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Thin Ising films with competing walls: A Monte Carlo study
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Ising magnets with a nearest neighbor ferromagnetic exchange interaction J on a simple cubic lattice
are studied in a thin film geometry using extensive Monte Carlo simulations. The system has two large
L XL parallel free surfaces, a distance D apart from each other, at which competing surface fields act,
i.e., HD = —H&. In this geometry, the phase transition occurring in the bulk at a temperature T,b is

suppressed, and instead one observes the gradua1 formation of an interface between coexisting phases
stabilized by the surface fields. While this interface is located in the center of the film for temperatures

T, (D) & T ~ T,b, and the average order parameter of the film is hence zero, at T, (D) we observe the in-

terface localization-delocalization transition predicted by Parry and Evans [Phys. Rev. Lett. 64, 439
(1990); Physica A 181, 250 (1992)]. For T & T, (D), there is thus a symmetry breaking, and the interface

is located either close to the left wall where H& & 0 (and the total film magnetization is then positive) or
close to the right wall where HD = —H& )0 (and the total magnetization is negative). As predicted, for
large D this transition temperature T, (D) is close to the wetting transition T (H&) of the semi-infinite

system, but the transition nevertheless has a two-dimensional Ising character. Due to crossover prob-
lems {for D~ Oo the width of the asymptotic Ising region shrinks to zero, and one presumably observes

critical wetting in this model) this Ising nature is clearly seen only for rather thin films. For
T, (D) & T & T„evidence for a correlation length g~~

that varies exponentially with film thickness is ob-

tained and compared to corresponding theoretical predictions.

PACS number(s): 64.60.Fr, 68.45.Gd, 68.35.Rh

I. INTRODUCTION

There has been extensive research on thin films because
of their growing technological importance for various ap-
plications as well as for their fundamental scientific in-
terest. Here, we focus on the statistical mechanics of
phase transitions in a thin film geometry, studying the in-
terplay between confinement (i.e., a "finite size effect")
and competing wall forces (i.e., a "surface effect" ). It is
physically very natural that the two surfaces of a thin
film be inequivalent, but theoretically this situation has
only occasionally found attention [1—10].

For magnetic systems, of course, it is most natural to
consider films whose surfaces do not favor any sign of the
order parameter, i.e., where surface magnetic fields are
zero, and this case has hence long been considered (see,
e.g., [ll —13]). However, when we reinterpret an Ising
magnet as a lattice gas model for a Quid or as a model for
an A, B binary alloy (spins S; =+1 at lattice site i corre-
sponding to the site being occupied or empty, or contain-
ing an A atom or B atom, respectively), the situation is
completely different: binding energies to the wall
translate into surface magnetic fields for the correspond-
ing Ising model [12]. Even if such binding energies are
absent (considering, e.g. , a "free" surface against vacu-
um) the effect of "missing neighbors" also contributes to

such a surface field in the Ising spin representation (for
explicit demonstrations, see, e.g. , Refs. [3,14]). Thus, sur-
faces are expected to have pronounced effects on the
respective phase transitions (condensation in a fiuid, un-
mixing of binary mixtures, etc. ), and similar
modifications should also occur in thin films of more
complex materials such as liquid crystals, microemul-
sions, polymer blends, and block copolymer mesophases,
etc.

In a semi-infinite fiuid (or the simple model case of a
semi-infinite Ising magnet with a surface field) one can
have wetting transitions where the system adapts a state
where the surface is coated with an infinitely thick layer
of the phase it prefers, separated by an interface from the
bulk phase [15—19). Obviously, in a thin film geometry
the walls can be coated only by layers of finite thickness:
thus it is really no surprise that in thin films confined be-
tween two symmetric walls, both second order and first
order wetting transitions are rounded off [20,21]. Only
the prewetting transition may still exist [22], for which
the surface layer thickness simply jumps discontinuously
to a larger value [15,16]). The surface fields then have the
effect of shifting the transition between the coexisting
phases, which correspond to the coexisting phases in the
bulk, away from the bulk location (i.e., of pressure in the
Quid, or chemical potential in the mixture, respectively.
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Thus, for a fluid that tends to wet the walls, the pressure
P at which condensation occurs in a thin film is reduced
relative to its bulk coexistence value P„,„: "capillary
condensation" [14,20—23]. In the magnetic terminology
of the Ising model, capillary condensation means a
change of sign of the total magnetization, and this first-
order transition no longer occurs at zero bulk field (as it
would in an infinite system) but at a bulk field inversely
proportional to the film thickness, such that it can
efFectively "cancel" the effect of the surface fields [14,20].

