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In this paper we study the space-time probability distribution Q(x, t) of a random walk subject to the
absorbing boundary at the origin x =0 for motion controlled by Levy flights and Levy walks character-
ized by the exponent y. We find that the method of images, usually applicable to Brownian motion, may
break down for Levy processes. We calculate the distribution Q(x, t) to be at x & 0 after time t & 0 hav-

ing started at the origin assuming that the boundary is effective at time t & 0. We show that Q(x, t) de-

pends on the details of the underlying process, Q(x, t) xri-~it'+'ir, I (y(2 for small x, while total
survival is independent of the spatial realization of motion and displays a universal behavior. We also
discuss the related Smoluchowski boundary condition problem.

PACS number(s): 05.40.+j, 47.52.+j, 82.20.—w, 02.50.—r

I. INTRODUCTION

A large number of dynamical problems can be formu-
lated as transport problems in half space with an absorb-
ing boundary. Examples are found in radiation transfer
[1,2], recombination of particles [3,4], heat conduction
[5], filtering methods [6,7], transport along fibers, and re-
lated trapping problems [8]. While the interest has been
mainly in transport in half space via Brownian motion,
extensions to non-Brownian behavior have also been pro-
posed [2,4,9].

In this paper we investigate the statistical properties of
transport in one dimension with an absorbing boundary
at the origin and with emphasis on motion by Levy flights
and walks. Levy Rights and walks have been discussed in
detail quite extensively [10]; they give rise to enhanced
diffusion as observed in dynamical systems, both dissipa-
tive and conservative [11,12]. In particular we study
Q(x, t), the probability density to be at x &0 after time
t )0 having started at the origin. In order to avoid ambi-
guity in the definition of the initial conditions we assume
that the absorbing boundary is effective for time t )0.
This assumption is the continuous-time and continuous-
space counterpart of the definition for the lattice model
with fixed time steps introduced in Appendix A. An
equivalent definition can be given by assuming that the
particle starts close to the origin and that the boundary is
effective at all times. The asymptotic behavior, however,
is expected to be independent of this difference in the ini-
tial conditions. Q (x, t) is basically the density profile due
to absorbing boundary conditions and gives the function-
al dependence of the depletion zone near the boundary.
We reestablish the relationship between Q(x, t) in the
presence of the absorbing boundary and the free propaga-
tor P(x, t); their logarithms are related by the Hilbert
transformation. We study the asymptotic forms of
Q(x, t) analytically and numerically and show that the
characteristics of the Levy process are rejected in the
probability distribution Q(x, t), while the integrated sur-
vival probability is independent of the nature of the

transport. This concurs with recent findings by Frisch
and Frisch [2].

The paper is organized as follows. In Sec. II we briefly
review the idea of Levy Aights and Levy walks. In Sec.
III we introduce the relationship between the density
profile Q (x, t) and the propagator P (x, t) and analyze the
typical behaviors obtained for Brownian and non-
Brownian (Levy type) motion. The method of images is
shown not to hold in general. We end with discussions of
the related Levy-controlled Smoluchowski boundary
problem.

II. LEVY FLIGHTS AND WALKS

In this section we discuss Levy Aights and Levy walks
for which the typical displacements grow faster than
those in Brownian motion. Levy Bights have been intro-
duced in the search for distributions for which the shape
of the spatial probability distribution, the propagator, is
independent of the number of steps performed in time t
[10]. This requirement is naturally fulfilled by Gaussian
distributions of the single step displacement. The gen-
eralization of the Gaussian case leads to the Levy stable
distributions I.r(x). For y= 1 we recover the Cauchy
distribution and for y =2 the Gaussian distribution. For
y & 2 the large-scale behavior is characterized by a power
law I.r (x) —

~ xi
r ' and consequently the variance

diverges, or more generally ( ~xi") = ac for p & y. As
mentioned the typical length grows faster than that in
Brownian motion, namely, (

~

x
~ ) —t ' for 1 (y

This property has made the Levy Aights natural candi-
dates for the description of enhanced dilfusion [10—13].

