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Depletion region for diKusion-controlled reactions in a field
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The effects of a uniform field on the distribution of mobile particles in the presence of a fixed trap are
analyzed. Even small fields are shown to have a drastic effect on magnitudes, such as the reaction rate
and the mean distance (L ) from the trap to its nearest neighbor. If the field points towards the trap, a
steady state is reached exponentially fast. In this steady state there is a depletion hole next to the trap,
whose size depends on the ratio between the drift velocity V and the diffusion coefBcient D. If c is the in-
itial concentration of mobile particles, the long-time reaction rate is simply c

~
V~. If the field points away

from the trap, the maximum of the probability distribution function for the distance to a nearest neigh-
bor moves away from the trap with constant speed (if V=O, (L ) —t'~ ) and the reaction rate decays as
t exp{ —V t/4D), where t is time.

PACS number{s): 05.40.+j, 66.30.Lw, 82.20.Mj

I. INTRODUCTION

In the analysis of diffusion-controlled reactions it is
usually assumed [1,2], following the pioneering work of
Smoluchowski [3,4], that there is a concentration gra-
dient of the other species in the neighborhood of a reac-
tant molecule. The molecular motion in this gradient is
described by a difFusion equation with a suitable bound-
ary condition. The detailed study of the nearest-neighbor
distances in diffusion-controlled reactions is much more
recent, having been started by Weiss, Kopelman, and
Havlin in 1989 [5]. These authors consider a randomly
distributed ensemble of random walkers ( A ) diffusing in
the presence of a fixed trap (8). The reaction A +8~B
occurs when one of the walkers reaches the trap. Due to
this reaction, the density of the reacting mobile particles
becomes nonuniform. To investigate this phenomenon,
Weiss, Kopelman, and Havlin calculated the probability
density function (PDF) f (L, t) for the nearest-neighbor
distance L at time t. Using this function, they showed
that the average distance from the trap to its nearest
neighbor increases asymptotically as (L ) —t' . Because
of the depletion of 3 particles around the trap, the trap-
ping rate decreases as t ' . Taitelbaum et a/. later gen-
eralized the calculation of Ref. [5] to include the case of
imperfect traps [6]. This was done, following Collins and
Kimball [1], by introducing a radiation boundary condi-
tion at the location of the trap.

In this paper we analyze the effects of a uniform field
on the distribution of nearest-neighbor distances. The
field does not affect the stationary traps, but introduces a
preferred direction of motion for the mobile reactants.
This asymmetry will result in substantial modifications of
such quantities as (L ) and the trapping rate. Of particu-
lar interest is the competition between absorption and
field-induced replenishment of the region around the trap
when the field points towards the trap. Could a steady-

state situation arise where the Geld-induced replenish-
ment exactly compensates for the absorption? If the field
points away from the trap, on the other hand, we expect
that the depletion region will grow much faster than for
the Geld-free case. What is the law for this growth? In
this paper we give an answer to these questions by calcu-
lating the probability distribution function for the
nearest-neighbor distances, the mean distance to the
nearest neighbor, and the trapping rate.

II. MODEL

Consider an infinite one-dimensional system containing
a random distribution of noninteracting mobile particles
with a specified initial concentration c. These particles
may fall into a fixed, impenetrable trap located at the ori-
gin. This trap is characterized by the conditional rate y
that trapping (i.e., the reaction) will occur given that the
particle has reached the trap. The probability density

p (x, t;xo ) for finding a particle that departed from site xo
at the time t =0 at the location x at a later time t can be
obtained by solving the difFusion equation with a bias,

Bp 0 p Bp

Q~ 2

where D is the difFusion coeKcient for the mobile parti-
cles and V their drift velocity, which is a direct measure
of the field strength. Since the current now contains a
convective term, the radiation boundary condition must
be modified to read

Vy+ —p(x, t;xo) .

III. ONE-PARTICLE SOLUTION

The one-particle probability density p(x, t;xo) can be
obtained with the help of the transformation [4]
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p (X t X ) e Vx/2D —V t/4D2
(3) QL, (y, t)= f dx f "dx,p(x, t;x, ) .

0
(13)

Equations (1) and (2) are now transformed into

BT 8 7'

Bt

With some patience, the integrals in Eq. (13) can be
evaluated in terms of error functions. Long-time forms
may be obtained using the asymptotic expansion [10]

and 1 3i/~z erfc(z) =e '
1 — +

2z' 4z4
(14)

Vy+ r(x, t;xo) (5)

V
X Pg

— ~ 2D
(7)

with

respectively. The initial condition for r is
—Vxo /2D

r(X,O;xo)=e ' 5(x —xo) .