Parry and Evans [5] (and, independently, Albano et al.
[3], who considered the analogous case of a two-
dimensional (2D) Ising system with one-dimensional sur-
faces) drew attention to Ising models with competing
walls: In magnetic terminology, one surface exhibits a
positive surface field, the other surface a negative one (in
the lattice gas terminology, one wall favors liquid while

the other wall favors the gas). These competing surface
effects lead to a rather unusual behavior which we de-
scribe, anticipating some simulation results [24,25], in
Fig. 1. Here, the profiles of the layer magnetization m„
[which, in lattice gas language, is related to the layer den-
sity p„=(1—m„)/2], the layer internal energy U„, and
the layer susceptibility y„„=r)M„/r)H„are shown for a
variety of temperatures. One sees that even for tempera-
tures T exceeding the bulk transition temperature T,b
there is already a precursor of an interface, since the sur-
face fields induce a local magnetization near the walls (a
negative one at the left wall and a positive one at the
right wall). But we expect that this surface-induced order
decays exponentially fast with the distance from the walls
as one moves towards the interior of the film,

m„~ —~HI ~exp( n/gb), —n &&D/2,
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FIG. 1. Profiles of the layer magnetizations m„(a), the normalized layer energies U„/J(b), where J is the nearest-neighbor ex-
change constant, and the layer susceptibilities y„„J(c)vs layer number n, for a thin film of thickness D =12 (all lengths being mea-
sured in units of the lattice spacing of the simple cubic lattice), with surface fields Hl/J= 0.55 HD/J=+0. 55 and bulk field
H =0. The lateral linear dimension was chosen large enough (typically, L =128 or 256) that for the temperatures shown, any eAects
on these profiles associated with the finiteness of L are negligible. The left-hand part of each panel shows data for temperatures T
above the thin film critical temperature T, (D), the right-hand part shows data for three temperatures below T,(D) for which two
states exist, one with positive total magnetization [upper three curves in (a)] and one with negative total magnetization [lower three
curves in (a)]. For the sake of clarity, only the latter state is shown in (b) and (c). Curves through these profiles are drawn only as
guides to the eye.
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lim T, (D) = T~(Hi /J ) .
D~ oo

(3)

Note, however, that in spite of this property, Eq. (3), the
transition at T, (D) is the only one to be observed in the
thin film at all, and the antisymmetry of the profiles m„
in Fig. 1(a) for T & T (D) with respect to the center of the
film [the point m„=O for n =(D + 1)/2] implies that the
total magnetization of the film is exactly zero for
T & T, (D), i.e.,

D
(M)=—y m„=O.

D „
In contrast, the two states for T & T, (D) do have a spon-
taneous magnetization MAO of equal magnitude but op-
posite sign. Thus, focusing on the magnetization of the
total film as the order parameter of the transition at
T, (D), one notes a transition from a state where it is
identically zero to a twofold degenerate state. Therefore,
the resultant conclusion [5,9] is that the transition at
T, (D) should belong to the universality class of the two-
dimensional Ising model for all values of D ( ao. Howev-
er, the proper theoretical description of phase transitions
in this geometry is not completely clear [7,8].

m„+ ~HD ~expI —(D —n + 1)/gb ],
D —n +1 «D/2, (2)

where gb is the (true) correlation range of the bulk in a
lattice direction for the three-dimensional Ising model,
and all lengths are measured in units of the lattice spac-
ing. Of course, Eqs. (1) and (2) are valid only as long as
gb «D/2, so that the two walls are essentially nonin-
teracting and the profiles of all quantities of interest are
essentially Aat in the center of the film.

This behavior gradually changes, when D=2$b, i.e.,
near the bulk phase transition temperature, T= T,b,
where the two interfaces start to "feel" each other, the
profile of m„ then deviates distinctly from an exponential
decay. The energy profile no longer has any extended Aat
part, and the layer susceptibility profile y„„develops a
pronounced peak in the center of the film. However, this
change of behavior leading to the gradual buildup of an
interface in the center of the film is completely smooth
and does not imply any singularities; for finite D the tran-
sition that occurs at T,b in the bulk system (D~~) is
smeared out for all finite D, as will be discussed in more
detail in later sections.

