behavior of this system has been investi-
gated in [16]. The analysis of integrable trimer models
has been extended to generalized DST systems [17]. The
aim of this paper is to prove analytically the existence of
chaotic solutions for the (general) DST trimer. Thereby
we start from the integrable DST dimer and treat the
weak coupling to the remaining third oscillator of the tri-
mer configuration as a small perturbation. Using the
Melnikov method [18-20] we prove the existence of
homoclinic chaos in the perturbed dimer dynamics. This
problem has also been considered by Morrison in [21,22].

The paper is organized as follows. Section II presents
the model for the DST trimer. In Sec. IIT we collect in-
formation of the DST dimer dynamics necessary to apply
the Melnikov method. Section IV is devoted to the calcu-
lation of the Melnikov function and discussion of the on-
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set of homoclinic chaos in the coupled oscillator system.
Finally, we give a short summary in Sec. V.

II. THE DST TRIMER

The DST trimer system is described by the Hamiltoni-
an

3
H=—1v¥ ]cj|4— Vicie,+cie,]
i=1

—€e[Wislefe tefes)+Wy(efe,te3es)], (1)

where c; are the complex field amplitudes of the jth oscil-
lator, ¥ is the nonlinearity parameter, and V, eW;, and
€W,; are the dispersion parameters determining the
linear coupling between the oscillators. In this paper we
consider the symmetric case W=W ;= W,; (closed tri-
angular configuration). However, the asymmetric cases
W37 W,; (asymmetric triangular configuration) and ei-
ther W,3=0 or W,;=0 (open chain), could be treated as
well by applying the same procedure. Letting €=0, i.e.,
W =0, we recover the Hamiltonian for the DST dimer.
The equations of motion in the field amplitudes are de-
rived from the Hamiltonian as follows:

ie;=2H
J aC;

Besides the Hamiltonian
possesses with the norm

()

(energy) the DST system

3
P=73lcl?, (3)
i=

a further conserved quantity.

In our present investigation we use the DST dimer as a
starting point for applying perturbation methods and
treat thereby the coupling to a third oscillator as a small
perturbation of the integrable dimer dynamics. For this
reason we introduced in the Hamiltonian (1) the small
positive dimensionless quantity €<<1 to perform the
transition from the trimer to the integrable dimer in the
limit of vanishing € as well as to emphasize the perturba-
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tive character of the coupling of an additional oscillator
to the two oscillators constituting the dimer.

For an application of perturbation methods it is con-
venient to pass canonically to action-angle variables for
the oscillator in the field amplitude c¢;. Therefore we in-
troduce

032\/7;‘—’_[03 , 4)

where J, is the action determining the amount of power
contained in the third oscillator and 0, is the correspond-
ing canonically conjugated angle variable.

The Hamiltonian (1) expressed in these variables be-
comes

H¢=HY(c,,c,,ct,c¥)+HYJ;)
+HYcy,c5,¢F,05,73,05) , (5)

consisting of the part for the DST dimer

HY=—1y[le;|*+]c,|* 1= VIcte,+cicl 1, (6)
the isolated third oscillator

H}=—1yJ%, (7
and the interaction part
H1=—6W\/7;{(cf+c§)e_i03+(c1+c2)ei63} . (8)

The corresponding set of equations of motion for the
pairs of canonically conjugated variables (c;*,c;) with
Jj=1,2 and (J;,0;) become

.x_ OH , _ OH

e = 9

ic; ac, ic; ac 9)
and

. JdH . oH

J ::———, = —, 10

=30, 57, (10)
The norm is given by

P=lc,|?+]c, |2+ 75, (11)

and is the Casimir function for the Poisson brackets given
above in Egs. (9) and (10). In the integrable case, €=0,
the system decouples into the system for the DST dimer
and an isolated third oscillator with conserved action J;.
The dynamics of the DST dimer reveals a homoclinic
structure for sufficiently large nonlinearity parameter y
[14]. It is the nonintegrable destruction of this homoclin-
ic structure as a result of the coupled trimer dynamics
that we focus our interest on.