The solution to Eq. (4) with these initial and boundary
conditions can be obtained from Ref. [7].We find

V(x —xo)/2D —V t/4D
p(x, t;xo)=e

Our result (11) is valid for a one-sided problem with an
impenetrable trap. If there were no field, and we were to
let the particles reach the trap from both sides, an extra
factor of 2 would appear in the exponent of Eq. (11) [5].
Because of the loss of symmetry caused by the introduc-
tion of the field, the presentation of the results is slightly
simpler if we consider the one-sided case.

If the field points away from the trap (V) 0), the
mobile particles drift away from the trap and the size of
the depletion region grows rapidly. The asymptotic form
of Qt is given by

4~D (Dy+ V).-"/

~~V)'(y+ V/2D) t /L(y, t —+ oo )=
r

1 —(x —xo ) /4Dt —(x+xo) /4Dt
Pa= e ' +e

2(~Dt)'" (8) X LV +
2D

LV/2D+

and

D(p+ V/2D} t +(g+ V/2D)(x +xo)
P'g =8

X +Xp
Dt 1/2X erfc, /z + y+ (Dt)2(Dt)'/'

(9)

(15)
If the field points towards the trap ( V &0), a balance is

reached between drift and absorption and a steady-state
Qow is obtained. The long-time form for the probability
that the nearest neighbor to the trap is not in [O,L] is
given by

where erfc is the complementary error function [10].
Since the mobile particles do not interact, Eq. (7) contains
all the information we need.

-cg, (y
cI)~(y, oo )=e

where

IV. MANY-PARTICLE SOLUTION QL(y, oo)=L+ —— (1—e )
y 8 (17)

s) =1 s&= li =1

This formula is valid for an arbitrary initial distribution
u(s&, sz, . . . , sz) of N mobile particles. PL(i, t) is the
probability that the ith particle is beyond L at time t. By
assuming that the initial distribution is random,
u =M, and taking the M, N~ oo limit (with
c =N/M), we obtain

We start by writing a general formula for the probabili-

ty 4L(y, t) that there are no particles in the interval

[O,L] at time t, given that N mobile, noninteracting parti-
cles departed from an M-site lattice at time t =0 and that
a trap of strength y is located at the origin [8,9]

M M

4L(y, t)= g. . . g +PL(i, t)u(s„sz, . . . , sz) . (10)

depends on D and V only through the ratio W =
~
V~/D.

If V &0 there is therefore a steady-state depletion hole,
whose characteristic size L * can be defined through

4,(y, ~)=e (18)

L (8'~ oo )-— ln 1—1

c
(19)

for small absorption (y & c), while for y )c, the hole
tends to a finite size

The characteristic hole size is depicted in Fig. 1 for
c =0.25 and several values of y. In the high-field limit,
L* vanishes as

41(y, t)=e 1 1L "(W—+ oo )~———
c

(20)

QL(y, t)= g [1—PL(i, t)],
i=1

or, in the continuum limit,

For perfect absorption (y= oo ) we recover the initial
Poisson distribution: the field instantaneously replenishes
the absorbed particles. For imperfect traps, an excess of
mobile particles accumulates in the neighborhood of the
trap. If the absorption is low enough (y & c), this excess
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jo
hf' 1d V. PDF FOR THE NEAREST-NEIGHBOR DISTANCES

Once QL (y, t) is known, the PDF of the distance from
the trap to the nearest mobile particle can be calculated
by taking the derivative

fL (y, t)=— (24)

D/ I V I

FIG. 1. Steady-state hole size as a function of I/8' =D/~ V~

for c =0.25 and the values of y indicated next to the curves.
Note the disappearance of the depletion region in the high-field
limit for low absorption (y & c).

is so large that the depletion region disappears altogether.
A steady state is not possible in the absence of a field.

Indeed, if 8'—+0, I.' diverges as a square root,
L' —(2/cW)'/ .