In diffusion problems the mean-squared displacement
( ~x~ ) is usually considered as the central quantity in the
calculations of transport properties. Here a dii5culty
arises due to the fact that for the Levy stable laws the
variance of a single step diverges and thus also the mean-
squared displacement diverges at any time instance. This
puts a limitation on the applicability of Levy Qights to
physical systems. Ways to avoid this difFiculty are to in-
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III. ABSORBING Bo)UNDARY

We extend our previous considerations of Levy Rights
and walks to the half space problem with an absorbing
boundary at the origin. This problem arises naturally for
chemical reactions controlled by enhanced diffusion. In
the case of Brownian motion with an absorbing boundary
one usually applies the method of images [4], namely, a
walker which starts at xp on the right interferes with a
walker starting at —xp. This situation is related to that
of Brownian geminate recombination where 2xp corre-
sponds to the interparticle distance at the initial time. In
the method of images one writes, for the probability dis-
tributions Q(x, t~xo) to be at x, having started at xo at
time t =0 and having survived until time t [4],

Q (x, t~xo ) =P (x —xo, t) P( —x —xo, t), —(2)

where P(x, t) is the unrestricted free propagator denoting

troduce cutoffs in the distribution [14] or to disregard
higher moments p + y for the description of the motion.
A powerful method has recently been proposed based on
a more realistic physical picture, namely, to take into ac-
count the fact that the velocity of the particle under con-
sideration is finite. Thus the particle s motion is restrict-
ed by its velocity. Assuming a constant velocity, one has
~x~ ~vt. This has led to the introduction of a time cost
into the single event probability distributions [10—13]

g(x, t) =5( ~x
~

vt)L—
~ (x),

where g(x, t) denotes the prabability density of moving a
distance x in time t in a single step. Equation (1) is asso-
ciated with a partial relaxation of the property that the
shape of the spatial distribution is independent of time t.
Nevertheless, Eq. (1) has shown to be useful in providing
a statistical description of transport in dissipative systems
such as iterated nonlinear maps [11] and of motion in
Hamiltonian systems [12]. Applications to intermittent
chaotic motion, turbulent diffusion, and stochastic webs
have also been considered [15].

Another aspect associated with Eq. (1) is the non-
Markovian property of the walk [16]. While Levy flights
are typically Markovian, i.e., at each time instance the
next step is independent of the past, for Levy walks this
property does not hold. In fact, if the walker moves in a
particular direction there is some persistency so that the
particle continues to move in the same direction in the
next time instance. In our previous analyses we demon-
strated that the spatial probability distribution for Levy
walks retains 1argely the properties of the Aights.
Differences appear for y & 1 at the outermost wings
where peaks appear which result from the fact that for
distances x

~

) vt the propagator is terminated. The
differences are more substantial for y & 1. According to
the velocity model the shapes of the probability distribu-
tions for the non-Markovian motion differ qualitatively
from that of the Markovian Levy motion [11]. In what
follows we concentrate on Levy Aights which allow for an
analytical treatment. We later compare the results with
Levy walk simulations.

the probability density of being at x at time t having
started at the origin at t =O. For Levy Aights in which
we are interested, the propagator in Fourier space is
[4,10]

P(k, t)= exp( —at~k~~) . (3)

We concentrate on the particular case where the particle
starts close to the origin. In order to derive an expression
that is independent of xp and consistent with the expres-
sions obtained for discrete lattices we consider the limit-
ing form

Q(x, t)= lim Q(x, t xo)
1

xo —+0 xp

=—f sin(kx)k exp[ at~ k~~]dk—

= —2a„P(x, t) .

From this equation we calculate the integrated survival
probability 4(t) as

C(t)= f "Q(x, t)dx= 2f "—a.P(x, t)dx
0 0

=2P(x, t)~„,-t '~~ . (6)

This result, however, is not correct for y &2, as we will
see later, the reason being that the method of images
breaks down for Levy processes. More specifically, the
method of images is applicable for motion for which the
boundary is also a turning point of the trajectory. This is
naturally the case for nearest-neighbor random walks or
for the Wiener process. In the case of hopping motion
the method still applies when the above condition is
fulfilled asymptotically; this takes place for walks with
finite mean-squared stepping lengths.