III. THE DST DIMER AND HOMOCLINIC
MANIFOLDS

In this section we consider briefly the DST dimer in or-
der to collect the information necessary to apply the Mel-
nikov method to the perturbed DST dimer. For a study
of the dimer dynamics it is convenient to pass from the
complex-valued field amplitudes < (j=1,2), to real
valued variables by su(2) notations. Using the Pauli spin

matrices o; and Einsteins sum convention we define the
following three real-valued variables x;=c/"(0;)ycy,
yielding

x;=cjc;+ctc,,
x,=i[cjcy—cte,],
x3:|c1|2—lcz|2 .

N=|c,|>*+|c,/*=V x3+x3+x? is a conserved quantity
in the unperturbed dimer system. In these new variables
the dynamics are described by SO(3) rotations of a vector
lying on the surface of a two-dimensional sphere S%(N)
with radius N =P —J;. The time evolution of the vector
is governed by a (noncanonical) Lie-Poisson bracket
defined on the dual space of the Lie-algebra so(3) with
dual coordinates X =(x,x,,x3)
3 oH)
X, =23 ;- (12)

ij ’
=1 ox;

with the following Hamiltonian function Hg: so(3)* >R
H)=—1y[N*+x3]—Vx, . (13)

The fully antisymmetric Lie-Poisson tensor II(X) has the
following nonvanishing elements II;,=x;, II;3=—x,,
II,;=x,; [23]. The system (12) and (13) written out in
coordinates is

X =VYX9X3, (14)
X,=—yxx3+2Vx; , (15)
%y, =—2Vx, . (16)

Due to the existence of two integrals of motion, namely,
the energy H;=h and the radius of the sphere (norm) N,
the system (14)-(16) is effectively a one-dimensional
Hamiltonian system and hence completely integrable.

An analysis of the fixed points of system (14)—(16) re-
veals in dependence of the ratio p =Ny /(2V) the follow-
ing structure [14].

() p<1: Two elliptic fixed points at x,;==N,
x,=x3=0.
(2) p>1: One elliptic fixed point at x,=—N,

x,=x3=0, one hyperbolic fixed point at x;=N,
x,=x3=0 and two elliptic fixed points at x; =2V /v,
x,=0,x;=+1'N?—x}.

For p>1 a transition in the number of fixed points
occurs and the stable elliptic fixed point at x;=N,
x,=x;=0 loses its stability during a pitchfork bifurca-
tion into an unstable hyperbolic fixed point thus creating
a homoclinic structure on the sphere S%(N) [14]. The hy-
perbolic point is connected to itself by a pair of homo-
clinic orbits, formed by the coinciding stable and unstable
manifolds of the hyperbolic fixed point. The coordinates
of the homoclinic orbit are given by

xl(t)=N——47/—Vazsech2[2aV(t——to)] : (17)
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xit(t)=i%a2sech[2aV(t —ty)]tanh[2aV(t —1,)] ,
(18)
x3i(t)=iiyzasech[2aV(t—to)]. (19)
Here t, is the time along the unperturbed flow
parametrizing the homoclinic orbit and the positive pa-
rameter a is related to the conserved quantity N via the
relation

N=Vx2+xl+x] =27V(1+a2) . (20)

The system (14)—(16) can be further reduced to the
sphere S? by introducing spherical variables

x,=N cos¢sinf , 2n
x, =N sin¢g sinf , (22)
x3=N cosf , (23)
which are related to the complex field amplitudes via
c;=VNcos | = |e Il4/2+h]
172
_ | Ntx, ¢ —il(/2)+8] (24)
2 b
c,=V'Nsin g ,ei[‘d’/z’—m ,
172
- [252 | evmn 29
2 )

where 3 is the angle variable conjugate to the action N.
The reduced Hamiltonian represented in the symplectic
pairs (p =x; =N cosh,¢)ES?*CR? and (N,B8)ER'XS! (a
cylinder) reads as

H)=—1y[N*+p?]—VV' N*—picos¢ . (26)
The Poisson bracket between two functions F and G is

given by

oF 3G _ oF 3G

d¢ dp dp 3¢

oF 3G _ dF dG

o3 0N 9N 9B

’

(F,G}=2

27)

and the corresponding equations of motion are repro-
duced by substituting (p,¢,N,B) into the Hamiltonian
form F={F,H}. The spherical part ¢;—c;(p,,+,*) of
the transformation given in Egs. (24) and (25) provides a
symplectic transformation with multiplier =2 (see, e.g.,
Chap. IV in [24]). Therefore a factor of 2 occurs in front
of the first term on the right hand side of Eq. (27). Since
B is a cyclic coordinate, the radius N of the sphere S?, be-
ing the corresponding canonically conjugated coordinate,
is conserved.