However, at a much lower temperature T, (D) (which
for the present choice of surface field is already rather
close to the wetting transition temperature of a semi-
infinite system, J /kii T~ =0.250+0.005 for
~H, ~

/J =0.55 [26]), one does observe symmetry breaking
in the film: the interface between the phases with negative
and positive magnetization is no longer located in the
center of the film but is instead bound either to the left or
to the right wall (for H, = HD there i—s an exact degen-
eracy between these two states, of course). This interface
localization-delocalization for D ~~ is predicted [5] not
to converge toward T,b but rather to the wetting transi-
tion temperature [27],

Now, the situation with two walls with antisymmetric
fields HD = —H& certainly is very special, and it is not
likely to be widely realized in physical Quid systems or
mixtures, etc. , where one rather expects the lack of any
special symmetry or antisymmetry for inequivalent walls.
Therefore, it is important to convince oneself that this
transition, qualitatively described in Fig. 1, persists in the
more general case of competing fields HD/Hi negative
but HDA~Hi ~. A speculative attempt at such a generali-
zation, which still awaits detailed verification, is present-
ed in Fig. 2. The only distinction is that for
HD/H, = —1 the transition occurs exactly at zero bulk
field, while for HD /H i & —1 it occurs at nonzero bulk
field —and then the two profiles coexisting with each oth-
er for T & T, (D) along the coexistence curve in the (H, T)
plane are no longer antisymmetric images of each other.
It is not an accident that this more general case is remin-
iscent of the situation for capillary condensation; actual-
ly, the standard model for capillary condensation where
HD =H, is simply another limiting case of the same gen-
eral phase diagram. A general asymmetric situation
where both fields HD, H& have the same sign but unequal
magnitude will be similar to the standard capillary con-
densation case, while a case where HD/H, have the op-
posite sign but unequal magnitude will be similar to the
situation shown in Fig. 1. The distinction between the
two cases is that at the critical field H„;, (which depends
on HD/Hi, of course) the magnetization of the film is in
general nonzero, with M [H =H„;„T= T, (D) ]=M„;,.
Since the order parameter at the transition is no longer
symmetric around M=O it must instead be chosen as
M —M„;, and exhibits a symmetry only as T~T, (D).
The most important point is that when HD and H, have
diff'erent signs, we expect that T, (D) for D ~ oo will lie in
between T~(H, /J) and Tii,(HD/J) because Tii,(HD/
J=O)=T,b and the phase diagram has the same shape
for all D as drawn in Fig. 2(a)—only the scale of the
bulk field and of temperature distances from T,b change.

Since standard capillary condensation (Hz =Hi) has
been studied elsewhere in great detail [14,20,21], we focus
here on the strictly antisymmetric case (HD= Hi), —
leaving a numerical investigation of the general asym-
metric case to future work. In Sec. II, we briefly com-
ment on the model and simulation technique, while Sec.
III presents more data on profiles for difFerent choices of
the thickness D of the film. Section IV describes our at-
tempts to establish the two-dimensional Ising character
of the transition from a finite size scaling [11,28 —30]
analysis. Section V describes the anomalous behavior of
the phase encountered for T, (D) & T& T,b, where the
freely Aoating interface in the center of the film gives rise
to very large response functions; (both y„„and the layer
susceptibility y„=8m„/BH vary exponentially with film
thickness D, as predicted by Parry and Evans [9]). Final-
ly, Sec. VI summarizes some conclusions.

II. MODEL AND SIMULATION TECHNIQUE

We study the Ising Hamiltonian on the simple cubic
lattice in a L XL XD geometry, applying periodic bound-
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casionally considered. However, one should not gauge
these modest sizes by the linear dimensions that are now
possible for standard critical phenomena: Note that in
the present model we expect a nearly divergent correla-
tion 1ength ~ii of the f«m ~ii exp(D/4g, ) [9]»«a
broad range of temperature. Estimating that the critical
slowing down will then be described by a correlation time

scca'~~, where z is the dynamic exponent (z=2 I34]), we
anticipate much more severe slowing down than in more
standard models.