Instead of the method of images we follow Feller's
derivation [17] in order to obtain an expression for
Q(x, t) (for details see Appendix A). Similar derivations
can be based on the Wiener-Hopf decomposition and the
Wiener-Hopf integral equations [1,17]. We adopt Eq.
(A14) fram Appendix A for the generating function rep-
resentation in Fourier space

lnQ(k, z)= f lnP(q, z)dq .
2~ — k —

q

This equation states that the logarithm of the probability
distribution Q (k, z) is related to the logarithm of the free
propagator P(k, z) via the Hilbert transform. We consid-
er the Cauchy principle for improper integrals and find

Here and in what follows we consider the notation that
the arguments denote the space in which the function is
defined: for spatial aspects we use Fourier transforms
with variable changes x~k, for temporal aspects the La-
place transforms with variable changes t~u, and when
applying the generating function approach [4] we will use
the variable interchange n~z, where n is the number of
jumps. Inserting Eq. (3) into Eq. (2) gives

Q(x, t~xo)= f sin(kx) exp[ at~k—~~+ikxo]dk .
E '7T

(4)
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lng(k, z)= —,
' lnP(k, z)+ Pf lnP(q, z)dq,2' — k —

q

(8)

g (k, z) = V'P (k, z)e'~'"' (9)

where P denotes the principal value. Upon exponentia-
tion we arrive at

arctan
k

y =2.
u

u lnuc2+, y=1
1/y

p(k, u)= . c2 —c, , 1&y&2
k

(16)

where the phase P(k, z) reads

P(k, z) = Pf lnP(q, z)dq2~ —~ k —
q

1
p

2m. — k —
q

1
in[1 —zA, (q)]dq . (10)

@(z)=f Q(x, z)dx=Q(k, z)ik
oo 1 —z

This result is central to our study and has been discussed
by Frisch and Frisch [2]. It demonstrates that C&(z) is in-
sensitive to the structure factor A, (k). This contrasts with
the y-dependent result of Eq. (6), which is based on the
method of images. In order to obtain an explicit time
dependence we introduce the continuous-time formalism.
Here

„Ig(k,t)] =Q(k, u)=%(u)g [k,z =f(u)], (12)

where It/(t) is the waiting time distribution of the single
jump and %'(t) is the probability of not having jumped
until time t [18]

Here X(k) denotes the structure factor and use is made of
the generating function representation of the free propa-
gator P(k, z)=[1—zA, (k)] '. For k =0 the phase term
disappears, P(k, z) k O=O, due to the inversion symmetry
of A, (k). Thus the survival probability can be written as

Because of the symmetry relations in Eqs. (A15) and
(A16), we are free to apply the Fourier sine or Fourier
cosine back transforms. For the small-x regime we
choose for convenience the sine transform and take the
imaginary part of Q (k, u)

1/y
Img (k, u)— sin c2 c1

u+ikiy

To first order in u ' ~/k we have

Img (k, u)- 1
SIIIC 2 COSC 2

c u1

k
(18)

I (1+1/y)
Irl (1+y/2)

(21)

which upon Laplace inversion (u ~t) yields

C1 COSC2
g(k, t)- 1&y &2. (19)

I (
—1/y) kiy/' k

Fourier sine inversion (k ~x) leads to the expression

g (,t) — y/2/t I+ I/y=
g /2y/t / I+2/ Iy

g —+0, (20)

where g is the scaling variable g=x/t'/y. The constant
C3 is

%(t)= f g(t')dt'. (13)
where we reintroduced the constants b and ~. For the
Cauchy y = 1 case we find similarly

We assume an exponential behavior for the temporal part
so that It/(t) =y 'e '/'. For the structure factor we take
the Levy stable law

1 . ~ vr ulnu
Img ( k, u ) — —sin —+ cos-

v'iki 4 4 ~k

Laplace inversion (u ~t) leads to

(22)

~{k) = exp( —b
I kl'), 1 & y & 2 . (14)

ig(k, u)i=
u+ikiy

(15)

The derivation of asymptotic forms of the phase p(k, u) is
presented in Appendix B. For the characteristic behavior
of Q (x, t) we study the two asymptotic regimes x ~0 and

In the former case, large-k values have to be con-
sidered for which we use the approximate forms accord-
ing to Eqs. (B11),(B14), and (B16)

For simplicity we define length and time in terms of di-
mensionless units and set b =~=1; in the final expres-
sions for the coefficients we will reintroduce b and ~. We
concentrate on the asymptotic long-time behavior, i.e., on
small-u and -k values. Using Eq. (9) we arrive at the fol-
lowing absolute value:

cos( vr/4) 1 1

I/iki kt' ' (23)

which is Eq. (19) for y= 1; thus Eq. (19) holds also for
this y value. For the Gaussian case of y =2 we consider
the arctan representation of P(k, u) so that

1 k
Q(k, u)= exp i arctan

u+k Il

=21

v'u +ik'
which upon Fourier and Laplace inversion leads to Eq.
(5), i.e., a result that coincides with that of the method of
images and shows the short-range behavior which is con-
sistent with Eq. (20).