For later use in Sec. IV, we note the interaction part of
the Hamiltonian expressed in spherical coordinates
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H'=—ewV/2J, t\/N-i-p cos 93—3—921]
+V'N —p cos 63—3-4-—?2i

(28)

The coupled dimer-oscillation system admits a further
symmetry connected with the conserved quantity
P=J;+N. The vector field associated with this integral
is

Xp=J3N(3,+3p) , (29)

which represents a simultaneous translation of the angles
65 and B. This transformation leaves the Hamiltonian
H=H°+ H' invariant, since it depends on the two angles
only in their difference [6;—B]. Using the S' symmetry
(29) and introducing two pairs of canonically conjugated
coordinates (J| =J,4, =) and (I =P,),), defined by the
following symplectic transformations:

Ji=J3—N, ¥;=0,—8, (30)

I=J;+N, ¥,=6;+8, (31)
the Hamiltonian reduces to

H°=—1y[HI —J)*+p?]

—V[iT —0)?*—p?1"2cosp—Ly(J+1?, (32)
and

H'=—eWVI+J
x -t

[1(I —=J)+p]"%cos 5

+[%(I_J)_p]l/2(:os ¢+% . (33)

The Hamiltonian does not depend on the angle-variable
¥, and it is therefore an ignorable coordinate. Thus the
system has been reduced to a two degrees of freedom
Hamiltonian subsystem plus an additional quadrature for
the variable 1,, which can be carried out once the solu-
tions for the subsystem in the variables (p,¢,J,9) are
known (if possible at all).

In the following we ignore the cyclic variable v, and
restrict our analysis to the reduced subsystem. (An alter-
native approach consists in the restriction of the dynam-
ics to a four-dimensional cross-section by fixing the phase
of the angular variable ¥ and studying the associated
Poincaré map.)

Before proceeding with an analysis of the dynamics we
briefly discuss the geometrical phase space structure of
the unperturbed subsystem which is four dimensional and
given by (p,¢,J, ) E(R! XS XR! X S1).

For y >2V the unperturbed system has an invariant
two-dimensional normally hyperbolic manifold
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M={(p,$,J, W) ER' XS XR!XS!|p=0,4=0,J ERT,¥E[0,27)] . (34)
I
This homoclinic manifold /# has three-dimensional stable =~ where N=1(I —J) and
and unstable manifolds, denoted by W§(/M) and W§(M),
respectively. The unperturbed homoclinic orbits I'" in the A= 4V
homoclinic manifold are parametrized by YN o - (39)

T*(¢,7,4%¢t,a)
=(pPht —ty), "t —1y),J =T, W) +¢°) , (35)

The frequency of the decoupled third oscillator appearing
in (38) is determined by @ =0H°/3J. Making use of Egs.
(32), (36), and (37) we obtain

with
ht)y=—Ly[I+3J ]t
pEHt)== 4 sech(2aVt) , (36) v ad ]
h
(s)]
_ 2 v = [as—oSd . @0
gh(1)=arccos | LL=Aasech 2al1)] 1 (37) : oo (N2—[pEh(s) ]2}
V'[1— A%ech?’(2aVt)] . . . . L=
. _ o which by performing the integration for fixed action J re-
()= [dsolpthis,T),¢"s,T),T) . (38)  sultsin
|
Yt =——Ly[I+3T ]t
1 1y 1 42 "7
+IV(I =T {—t— |~ — —_ :
a4 J)[Nt ‘N W vie e Narctan 1~ 1 tanh(2aVt) (41)

In the unperturbed system JU has the structure of a one-
parameter family of one-tori To(J), labeled by the value
of the fixed action J. This one-torus has two-dimensional
stable and unstable manifolds, f,[To(j )] and
WY[To(J)] that are coincident along a two-dimensional
homoclinic orbit.

In the next section we focus on the phenomena of
homoclinic chaos in the perturbed DST dimer dynamics
induced by transversal intersections of the stable and un-
stable manifold of the homoclinic orbit.