The quantities studied include profiles of magnetiza-
tion m„, energy U„, and the layer susceptibilities y„and

The latter were not obtained from the definitions
quoted above, but rather from the Auctuation relations
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FIG. 3. Profiles of the layer magnetizations m„(a), the nor-
malized layer energies U„/J (b), and the layer susceptibilities
g„„J (c) plotted vs layer number n, for D =6, L = 128,
H&/J= —HD/J= —0.55, and various choices of inverse tem-
perature. The mirror images of the profiles that occur below
T,(D) for positive total magnetization have been omitted to
simplify the figure.
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FIG. 4. Profiles of the layer magnetization m„plotted vs lay-
er number n for D =20, temperatures T & T,(D) (a), and
T(T,(D) (b). Linear dimension L was L =128 throughout.
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I„=&o „&,cr„= 1 1

L;,h„„„L,D
In addition, quantities characterizing the thin film as a
whole have been calculated using the usual definitions
[35]. This includes the total internal energy

(9)

total specific heat

C=L D(&& &
—&&& )/k~T, &= (10)

L D
susceptibilities y„„y' appropriate above and below

T, (D),

as well as the reduced fourth-order cumulant UL

(13)

The typical length of runs was 2X 10 Monte Carlo steps
per site, although near T, (D) considerably longer runs
were also carried out, particularly for the larger choices
of L. However, due to the dramatic critical slowing
down occurring in this model, the data were often found
to be too strongly correlated to allow a decent analysis of
statistical errors. In such cases we have carried out
several independent runs with di6'erent random numbers
to get more reliable estimate of the inaccuracies. Because
most of the figures in the following sections contain so
many data points, we have chosen to include error bars in
only a few data plots and in some figures showing analy-
ses. In most cases, the error bars for the order parameter
and energy are smaller than the size of the symbols; the
errors in the fluctuation quantities, e.g. , susceptibilities
and specific heats, are often larger.

For studies of wetting, layering, and surface critical
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FIG. 5. Profiles for the layer energy U„/J plotted vs layer
number n for D =20, temperatures T)T, (D) (a), and
T(T,(D) (b). The mirror images of the pro61es that occur
below T,(D) for positive total magnetization have been omitted
to simplify the figure.

FIG'r. 6. Profiles of the layer susceptibility y„„Jplotted vs lay-
er number n for D =20, temperatures T & T, (D) (a), and
T & T, (D) (b). The mirror images of the profiles that occur
below T, (D) for positive total magnetization have been omitted
to simplify the figure.
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phenomena [26,36—38], we have found it useful to con-
sider sites near the free surfaces more often for a spin Hip
than sites in the bulk ("preferential surface site selec-
tion"). Here the situation is reversed; the surface fields
suppress Auctuations in the layers close to the surfaces,
and the largest and slowest fluctuations occur in the
center of the film due to the Auctuating interface. There-
fore, in the present work, the inverse of preferential sur-
face site selection was implemented: Typically, sites in
the center of the film were visited four times more often
than sites near the walls.

III. PROFILES FOR SEVERAL THICKNESSES

160 .
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In Fig. 1 we have already presented some profiles for a
thin film of thickness D =12. Since it is of great interest
to check how this behavior varies with thickness, we dis-
cuss additional profiles for D =6 and D =20 (profiles for
D =8 have also been recorded, but are omitted here in
order to save space, as they are rather similar to those for
D =6).

Figure 3 shows the data for the thinnest film that was
studied, D =6. Comparing those data to those in Fig. 1,
we note that even far above T,b (e.g. , for Jjkii =0.20) the
profiles of order parameter and energy are not Qat, unlike
the case D =12. This is easy to understand, since the
smaller D becomes, the smaller the bulk correlation
length gi, must be to render interactions between the two
walls negligible. Similarly, while for D = 12 and
T & T, (D) the order parameter profile quickly develops a
Aat region where m„ is quite close to its value in a bulk
three-dimensional system, no such behavior can be
identified here. While for D =12 one can already speak
of the picture where a well developed interface bound to
either of the walls separates bulk phases of negative or
positive magnetization, no separation between "inter-
face" and "bulk phases" is possible for films as thin as
D =6. For such thin films, all layers feel the effects of the
two competing walls rather strongly. Thus, it was clear
that little could be learned by choosing thicknesses even
smaller than D =6, although such systems clearly would
be relatively easy to simulate.