We notice that Q (x, t) of Eq. (20) increases as a power
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law in the scaling variable g' with the exponent y/2,
which corresponds to the linear behavior of the Gaussian
@=2 case. The power-law prefactor in t is that of the
regular propagator corrected by t ', which is due to
the overall decay, as we show below.

We now analyze the large-x behavior. Here the small-
k regime in Eqs. (88) is relevant, which favors the appli-
cation of the Fourier cosine back transformation. We ap-
proximate the cosine part of the phase by

10

cosP(k, u) = 1, k ((u 'rr,

so that the real part of Q (k, u ) is

(25) 0 2

Reg(k, u)- —, ~k~ ((u'
&u+ /kyar

which upon Laplace inversion (u +t) —yields

(26) 10
10 10 10 10

Reg(k, t) — —exp( —tlklr) tlkI
1

(27)

We notice that up to the (mt) 'r prefactor, we have
recovered the stable law. Thus for large g

g(x t)-c g 't 'r' 'rr, g))1, 1&y(2,
with

(28)

c4= I"(I+y)sin(~y/2)b'rr/v'r . (29)

Equation (28) shows the proper scaling behavior and a
temporal power-law prefactor equal to that of the short-
range behavior in Eq. (20). For y=2 we recall that Eq.
(5) has to be considered showing a tail dominated by the
Gaussian.

Finally, we also give the integrated survival probability
for time t Using th.e fact that the phase P(k, u) is zero
for k ~0, one has from Eq. (15)

1/2

(30)

FIG. 1. Survival probability 4(t) for Levy flights. The simu-
lation results are displayed as full lines for y values equal to
1.25, 1.5, 1.75, and 2. The dashed line gives (m.t) ' of Eq. (30).
The independence of 4(t) on y is obvious.

gence of the data towards a master curve indicates that
scaling holds. The simulation results are compared with
the small-g and large-g asymptotic behaviors of Eqs. (20)
and (28). Good agreement with the predicted slopes and
prefactors is observed in all cases.

To better visualize the power-law Pr behavior in the
small-g regime and the stable-law behavior at large g, we
give in Fig. 3 Q(x, t) on linear scales. The simulation re-
sults indicate that the convergence towards the scaling
behavior is slow for small g. The predicted power law of
Eq. (20) for small g the numerical Fourier inversion of
Eq. (27) for large g are shown; good agreement is ob-
served in both cases.

Figures 4 and 5 are devoted to variants of the model.

This result is equivalent to Eq. (11) and for the Gaussian
y =2 case it is consistent with Eq. (6).

We now present some numerical results. We calculat-
ed Q(x, t) by a repeated convolution procedure for a
discretized lattice model. A lattice of typically 2' —2'
sites was used and the structure factor of Eq. (14) was ap-
plied. The absorbing boundary was realized according to
Eq. (A2), i.e., Qo(j =0)= 1 and Qo(j)=0,j )0, as the ini-
tial conditions and Q„(j)=0,j~0, for steps n )0. The
repeated convolution according to Eq. (A3) was calculat-
ed by a fast Fourier transform.

In Fig. 1 we show the numerical results of the survival
probability C&(t) obtained from the integrated numerical
Q(x, t). The small deviations from the predictions of Eq.
(30) are assigned to finite-size effects. The plotted curves
demonstrate convincingly the independence of the sur-
vival probability of the exponent y. We again stress that
this result contrasts with that of Eq. (6) based on the
method of images.

In Fig. 2 we show the results of Q(x, t) for various y
and t values in the scaling representation. The conver-

10

10

10

10

10
10 10 10 10

FIG. 2. Probability distribution Q(x, t) of the half space
problem for Levy flights. The simulation results are given in the
scaling representation as full lines for various y values and for
various times as indicated. The dashed lines give the small-g ap-
proximate forms of Eq. (20) and the dash-dotted lines give the
large-g behavior of Eq. (28) for y & 2. For clarity the curves are
shifted vertically with increasing y values by factors of ~.