IV. THE MELNIKOV METHOD AND HOMOCLINIC
CHAOS

For the perturbed system, i.e., €0, the stable and un-
stable manifold of the homoclinic structure for the per-
turbed system may intersect transversely leading to the
onset of homoclinic chaos. The analysis is based on the
properties of the generalized multidimensional Melnikov
function introduced by Wiggins [20]. Without going into
details, we collect the main pieces of information
delivered by the Melnikov method. (i) It serves to prove
that the integrability of a dynamical system containing a
homoclinic orbit will be broken under small perturba-
tions by introducing homoclinic chaos into the dynamics.
(ii) We learn about the separatrix splitting, i.e., the de-
struction of the boundary in phase space discerning be-
tween self-trapped and untrapped motion under the
influence of perturbations. (iii) The Melnikov function
provides a signed measure of the distance between the
stable and unstable manifolds. (iv) It allows an approxi-

mate location of transversal intersections of the stable
and unstable manifolds along the unperturbed homoclinic
orbit. By measuring analytically the area of the escape
(capture) lobes of the turnstile via the Melnikov function,
transport rates can be quantified [25]. (v) With the help
of the Melnikov function, Holmes and Marsden [26] es-
tablished a connection between the perturbation strength
€ and the number of iterations for the Poincaré map
necessary to get horseshoes in the perturbed dynamics.

First of all, let us discuss briefly the geometrical struc-
ture of the perturbed phase space. Using a theorem by
Fenichel [28], we see that for sufficiently small €0 the
homoclinic manifold M persists as a locally invariant
manifold M, in the perturbed system and has local stable
and unstable manifolds W$* close to W§.

Moreover, under the condition of nondegeneracy for
the frequencies for the decoupled oscillators, the
Kolmogorov-Arnold-Moser (KAM) theorem [29] ensures
that for sufficiently small € the perturbed dynamics
possesses a one-parameter family of surviving invariant
one-dimensional tori T.(J) on Jl, which are again
parametrized by the value of the action J. The existence
of the two-dimensional stable and unstable manifolds
WiT,.) and W*T,) of these surviving tori is guaranteed
by Graff’s theorem [30].

To determine whether the stable and unstable mani-
folds W*(T,) and W*(T,) of the periodic orbit T, inter-
sect transversely on J,, we have to compute the distance
d, between the local stable and unstable manifold at each
point ut=[pHH—ty,a,T),¢"(—ty,a,T7),T,¢°] on the
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unperturbed homoclinic orbit I'T for fixed (¢4,c,J,¢°).
We therefore introduce a moving system of homoclinic
coordinates along the unperturbed homoclinic orbit as
the two-dimensional plane spanned by two linearly in-
dependent vectors in RZXR!XR! (see [20] for details).
The first vector is given by {(D, H,0)}, which has to be
evaluated at a given point u=. D, is the gradient in (p, )
space and “0 ” denotes the two-dimensional zero vector.
The second vector {J} is a unit vector parallel to the J
coordinate axis, which has to be viewed as emanating
from the point ut. By varying u® we move the two-
dimensional hyperplane II, . along the homoclinic orbit
I't, where at each point u *€T'? the stable and unstable
manifolds intersect IT,, transversely.

Since the level surfaces %, are preserved and the direc-
tion (D, H,0) is complementary to these surfaces, the

Mi(¢0,to,a)=—f:odtD¢H‘[pi"’(t—to),¢h(t—t0 T, () +4°] .
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manifolds cannot split along this direction. Thus we do
not need to measure along this direction. The signed dis-
tance d. at a point u® between WT,) and W*T,)
along the remaining direction on II,, is then determined
by the Melnikov function M (¢°,¢y,a) measuring the dis-
tances in [J(W$)—J(W*¥)] up to order O(€?).

Our trimer system belongs to category III of Wiggins

classification in [20] with n =m =1. According to Wig-
gins [20] the Melnikov function is given by the following
Melnikov integral:
MEY,tg,0)=— [ * dt D,H'[THt,4%0,)],  (42)
where T'* denotes the homoclinic orbit for the unper-
turbed system given by Egs. (35)—(41).

The Melnikov integral is then determined by

(43)

We note that the ¢, dependence in the arguments of the Melnikov function can be eliminated, so that we are allowed to
set £,=0 in the following (see Chap. 4 in [20] for details). Further we restrict the analysis to the “+” sign in Eq. (43)
since the case of the “—” sign can be treated on an equal footing.