As expected, a rather different picture emerges for
D =20 (Figs. 4—7). For T & T,i, the two walls only start
to interact very close to the critical point, and for
T, (D) & T & T,b one recognizes rather clear bulk
behavior in a region near the walls, separated by a broad
interface in the center of the film. This interface shows
up via clear peaks in the layer energy and the layer sus-
ceptibility y„„. Note also that this latter quantity now
reaches much larger values than for D =6 [Fig. 3(c)] and
D =12 [Fig. 1(c)]. This is already a qualitative indication
of the anticipated exponential divergence of g„„with film
thickness for T, (D) & T & T,b, which will be analyzed in
more detail in Sec. V.

A satisfactory picture also emerges from a study of the
profiles in the region for T & T, (D), where we expect the
interface separating bulk three-dimensional phases to be
bound either to the right or to the left wall. Figure 4(b)
gives clear evidence of this description, and one can see
how the interface increasingly "depins" from the surface
as T approaches T, (D) from below.
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FIG. 7. Profiles of the 1ayer susceptibility y„Jplotted vs lay-
er number n for D =20, temperatures T)T, (D) (a), and
T& T, (D) (b). The mirror images of the profiles that occur
below T, (D) for positive total magnetization have been omitted
to simplify the figure.
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sizes. Note that J/k~Tii =0.250 for ~H, ~/J=0. 55 and that
the bulk Ising transition at Jjk&T,b=0.227 is far off scale.
Curves are only guides to the eye.
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IV. I"INITK SIZE SCALING ANALYSIS
OF THE PHASE TRANSITION AT Tc(D

First we attempted to locate the transition for D =12
from the cumulant crossings for diff'erent sizes (Fig. 8).
For L &64 one indeed finds a well defined intersection
point at J/k~ T=0.2497, rather close to the correspond-
ing wetting transition temperature [26], compatible with
Eq. (3). However, the data exhibit two disturbing
features: (i) the ordinate U* of this cumulant crossing is
rather close to U*=0.45, rather than to the value U*
(2D Ising) =0.615 characterizing the universality class of
the two-dimensional Ising model [39]; (ii) the data for
L =128 seem to yield a decidedly di8'erent intersection
point that occurs at a somewhat higher temperature and
at a slightly larger value U* =0.47.

The behavior of other quantities is also somewhat
unusual: the specific heat [Fig. 9(a)] has only a very weak

anomaly (those for L =32—64 can hardly be dis-
tinguished from each other with a more pronounced in-

crease beginning only for L = 128); the susceptibility y
for temperatures far above T, (D) is roughly compatible
with two-dimensional Ising behavior [Fig. 9(b)], but the
finite size rounding of this anomaly near T, (D) does not
scale with the two-dimensional Ising exponents. (The
precise estimation of T, (D) will be discussed below. ) A
plot of the order parameter ( ~M~ ) [Fig. 9(c)], however,
reveals behavior that seems incompatible with two-
dimensional Ising criticality.

A possible resolution to this puzzle becomes likely
when we recall the prediction of a very large lengthscale

gl
~ exp(D/4gb ) [9] in the phase with the delocalized in-

terface [T,(D) (T (T,b ]. It is then likely that the true
nature of the transition can be observed only when L is
clearly larger than gl. In fact, we can expect that a large
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linear dimensions I. as indicated. Arrows indicate the estimated locations of the specific heat maxima, while the double arrow indi-
cates the estimate of T~(D) that resulted from the cumulant crossings. (b) Log-log plot of the susceptibility y„,J vs the reduced tem-
perature distance 1 —T, (D)/T for T) T, (D), D = 12, and ~Hi

~

/J=0. 55. Four lattice sizes L are included as shown. At high tem-
peratures the data are compatible with a law g o- [1—T/T (D)] '~, with y~= 1.85, as indicated by the broken straight line, roughly
compatible with the expected Ising behavior [y(d =2)= 1.75]. Here, J/kii T, (D) =0.2497 was used. (c) Log-log plot of the order pa-
rameter ( ~M~ ) vs the reduced temperature distance 1 —T/T, (D) for T & T, (D), D = 12, and ~H, ~

/J =0.55. At
0.01 8 1 —T/T, (D) «0.06 the data are compatible with a law ( ~M~ ) ~ [1—T/T, (D)] ', with P,a=0.39, as indicated by the solid
line, and incompatible with the expected Ising behavior [P(d =2)=0.125]. Here, J/k~ T, (D) =0.2497 was used.
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reached for our smaller choices of L. In view of this con-
sideration, smaller thicknesses, such as D=8 and D=6
[for which the factor exp(D/4$b)=8. 8 (D =8) or 5.1

