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We present in detail a calculation of the spectral dimension for a class of fractal trees called NTD (i.e.,
"nice trees of dimension D," defined as trees whose branches are splitting in r every time the distance
from the origin is doubled, where r is an integer greater than 1) which presents nonanomalous diffusion.
This is performed by an analytical technique, related to an exact rescaling of the time variable, which
can be extended to more general geometrical structures.
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I. INTRODUCTION

In a recent Rapid Communication [1] we showed that
for a particular class of fractal trees called NTD ("nice
trees of dimension D") in mathematical literature, since
the spectral and the fractal dimension coincide, diffusion
is not anomalous, as was commonly believed to happen
on fractals. While the determination of the fractal di-
mension for these trees can be performed with standard
arguments, the calculation of the spectral dimension, re-
lated to the solution of the random walk problem, re-
quires the introduction of an alternative technique, lead-
ing to an exact implicit expression for the random-walk
generating functions. Such an expression can be used to
obtain asymptotic behavior at large times for the proba-
bility of returning to the origin of a random walker,
which in turn defines the spectral dimension. More pre-
cisely one introduces on the given infinite and connected
discrete structure a simple random walk, i.e., a nearest
neighbor random walk with homogeneous jumping prob-
abilities and discrete time steps, and, after choosing an
origin point 0 from where the walker starts at time 0, one
calculates the probability Po(n ) of returning to the origin
after n steps. The spectral dimension Z is then defined as

specific case of NTD is actually more general and can be
applied to other discrete structures, even nonfractal ones,
as we shall briefly discuss.

The paper is organized as follows: in Sec. II we will
first deal with the determination of the fractal dimension
of NTD,. in Sec. III we will obtain the exact implicit rela-
tion for the generating function of the probability of re-
turning to the origin; and in Sec. IV the value of d wi11

finally be calculated. Section V is devoted to conclusions
and drscussrons.

II. THE GEOMETRY OF NTg)

NTD (see Fig. 1) can be recursively defined as follows
[4]: an origin point 0 is connected to a point A by a link
of length 1; from A, the tree splits in k branches of length
2 (i.e., consisting of two consecutive links); the ends of
these branches split in k branches of length 4, and so on;
each end point of a branch of length 2" splits into k
branches of length 2"+'. The coordination number z; is
therefore 1 for the origin 0, 2 on the branches, and k+ 1

lnPo(n )d= —2 lim
n~oo inn

and such a definition can be shown to be independent of
the particular origin point [3]. The time-rescaling tech-
nique that we will introduce in the following for the
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ap 1+(1nk/(n2) (~ (r ) & br 1+(1nk/(n2) (3)

where a and b are positive constants. Relations (3) imply

ink
ln2

(4)

for the end points of each branch. Let us begin by com-
puting the connectivity dimension of an NTD. This
quantity is defined [5] by introducing the growth function
N, (r) that represents the number of points within a
sphere of radius r centered in a point i ENTD, where r is
given in terms of the chemical distance, i.e., the
minimum number of links between two points:

lnN~(r )
dc= hm

p~ oo lnp

Since it can be shown that dc does not depend on i, for
the sake of simplicity we will center the sphere in O. In
this case the growth function is a step function, but it is
easy to see that it satisfies the following inequalities:

jumping from a site i at time n to a neighbor site j at time
n + 1. The jumps are chosen to be equiprobable:

We will now compute recursively the probability of
coming back to the origin Po(n } after n steps of a ran-
dom walker starting from the origin O at time t =0, using
the structure of the tree, applying well known relations
between generating functions of probability in a random
walk, and introducing an exact rescaling technique on the
time variable, which is very useful in treating a wide class
of infinite graphs.

First, let us consider the k subtrees that originate from
the point A; we will call each of them SA. The first step
will be the calculation of the probability P~(n ) of coming
back in n steps to the origin A of subtree SA. Po(n ) and
P„(n ) are simply related, because the minimum path be-
tween two points is unique on a tree. If we consider the
probability Fo(n ) of coming back to the origin of an
NTD for the first time after n steps, we have

The fractal dimension dF [6] of an NTD can be defined
only after the tree has been embedded in an Euclidean
space by

Fo(n)= P„(n —2) .
1

(10)