Using Eq. (33) we obtain after some algebra

M(¢°,a)=—e—’2’ \/12—1va°" dt{F , [p"()Isin[¢"(£)+¢°]+ F_[p"(2)]cos[¢"(1)+4°]} , (44)
with
v iph) | [1%p00 1
Fi[p"0]=V (—[p"O)P£{1=a[p" PN | |- | + ,
+[pM0)] (1—[p")P+{1—a[p")]*}) l e T2ph0) ] ] 45)

where a=a/ A and p"(t) is given in Eq. (36) with the “+ sign.
We are not able to compute the Melnikov integral explicitly, but we can show the validity of the following proposi-

tion.

Proposition. The Melnikov integral in Eq. (44) is of the form

M°,a)=F (W, V,IT,y)sin(y°)+F _(W,V,I,T,y)cos(y°) ,

where F, are smooth functions of the system parameters.

(46)

Proof. The Melnikov integral in Eq. (44) is only conditionally convergent. Therefore we consider the improper in-
tegral as a limit of a sequence (see Chap. 4 in [20]). Expanding sin[t/;"(t)—i-1/10]=sin[¢"(z)]cos(1/1°)+cos[1/;h(t)]sin(1p°)
and cos[¢"(#)+¢°]=cos[ ¢"(¢) Jcos(¥°) —sin[ ¥"(¢) Jsin( ¥°) and taking further into account that ¥*(¢) is an odd function,
the odd part of the integral can be omitted since it integrates to zero and we obtain for the even part of the integral

M(¢°,a)=—e—2'K\/12—J2f_°° dt {F , [p"(2)1sin(¢°)+F _ [p"(z)]cos(¢°)}cos[¢"(1)]

= —ETW\/IZ—JZ[M+sin(1/}°)+M_cos(¢°)] . 47)
Next we consider the integrals as a limit
Mi=f_w dtF . [p"(t)]cos[¥(1)]
= lim f_z;m/[j dt {cos(wt )cos[ (1) ] —sin(wt )sin[ Q1) ]} F4 [p"(1)] , (48)
where we set
- 1 -
o £ ( +3J)+4NV(I J), 49)
1 N ) 42 172
Q)= N7 VI—J) 4y —1 lmarctan '17 ] tanh(2aVt) | . (50)




51 HOMOCLINIC CHAOS IN THE DISCRETE SELF-TRAPPING TRIMER 2875
and A is given in Eq. (39).
After integrating once by parts we are left with
. 1 2mn /o , h . , h
M, = lim _Zf—z , dt{cos[wt +Q(t)]Q(t)F L [p"(¢)] +sin[wt + Q) JF L [pHD)]} |, (51)
and the prime (') stands for the derivative d /dt.
We obtain
=" -7 |1 — , (52)
4N 4v N
X2 | cosh?(2aVt)—1
4aV
and
1 F.[p"(1)] ;
Filphn)]=F = + | p"()
: 2 | VI proPE-alp 0P | VI—oP ||
T 1
—(V1=[pH O P£{1—a[p" ) PPV —————
(p {1—a[p"(D)]*} FEpTET)
i 174 A 1/4 2 |
R RET:AC) - | 1Fp") 8a’V* | sinh(2aVt) (53)
1Fph(e) 14p"(2) YN | cosh*(2avt)

Upon inserting the above expressions for ' and F'; into
Eq. (51) we eventually get convergent integrals yielding
F (w,v,IL],y).

The Melnikov function has simple zeros showing the
presence of homoclinic chaos in the dynamics of the cou-
pled system. Due to the resulting nonintegrable motions
the stable and unstable manifolds of the periodic orbit of
M, are no longer identical, but intersect each other, thus
establishing a homoclinic tangle in the vicinity of the dis-
turbed homoclinic orbit. Moreover, on a fixed energy
manifold with chosen J an isolated one-torus 7.(J) sur-
vives and is normally hyperbolic on the energy manifold.
Hence our results for the Melnikov function show that
the perturbed system contains transverse homoclinic or-
bits to a hyperbolic orbit and we have, due to the Smale-
Birkhoff homoclinic theorem [20,27], homoclinic chaos in
the coupled dynamics.

V. SUMMARY

In this paper an analytical proof is given of the ex-
istence of homoclinic chaos in the DST trimer by means

of the generalized Melnikov method. Although not ex-
plicitly given in the present paper the nonintegrability of
the DST trimer was proved by applying Ziglin’s theorem
[31].