(D =6)] become interesting.
In Figs. 10-13 we show data for D =8. Now the cu-

mulant crossings are spread out even more distinctly
(Fig. 10), indicating that for D =8 we have fully entered a
crossover region. Note that for this small thickness,
T, (D) (which can be estimated by extrapolating the tem-
peratures of the cumulant crossings to L —+ Do', see Fig. 12
below) now occurs at a temperature distinctly lower than
T~(H, ).

Figure 11 shows that the specific heat maximum is still
very shallow and broad for L ~ 32, whereas for L = 128 a
rather pronounced peak develops. With increasing L the
location of this peak shifts systematically to higher tem-
perature [Fig. 11(b)],while for I. ~ 32 the peak position of
g' shifts to lower temperature [Fig. 11(c)]. These data
are thus suitable for an extrapolation to I.~ ae (Fig. 12),
while the behavior of the layer susceptibility maximum
[Fig. 11(d)] is less monotonic and hence not so well suited
for an extrapolation.

Figure 12 shows that the data for the temperatures
TU „„,of the cumulant crossings, the temperatures of the
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FIG. 13. Log-log plot of the maxima value of the susceptibili-
ty (y'J),„vs L. Also, data for the total susceptibility
(yt tJ )T (D) are included. Straight lines indicate an e6'ective ex-

C

ponent (y/v), &=1.7, which is not far o6' the theoretical two-
dimensional Ising value y/v= 1.75.
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are roughly compatible with a linear extrapolation in the
variable I. ', yielding J/kz T, (D)=0.2578+0.0002.
Note that the "natural" extrapolation should use a vari-
able L '~", with v=1, the value of the two-dimensional
Ising model, as I ~ Oo. It is not obvious that such an ex-
trapolation should already work in the crossover regime
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where L is not yet much larger than gi. However, for a
critical wetting transition described by mean field theory
we also expect a correlation length exponent vi= 1 [15],
and it is hence plausible that an extrapolation which is
linear in L, ' works over a wide range of I.. We attribute
the scatter in the extrapolated values to the obvious inac-
curacy in locating the temperatures Tc, T&. where

max + max

specific heat and susceptibility y have their maxima be-
cause of the considerable statistical noise of the data in

0.6-

0.5

Fig. 11. What is more gratifying, of course, is the smooth
extrapolation of the cumulant intersections U„„,(L),
defined from U(L) = U(L/2):—U„„,(L), toward the ex-
pected two-dimensional Ising value U'=0. 615 [39]; see
Fig. 12. The increasing of the susceptibility maxima with
the linear dimensional L (Fig. 13) is also compatible with
the expected finite size scaling behavior [(y'J )~,„~L, r
with y/v=1. 75 for the two-dimensional Ising model].

These admittedly tentative conclusions are strength-
ened by the behavior of the thinnest film (D =6), shown
in Figs. 14—18. %'hile the intersection for the smallest
sizes (32,64) in the cumulant intersection plot (Fig. 14)
still sufFers from crossover eFects, the intersections for all
the larger sizes converge rather nicely to the Ising value
(U~=0. 615) with a spread in temperature which is also
fairly small. The order parameter [Fig. 15(a)] rises much
more steeply with decreasing temperature, which is indi-
cative of the exponent P= —,

' of the two-dimensional Ising
model. Both susceptibility y' and specific heat C have
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FICx. 16, Cumulant crossing values U„„,vs I ' (upper part)
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m(z) = —mbtanh(z/l), l =2/~,
where we take the zero of the z coordinate in the center
of the interface. The intrinsic width l/2 is simply identi-
cal to the true correlation range in the direction perpen-
dicular to the interface. Of course, Eq. (15) does not hold
near z =+(D —1)/2 because the tanh profile at the walls
is somewhat distorted due to the response to the surface
fields +H, . According to mean field theory [9], the free
energy cost due to this weak distortion of the profile is of
order exp[ D/—( 2$&)]. The application of fields H uni-
formly in the bulk to induce a magnetization (or a local
field II„ in the nth layer, respectively) implies a displace-
ment of the interface and, therefore, the response to these
fields is also predicted to scale in proportion to the in-
verse of the above energy cost [9]:

(16)

Figures 19 and 20 present a test of these predictions (for
their detailed derivation, see Parry and Evans [9); the
above comments provide only a plausibility argument).
Indeed, one sees that the data are roughly compatible
with an exponential variation in thickness, but at the
same time the mild curvature in Fig. 19 indicates that
there are possibly pre-exponential corrections in Eq. (16).
Therefore, a more stringent test of Eq. (16) is to plot
ln(Jg„'"),„ /D and ln(Jy„„'"),„ /D versus D and 1/D,
respectively (Fig. 20). We see that ln( Jy„„'"),„ /D settles
down nicely at a plateau in the available range of
thicknesses, while for 1n(Jy„'"), /D there is a pro-
nounced decrease over the entire range of D studied
[Figs. 20(a) and 20(b)]. However, if we extrapolate
ln(Jy„'"),„ /D versus 1/D, the limiting values I ' of the
interfacial length l defined via this analysis agree with the
analysis of ln(Jy„„'"),„ /D, Fig. 20(c). The slower ap-
proach of y„'" to its limiting behavior can be understood
when we compare the profiles for y„and y„„at
T )T, (D) [see Figs. 6(a) and 7(a)], while for D =20, y„„
is essentially Hat near the walls, and so the peak of y„„ in
the center of the film has possibly reached its limiting
shape expected for large D. The lack of fatness in g„
near the walls is evidence that the limiting shape has not
yet been reached.

A rather unexpected feature of our results is the
finding that the length I disagrees with the prediction of
mean field theory, 2gb [Fig. 20(a)]. Here, gb, of course,
was not calculated from molecular field theory but rather

100-

I

20
i

28

FICx. 19. Semilog plots of the total susceptibility (a) and the
maximum value of the layer susceptibility (Jy„'"),~ (b) vs the
film thickness D at various temperatures. Here the
index "sym" means that the profile was symmetrized, i.e.,
(pp )sytti (pp +pD + &

—p ) /2, in order to smooth out the slow Auc-

tuations in the interfacial position. Solid lines are drawn to indi-
cate the extent to which the data are compatible with an ex-
ponential variation, and the broken curve is only a guide to the
eye. Note that a few data points are shown for D =28 but these
may suer from uncertainties in their statistical and systematic
errors (finiteness of L) and are included only to show that no
surprises occur at large values of L.
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was taken from the analysis of low-temperature series ex-
pansions [40,42]. The disagreement between the actual
value of l ' and (2(b )

' by nearly a factor of two at the
highest temperature studied (/Ikii T=0.23) decreases
somewhat when the temperature is lowered (to about a
factor of 1.5 at J'/k~T=0. 244, where our estimate is
least reliable).

We can o6'er only speculative explanations for the
discrepancy between theory [9] and our simulation. This
di6'erence could be due to the fact that the interface in
d =3 dimensions is not strictly localized as assumed by
mean field theory, but, rather, delocalized (rough) due to
capillary wave excitations. For a free interface in a
semi-infinite system, these capillary waves would give rise
to a mean-square fluctuation in the local interface posi-
tion (D ) CC 1 ln(L/I) [43] on length scale L. In our
confined geometry, one expects that the capillary wave
spectrum exists only up to wavelengths of order g~~, of
course; using once again a mean field estimate [9] for

exp(D /4(b ) and equating L with g~~, we would obtain
(bZ ) =gbD/4 if we also identify the intrinsic length-
scale l of the interface with gi, . In view of this simple ar-
gument, it is clearly tempting to define a characteristic
width of the interface from the layer susceptibility profile
itself:
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However, as shown in Fig. 21, the data for Z& are not
consistent with a simple linear relation Z& ~D over the
range of the thicknesses studied.