51 ABSORBING BOUNDARY IN ONE-DIMENSIONAL ANOMALOUS. . . 2809

10

+ 0.15

0.1
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FICx. 3. Probability distribution Q(x, t) for Levy fiights on
linear scales for the particular case of y=1.5. The dashed line
gives the power-law form of Eq. (20) and the dash-dotted line is
the result of the numerical Fourier inversion of Eq. (27).

FIG. 5. Same as Fig. 4, but for Levy walks. For clarity the
curves are shifted vertically with increasing y values by factors
of —.

+
10

10

10
10 10 10 10

FICr. 4. Same as Fig. 2, but for A(x) —
~x~

~ '. No scaling is
observed for y=2; accordingly the theoretical slope is not
displayed for this y value. For clarity the curves are shifted
vertically with increasing y values by factors of 4.

In Fig. 4 the probability profile Q (x, t) is presented for a
pure power-law single step distribution A, (x) —~x~

xAO. Deviations from the Levy fiight results in Fig. 2
appear for the marginal case y=2, where the conver-
gence to the asymptotic behavior is poor because of loga-
rithmic corrections. For y = 3 the Gaussian case is
recovered reasonably. In Fig. 5 results are presented
for Levy walks with the stepping probability
f(x, t)-5(Jx~ —t)A(x), according to Eq. (1), and with
A (x ) —~

x
~

~ ', x WO. An exact enumeration technique
was applied, which imposes limitations on the maximum
number of steps t ~ 10 . The computed curves behave as
those of the corresponding flights in Fig. 4, but with a
slower convergence for small g and with characteristic
peaks at ~x~ =t [11,12].

IV. DISCUSSION

Q(x, tax )-gi' '/t' '+', t»x$, g'«I, (31)

where the limits on xo and g state that the expression
holds for times for which the typical displacement is
much larger than both xo and x. We now consider the

We regard Eqs. (20) and (28), for Q (x, t) in the short-g
and the large-g regimes, respectively, and Eq. (30) for the
survival 4(t) as the main results of this paper. While the
decay of the survival probability N(t) is the same for
Brownian and non-Brownian (Levy) motions, there are
pronounced differences in the spatial shape of Q(x, t).
For small x there is a y/2 power-law behavior which cor-
responds to the linear behavior in the Brownian y=2
case. For large g the behavior is dominated by a Gauss-
ian tail for Brownian motion; for Levy fiights with y&2
one recovers the behavior of the corresponding free prop-
agator. We conjecture that the y dependence of Q(x, t)
extends to the regime of y & 1, i.e., the y/2 rule for the
small g and the stable law for large g hold also for y & l.
Furthermore, we conjecture that the survival @(t) is in-
dependent of y also in this regime. However, we expect
that there are qualitative differences between the Levy
flights and the Levy walks in this regime.

The pronounced deviation of Q (x, t) from a linear
behavior for small-x values is expected to affect also the
reaction dynamics controlled by enhanced diffusion
[19,20]. There particle-particle correlation functions
should follow the y/2 power law for small interparticle
distances. The time-dependent rates and interparticle
correlation functions are often discussed in terms of the
Smoluchowski boundary problem, which is the diffusion
problem subject to an absorbing sphere at the origin and
solved for the initial condition of a filled space. Here we
study this situation for the Levy process in one dimension
using scaling arguments. We first consider Q(x, t~xo) and
assume that the small-g behavior of Eq. (20) dominates
also for xo&0 so that
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profile W(x, t) for the initially half filled space of the
Smoluchowski boundary problem and write

W(x, t)= f Q(x, t~x )dx = f Q(x, t x )dx
10

The upper integration limit p accounts for the assump-
tion that W(x, t) is dominated for small x by the surviv-
ing particles initiated close to the origin if compared with
the typical displacement after time t. The behavior in Eq.
(32) is compared with numerical results in Fig. 6. For the
computations the procedure developed for Q(x, t) was
modified to account for a filled lattice at initial time
W(x, t =0)=1, x ~0. The results show a convergence
with increasing time to the asymptotic behavior, which is
dominated by the y/2 power law of Eq. (32). This indi-
cates convincingly that the y/2 power law really extends
beyond the case of a single particle 1ocated initially in the
vicinity of the origin.