The steady-state form (17) is approached in different
ways, depending on the field strength. Writing
QL ( y, t) =

QL (y, ae ) + b, Q, we find that, for t —+ ae,

This function was evalu. ated numerically and the result-
ing graphics exhibit some interesting features. In Figs.
2(a) and 2(b) we plot fL as a function of L for several
values of the time and the field pointing away from the
trap. We choose y= —,', c =0.25, D =10, and V=1. At
short times, the maximum remains at the location of the
trap. At t =75, a well-defined peak clearly emerges at a
nonzero value of I.; due to the action of the field, the
nearest particle is often far from the trap. At long times,
the peak is seen to move with the drift velocity while it is
subject to diff'usive widening [its width increases as
(Dt)' ]. The effects of diffusion are more marked behind
the advancing peak, where a small tail appears. These
features are also seen in Fig. 3, where we plot fL as a
function of I. for t = 10 and several values of the diffusion
coe%cient. The other parameters are the same as in Fig.
2. If D is large enough, the trailing feature grows until
the LAO peak disappears; since the diff'usion is high, it is
likely that we will find upstream-moving particles in the

0.10

t ' 'e ' '
(
—2Dy& V&0),

gQ t
—i/2e —V t/4D

e ~ ~'r' (V & 2Dy) . —

(21)

(22)

(23)

0.08

0.06

0.04

The steady state is always reached exponentially fast,
but the exponent depends on the absorption constant
only for high fields. For low fields the coefIicient of the
leading term diverges when V~0 — and when
V~ —(2Dy)+. This suggests that the power of t must
be higher for these special values, which effectively
occurs (it jumps to t ' ). The V =0 limit was studied in
detail in Refs. [5,6]. The slower convergence for the
V = —2Dy case is due to the vanishing of the slope of the
transformed one-particle probability density r(x) at
x =0.

The existence of a threshold separating weak from
strong fields is well known in the case of the trapping
model, in which a single mobile particle is released into a
line containing a random distribution of fixed traps [11].
There are three length scales in this model: The diffusion
length lD =(2Dt)'/z, the drift length lz= Vt, and the
mean distance IT between traps. The threshold occurs
when the relation lTlv=lD is satisfied t12]. A similar re-
lation is found for our problem if the field points towards
the trap (this is the case for which a comparison is
relevant). Defining the absorption length l~ =1/y, we
find from Eqs. (21)—(23) that the threshold occurs for
I~ Iv =lD

0.02

0.00
0 10 20 30 40 50

6x 1
0-'—

(') V)0

4x]0--

t= l 000
t l&00

2000 -'ooo
3~00

4OOO

0

2000 4000

FIG. 2. PDF of the distance from the trap to the nearest
mobile particle for drift away from the trap and the times indi-
cated next to the curves. Here y= 9, D =10, c =0.25, and
V = 1. (a} Short times. (b) Long times.
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eA

IV(cA)' (27)

where y(a, x) is the incomplete gamma function [10] and
A = I/JV —1/y. The diffusion coefficient and the drift
velocity appear again only through O'. For weak fields,
(,L ) ~(~/2c W)', in agreement with our result for L *.

If V )0, (L ) diverges at long times and a complicated
expression obtains. It is easier to look at the evolution of
the location of the maximum L,„offI (y, t) (see Sec. V).

VII. TRAPPING RATE

The trapping (or reaction) rate can be calculated
directly from the flux J(t) at the trap [5] which contains
both diffusive and convective contributions,

IJ(t)= —c I D
0 Bx

This may be compared with the zero-field result [6]
J(t~ OD ) ——2c [D/(srt))'~, which is independent of the
trap strength. For V &0, the asymptotic result depends
on the nq,ture of the trap.

VIII. CONCLUSION

We have investigated in detail the effects of the addi-
tion of a field on the statistical properties of the nearest-
neighbor distances to a fixed, imperfect trap. We found
that, for fields pointing towards the trap, a steady-state
depletion hole is formed whose size depends on the ratio
between drift velocity and diffusion coefficient. This
steady state is reached exponentially fast. The long-time
limit of the reaction rate is convection dominated. For
fields pointing away from the trap, the peak of the proba-
bility distribution function of the distance between the
trap and the nearest mobile particle moves away from the
trap with the drift velocity, while the reaction rate decays
exponentially due to convection away from the trap.

—Vp(x =O, t;xo) dxo . (28)
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This can be computed using Eq. (7). We give only the
long-time results. If V (0, a convection-dominated
steady state is reached. We obtain J(t~ ao ) = —

c~ V~. If
V )0, J (t) decreases exponentially due to the convection,
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