As is well known, if one considers a free interface
whose spectrum is only limited by gravity, one must con-
volute the "intrinsic" interfacial profile with a Gaussian
broadening due to capillary waves in order to obtain the
total interfacial profile [43]. It would be of interest to de-
velop a related theory for a Auctuating interface confined
in a thin film. Such a treatment (which is beyond our
scope here because we do not know the precise form of
the capillary wave spectrum for wavelengths near g~~)

could possibly explain our data in Figs. 20 and 21. How-
ever, it is also conceivable that the intrinsic interfacial
length l of Ising model interfaces is "renormalized" by
fiuctuations and diff'ers from gb by a constant factor of
order unity. This question could be resolved by a high-
precision study of Ising model interfaces in bulk (without
confining walls), studying the above relation
(b,Z ) ~l in(L/l) as a function of an imposed length
scale I. parallel to the interface. If such a renormaliza-
tion of the intrinsic interfacial length scale l were to
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FIR. 2O. Plot of ln( JZ«'"),ym/D vs D (a), ln( JZ„'"), /D vs
D (b), and ln( Jy„'"),

y vs 1/D (c). Various temperatures are in-
dicated by difterent symbols, and curves are guides to the eye
only. The arrows on the ordinate scale (c) correspond to aver-
ages over the three largest thicknesses in (a). The broken hor-
izontal straight lines in (a) are the predictions for L '=(2gb)
at the respective temperatures from the series expansion of Liu
and Fisher [40].
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FIG. 21. Log-log plot of Z~ vs D for various temperatures.

Broken straight lines indicate that the initial increase is compa-
tible with a behavior Z~ o-D", but this clearly is not the
asymptotic behavior.

occur, it would have a profound effect on the problem of
critical wetting [15,26,44—52].

VI. CONCLUSIONS

In this paper, the first extensive Monte Carlo results
have been presented for the phase transition [5—9] that
occurs in systems with Ising-type symmetry confined in
thin films between competing walls. %e show that for
large D and antisymmetric walls (H, = —HD), a single
phase transition occurs at a temperature T, (D) close to
the wetting transition temperature Tii (Hi ) from a phase
with a Auctuating interface centered in the middle of the
film to a state where the interface is bound to either one
of the walls. In agreement with the predictions of Parry
and Evans [5,9], we find that this transition belongs to the
universality class of the two-dimensional Ising model, but
the observability of this Ising critical behavior is limited
to a tiny region very close to T, (D) if D is large. For
T& Tc(D) the gradual unbinding of the interface from
the wall at which it has been localized clearly can be in-
terpreted as a wetting phenomenon. Since wetting in sys-
tems with short range forces is not fully understood

[15,26,44—52], the order of the wetting transition in this
Ising film as well as the detailed character of the cross-
over between wetting and Ising behavior need to be eluci-
dated. The Ising criticality is clearly observable only for
rather small D.

An interesting aspect of these results is the gradual on-
set of the "high-temperature phase" (containing the fiuc-
tuating interface at T, (D) & T & T,b); the transition to
that phase near T,b is always rounded for all finite D,
despite the fact that the system is infinite in the two
remaining directions. Even in the limit D —+ ~, where a
sharp specific heat singularity and divergent susceptibili-
ty appear at T= T,b, there is no spontaneous magnetiza-
tion present for T, (D~ ~ ) & T & T,b, but only for
T & T, (D ~~ ) = T~(Hi ). Of course, locally the system
is then ordered, and one has stabilized two-phase coex-
istence with two equally large domains of opposite mag-
netization.

When exact antisymmetry (H, A HD) is —lost, we ar-
gue qualitatively that this type of two-phase coexistence
still exists but at a nonzero bulk field (Fig. 2). We suggest
that the transition at T, (D) for H, = HD is a sp—ecial
case of a line of critical points that contains the standard
case of capillary condensation if H, =+HL, .

We confirm the prediction of Parry and Evans [9] that
the phase at T, (D) & T & T,b is characterized by suscepti-
bilities varying exponentially with film thicknesses
(Iny„~D, 1ny„„~D), but we fail to find the prefactor
(obtained from a mean field theory) in these relations.
Tentatively, we attribute this discrepancy to the neglect
of capillary-wave-type fIuctuations in the mean field
treatment, but again we cannot yet ofFer an alternative
theory that would explain our findings quantitatively.

Thus, further work is clearly needed to produce a more
complete picture of this transition. It also would be in-
teresting to study cases where the corresponding wetting
transition is clearly first order (e.g. , Ising models where
the exchange constant J, in the layers adjacent to the
walls exceeds the bulk exchange J sufficiently [26]). A
qualitative characterization of Ising model interfaces be-
tween coexisting bulk phases is also called for. A further
interesting extension of the models includes field gra-
dients across the film [10]. We also hope that this study
will stimulate the search for experimental realizations of
such interfaces stabilized by boundary effects.
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