1nJV, (R )
dF —lim

lnR
(5)

where now A; (R ) is the number of points within a sphere
of radius R centered in i and R is given in terms of the
Euclidean distance. As for the dc, the definition (5) is in-
dependent of i. The value of dF obviously depends on the
particular embedding. It is possible to choose a very nat-
ural embedding in a d-dimensional space (d ~ dc ), where
the points at a given chemical distance from the origin lie
on a (hyper)spherical surface centered in the origin. In
this case the distances I„between the two subsequent
spherical surfaces n and n + 1 satisfy the conditions

Two time steps have been used to cross forward and
backward the link OA. P„(n) is the probability of com-
ing back to the origin A of the graph 9 obtained by re-
moving 0 and ihe corresponding link from the NTD, for
a random walker with a decay probability 1/(k+1) on
A. The probability of coming back to the origin A of an
SA for the first time after n steps F„(n ) is related to the
corresponding quantity F„(n ) by

This identity can be restated in terms of the correspond-
ing generating functions of probability [we recall that the
generating functional f (A, ) of f(n ) is defined to be
f(A, )=g„" Of(n)A, "],

The growth function then satisfies the following ine-
qualities:

C dchr & Xo(r ) & lr

where h and l are two positive numbers. This immediate-
ly gives

F„(A,}= F„(A,) .

We can now introduce the fundamental relation be-
tween generating functions of probabilities of return and
probabilities of first return, holding for any random walk-
er [7]:

dc =d~=1+
ln2 P~(A, ) = 1

1 —F~(A, )
(13)

Notice that this is an embedding in a continuous space
and not in a lattice. The common value (8) is defined to
be the dimension D of an NTz [4].

Substituting (12) in (13) and inverting the corresponding
relation for F~ (A, ) we finally obtain

III. RANDQM WALKS VN NTg)

We now turn to the determination of the spectral di-
rnension of an NTD. The computation is based on the
analysis of the asymptotic behavior at large times of a
random walker on an NTD.

We define a transition matrix for the probabilities p; of

(k +1)P~(A, )
P~(A, )=

k+P„(A, )
(14)

The relation (10) implies the corresponding relation for
generating functions,
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Fg(A, ) = g I,"Fg(n )
n=0

The staying probabilities can be described using a param-
eter s; by

1
A,"P~ (n —2}

n=0

A2P„(A, ) .

1
+ll

i

From (20) it follows:

(20}

Substituting (14) in (15) we finally obtain the relation be-
tween the probability of coming back to the origin of an
NTD and the corresponding quantity on a subtree SA,

P„(A,)+k
Pg(A, ) =

(1 —I, )P„(A,)+k
(16)

Let us now consider in detail a single branch. The SA
is not an NTD because its adjacency matrix is diferent.
Nevertheless, an interesting scale transformation on the
time variable can be found, mapping the SA to an NTD
with given probabilities of staying on the sites.

Let us study the probability of coming back to the ori-
gin on a SA for even time steps n

' =2n,

P„'(n ) =Pz(2n )—. (17)

With this rescaling, the subtree SA with simple nearest-
neighbors jumping probabilities is mapped into an NTD
with a new definition for the jumping probabilities ma-
trix. We will call this structure NTD. In particular, the
new probabilities for a single jump between two nearest
neighbors sites are given by

(18)

(19)

The other possibility is a sequence of two old steps
forward-backward, which corresponds to the new walker
staying in the site i,

Si Zi (21)

If we now denote by asterisk the random walker fol-
lowing the new rules (19) and (20) for the jumping proba-
bilities, we obtain the following relations:

P„'(n ) =P„(2n ) =Pg(n ),
where now Pg(n } is the probability of return to the ori-
gin of an NTD with the new definition of the transition
matrix. When applied to the generating functions of the
corresponding probabilities, since P~ (n )%0 only for even
n, this relation gives

P„(A,)= g P~(n)A, "= g P~(2m)A,
n=0 m=0

= g Pg(m)(A, ) =Pg(A, ) . (23)
m=0

Let us now look for a very general relation between the
generating functions for the probability of coming back
to the origin of a given graph, with and without staying
probabilities. In general, we will consider graphs with
variable coordination number zi and we will define the
matrix Z,.~ =5;Jz;. The generating functional P;;(A, ) on a
graph without staying probabilities can be then written as

P;;(A, )=[I—Az '3],; ' . (24)

If we now consider the graph described by the same
adjacency matrix but with an additional probability of
staying on the site, we can define the matrix S; =5,js,.
and obtain

P;;(A)=[I—A(Z+S) '(A+S)],; '=[(Z+S) '(Z+S) —A(z+S) 'A —A(z+S) 'S],; '