In the Smoluchowski method of calculating reaction
rates the Aux into the origin is considered and conse-
quently the rates are related to the gradient of the profiles
at the boundary. We calculate the Aux from an alterna-
tive approach which holds in one dimension and applies
also for Levy Rights

Jo(t)= f dx f dy W(y, t)A.(x —y) . (33)

Here we consider only the absolute value of the Aux. A
rough estimate of Jo(t) can be obtained as follows: We
disregard the details in the shape of W(x, t) for x St'~r
and replace W(x, t) by the step function W(x, t)=0 for
x ( t ' r and W(x, t) = 1 for x ~ t '~r. We also approxi-
mate A(x) by the power law A(x) —

~x~
r ' and obtain

Jo(t)- f dx f, dy

(34)

8'(x, t)

10

10

10 10 10

FIG. 6. Density profiles W(x, t) of the Smoluchowski bound-
ary problem for Levy flights. Plotted is W(x, t) as a function of
the scaling variable g=x /r '~r. Full lines give the numerical re-
sults for various y values and times as indicated. For clarity the
curves are shifted vertically with increasing y values by factors
of —,'.

0.5

10 10 10

FIG. 7. Flux Jo(t) of the Smoluchowski boundary problem
for Levy flights. The numerical results are plotted as full lines
for various y values as indicated. The dashed lines give the pre-
dicted behavior t' ~ ' of Eq. (34). The deviations from the pre-
diction in the case of y = 1.25 are due to finite-size e6'ects.
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APPENDIX A

In this appendix we study the relationship between the
probability distribution Q(x, t) for an absorbing bound-
ary and the distribution P(x, t) for the unrestricted
motion. We follow Feller [17] for the derivation of an ex-
pression for Q(x, t). We make use of the random-walk
framework and denote the walk by x„, the location of the
walker after n jumps. x„ is the sum of n independent dis-
placements. We de6ne by R„ the probability of a walker
to stay to the right in n —1 steps and to jump to the ori-
gin or to the left in the nth jump

lng(k, z)= g f e'""P„(x)dx,
n o+

(A10)

where we made use of the relationship P„( k)=[A.( k)]".
This relation allows also for the form

lng(k z)= & f "dx e' "f dq e '~"[k(q)]" .
2& „) n 0

Zn
n[A(k)]"= g —[R (k,z)]"

n=o n n=o "
oo

( 1)tl+ g [Q(k, z) —1]" . (A9)
o n

On the left the terms are symmetric in x and range from
to ao. On the right the first sum is a function

defined for x &0; Q(k, z) —1 is defined for x &0 and thus
also [Q(k, z) —1]"is defined for x & 0. One may allocate
to each of the terms on the right its counterpart on the
left so that from (A8) we find

R„=Prob[x& &0, . . . , x„,&O,x„&0],
Ro=0 .

(A 1)

Integration over x yields

(Al 1)

Q„=Prob[x, &0, . . . , x„&0j,
go=5(x) .

The following recursion holds:

(A2)

R„+,(x)+Q„+,(x) = f Q„(y)A,(x —y)dy, (A3)

where A,(x) is the unrestricted jump probability distribu-
tion for a single step. In Fourier space (x ~k) we have

R„+,(k)+ Q„+,(k) =Q„(k)A,(k), (A4)

where A, (k) is the structure function. The generating
function form is obtained from multiplication of Eq. (A4)
by z"+' and summation over n on both sides

g z" '[R„+,(k)+Q„+i(k)]=A(k) g z"+'Q„(k) .
n=o n=0

After reorganization

(A5)

The complementary quantity is Q„, the probability of
having started at the origin and staying on the right in-
cluding the nth jump

lng (k, z) = f in[1 zA(q)—]dq . (A13)
i2~ — k —

q

Considering [P(k,z)] '=1—zi(k) we arrive at the cen-
tral equation

lng(k, z) = ' f lnP(q, z)dq,2~ —~ k —
q

(A14)

which concurs with the Hilbert transformation. Equa-
tion (A14) is Eq. (7) of the main text; it guarantees for the
symmetry relationships

V, '[Img(k, z) j =V, ' [Reg (k, z) j, x & 0

7, '[Img(k, z)j = —V, '[Reg(k, z)j, x &0

V, '[Reg(k, z)j= —V, '[Img(k, z)j, —oo &x & oo,

(A15)

lng(k, z) = g f [A,(q)]"dq, (A12)2~„, n — k —
q

where we assumed that the equation holds approximately
because the lower integration boundary in Eq. (All) is
0+. For discrete lattices there may be a difficulty on the
scale of the lattice units and deviations may arise for
short times. The summation in Eq. (A12) can be per-
formed so that

R (k,z)+Q(k, z) —1=A(k)zg(k, z)

1 —R(k, z)=Q(k, z)[l —zi, (k)] .