Starting from the DST dimer as the underlying integra-
ble subsystem the coupling to the third trimer oscillator
has been treated perturbationally. The symmetry proper-
ties of the coupled dimer-oscillation system allows a
reduction to a two degree of freedom Hamiltonian sys-
tem. In analyzing the phase space structure special atten-
tion was payed to the homoclinic manifold. The ex-
istence of an infinite number of zeros of the Melnikov
function was shown, which in turn guarantees the pres-
ence of a homoclinic tangle around the destructed homo-
clinic orbit.

ACKNOWLEDGMENTS

One of the authors (D.H.) gratefully acknowledges the
support of the Technical University of Denmark. This
work was supported by the Deutsche Forschungsgemein-
schaft via Sonderforschungsbereich 337.

[1]J. C. Eilbeck, A. C. Scott, and P. S. Lomdahl, Physica D
16, 318 (1985).

[2] V. M. Kenkre and D. K. Campbell, Phys. Rev. B 34, 4595
(1986).

[3] A. S. Davydov and N. I. Kislukha, Phys. Status Solidi B
59, 465 (1973).

[4] N. Finlayson and G. I. Stegeman, Appl. Phys. Lett. 56,
2276 (1990).

[S]Y. Chen, A. W. Snyder, and D. J. Mitchell, Electron.
Lett. 26, 77 (1990).

[6] J. H. Jensen, P. L. Christiansen, J. N. Elgin, J. D. Gibbon,
and O. Skovgaard, Phys. Lett. 110A, 429 (1985).

[7]1 S. De Filippo, M. Fusco Girard, and M. Salerno, Physica
D 26, 411 (1987).

[8] S. De Filippo, M. Fusco Girard, and M. Salerno, Physica
D 29, 421 (1988).



2876 D. HENNIG et al. 51

[9]1S. De Filippo and M. Salerno, Phys. Lett A 142, 479

(1989).

[10] L. Cruzeiro-Hansson, H. Feddersen, R. Flesch, P. L.
Christiansen, M. Salerno, and A. C. Scott, Phys. Rev. B
42, 522 (1990).

[11] K. W. DeLong, J. Yumoto, and N. Finlayson, Physica D
54, 36 (1991).

[12] L. J. Bernstein, Opt. Commun. 94, 406 (1992).

[13] N. Finlayson, K. J. Blow, L. J. Bernstein, and K. W. De-
Long, Phys. Rev. A 48, 3863 (1993).

[14] D. Hennig and B. Esser, Phys. Rev. A 46, 4569 (1992).

[15] D. Hennig, J. Phys. A: Math. Nucl. Gen. 25, 1247 (1992).

[16] D. Hennig, Physica D 64, 121 (1993).

[17] P. L. Christiansen, M. F. Jgrgensen, and V. B. Kuznetsov,
Lett. Math. Phys. 29, 165 (1994).

[18] V. K. Melnikov, Trans. Moscow Math. Soc. 12, 1 (1963).

[19] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields
(Springer-Verlag, New York, 1983).

[20] S. Wiggins, Global Bifurcations and Chaos—Analytical
Methods (Springer-Verlag, New York, 1988); S. Wiggins,

Physica D 44, 471 (1990).

[21] G. Morrison (unpublished).

[22] G. Morrison (unpublished).

[23] R. Abraham and J. Marsden, Foundation of Mechanics
(Addison-Wesley, Reading, MA 1978).

[24] K. R. Meyer and G. R. Hall, Introduction to Hamiltonian
Dynamical Systems and the N-Body Problem (Springer-
Verlag, New York, 1991).

[25]S. Wiggins, Chaotic Transport in Dynamical Systems
(Springer-Verlag, New York, 1991).

[26] P. J. Holmes and J. E. Marsden, Commun. Math. Phys.
82, 523 (1982).

[27] S. Smale, in Differential and Combinatorial Topology, edit-
ed by S. S. Cairns (Princeton University Press, Princeton,
NJ, 1963), pp. 63-80.

[28] N. Fenichel, Indiana Univ. Math. J. 21, 193 (1971).

[29] V. 1. Arnold, Mathematical Methods of Classical Mechan-
ics (Springer-Verlag, New York, 1978).

[30] S. M. Graff, J. Differ. Equations 1§, 1 (1974).

[31] S. L. Ziglin, Trans. Moscow Math. Soc. 1, 283 (1982).