= [[z+s—x~ —~s]-'[z+s]]„
=[I 1 —A[z+(1—A, )S] '3] '[Z+(1 —

A, )s] '(Z+S)],, . (25)

Po (A, ) =[I—(2 —
A, ) 'Z 'A ]oo' (26)

or, recalling (24)

2 — 2
Po,s=z(~) = Pg (27)

In general the two matrices Z and S do not commute.
Here from the relation (20) we know they are equal. We
can therefore rewrite expression (25) as

2 — A.
2

2 ~ 2
Pg(A, ) =

2 —2i2 A2

2 —X
2~O 22 —A,

(28)

Substituting (27) in (16) and using (22) and (23) we easily
obtain an implicit form for the generating functional of
the probability of coming back to the origin of an NTD,
Pg(A, ):
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IV. THE SPECTRAL DIMENSION OF AN NTg)

The spectral dimension of the graph NTD is defined by
the asymptotic behavior of the probability of returning to
the origin in n steps, when n becomes very large. Such a
behavior can be obtained from the asymptotic expansion
of the generating function in its first singularity from the
origin of the complex plane, using Tauberian theorems

In the preceding section we have obtained an implicit
expression for the generating function. On the other
hand, generating functions for the probability of return-
ing to the origin for a random walker on a graph with
finite connectivity dimension have a convergence radius
equal to 1 [8]. So we will give an estimation of the
asymptotic behavior of to Po(A, ) for A, ~l —using rela-
tion (28) as a consistency condition.

Expanding (28) for e—= 1 —
A, ~O+ we find

ponent a, from which it follows again:

1 inkA— —1
2 ln2

(35)

valid now for 2&k &4. Reiterating the procedure for
bigger values of k and a, we finally obtain the following
asymptotic behavior for the singular part of the generat-
ing function Po(A, ):

l ( 1 g)(1/2)(ink/1n2 —1) f k~ 2n

g 0
( 1 g)(1/2)(ink/)n2 —1) ln( 1 g) if k —2n

(36)

Now applying standard Tauberian theorems [9] to (36)
we immediately obtain the asymptotic behavior of Po(n ),

(2—4e)Po(1 4~—)+k
Po(1 —e)-

(2—e)2ePo (1—4e)+ k
(29)

p (n ) ~ n
—(1/2)[1+ink/in2]

O P1 o: n (37)

The asymptotic law (37) gives the value of the spectral di-
mension of an NTD,

Let us now introduce the asymptotic expansion of the
leading singular part of Po(k) for A.~l —.First, let us
consider the trial function

ink
ln2

(38)

Po(e) =ca (30)

c2(4e) +k
c4e(4e) +k

(31)

and equating the singular parts of the two sides we find

1 ink——1
2 ln2

(32)

which is consistent with the hypothesis o. &0 only for
k (2. Relation (32) would give a =0 for k =2; in this
case (29) can be satisfied by introducing a multiplicative
logarithmic correction to the trial function

Po(l —e)=c inc . (33)

If k & 2, the generating function converges for @~0+
and the divergence is carried by its derivatives. Namely,
for 0&@&1,

P o(1—e) =cue (34)

diverges as @~0+. Taking an explicit derivative with
respect to X in expression (28) and substituting the devel-
opment (34), we obtain an alternative relation for the ex-

where c is a constant, and let us take a & 0, corresponding
to a recursive random walk.

Substituting (30) in (29) we obtain the following rela-
tion:

This value coincides with the fractal and connectivity di-
mension. We point out that solutions (36) and (37) are
unique up to corrections of lower order in 1 —A, , which do
not affect the value of the spectral dimension, defined in
(1).

V. CONCLUSIONS

In this paper we presented a time-rescaling method
that allows us to solve exactly the random walk problem
on NTD. While the relevance and the implications of the
result we obtained has already been discussed elsewhere
[1],here we would comment on technical aspects of such
a calculation. First of all, notice that a necessary condi-
tion for the application of time rescaling is the fact that
NTL, are bipartite graphs, i.e., graphs without odd cycles.
This implies that they can be divided in two subgraphs A
and B, such that at even times the walker is always on A
and at odd times it is always on B so that random walks
at even time steps on NTD can be mapped into random
walks at generic time steps on A. The other fundamental
feature of NTz is that the new structure A coincides
with the original NTz, up to a finite number of points
(actually one, in this case). Since these features are com-
mon to a wider class of graphs, the time-rescaling tech-
nique can be successfully applied also to other relevant
discrete structures. Some of these possible applications
will be discussed in more detail in a forthcoming paper
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