Taking the logarithms on both sides one has

(A6)

(A7)

where O'„V, denote the Fourier sine and cosine trans-
forms and Im and Re denote the imaginary and real
parts, respectively. Thus

Q (x,z) =27, '
[Img (k, z) j =2 V, ' [Reg (k,z) j,

ln
1

1 —zA, (k)
1= ln + lng(k, z),

1 —R k, z
x &0 . (A16)

which upon expansion yields
These expressions are used in the main text for the
analysis of the asymptotic behaviors of Q (x, t).
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APPENDIX 8 k ' and obtain

In this appendix we study the phase P(k, u) as a func-
tion of its two arguments. Our study has been guided by
the numerical investigation of P(k, u) and we propose the
following analysis of the asymptotic behavior. We first
concentrate on the k dependence and distinguish between
three regimes. For k~O we make use of the lowest-
order expansion in the variable q in Eq. (10). We also
make use of the Saalschutz form by adding and subtract-
ing corresponding terms in the integrand so that for
1&y&2

P(k, z) = g f exp( —n~q~r)dqmk„, n o

r

1 z"
i+i/7T y n 1 n

I (1+1/y)g(1+ I/y) (87)

The sum converges for z =1 so that we obtain to lowest
order

P(k, z) = Q P f [ exp( nl—qlr ) 1]dq
1 z" 1

2m. „ 1
n — k —

q

where g(x) is the Riemann zeta function [21]. Summariz-
ing the behavior of the three regimes we have

1
dq '

—k ink/(~u),

c,k/u "r,
k «u 1/&,

k «u 1/&,

y=l
1&y&2

Pf [ exp( —nq~r) —1]dq
2K

1
n —oo q

P(k, u) =
C2, u'/~«k «1, 1&y &2

k»1, 1&y &2,

k 1 z"=—r 1 ——
y 1 —1/yn=1

(81)
with the constants

(88)

P(k, u)=csc(m/y)klu' r (82)

where I (x) denotes the gamma function [21). The sum
converges if z & 1. Replacing the sum by an integral and
using the small-u behavior of z we arrive at

c, =csc(vr/y ),
cz =~y/4,

c, =sr 'I (1 +I/ y)g(1+1 /y) .

(89)

For the Cauchy y=1 case we take advantage of the
closed-form expression for the free propagator in x space,
so that

z" n f ~ sin(kx)
n K 0+ n2+k2

The small-k behavior of Eq. (88) is used in Eq. (22) of the
main text. For the Gaussian y =2 case we derive

P(k, z)= g Pj exp( nq )dq—1 zn ~ 1

2m„ 1
n —~k —

q

= ——g z"—,'[e ""Ei(nk)—e""E,(nk)]
n=1

k 2j —i j—3/2n (810)

'lou
(83)

and by replacing the sum by an integral and using the
small-u behavior of z we find

to lowest order in k and u. In Eq. (83) Ei(x) and E, (x)
denote the exponential integrals [21]. The logarithmic
correction is consistent with the divergence of the prefac-
tor in Eq. (82) for y~ l.

Next we study the intermediate range u' ~ «k «1.
We make use of the small-(k, u) approximation of I' (k, u)
so that

P(k, u)= — Pf ln(u + ~q r)dq .1 ~ 1

2m — k —
q

To order zero in u we have

(84)

P(k, u) =— Pf ln(
I q I

r )dqf, , lnqdqyk ~ 1

o k2 —q2

=my/4, (85)

independent of k. Finally, we consider the large k &&1
regime. We approximate the denominator (k —q) ' by

00 2n —1

P(k, u)= —
—,
' g ( —1)",f dyzry"

I (n+ —,') 0

1

2
n=1

kzn —i I (n ——')
( —1)"—

I (n+ 1) n+1/2

2n 1

=arctan
k (811)
u

L

For (k/&u )~0 and (k/&u ) )&1 this equation is con-
sistent with the small- and intermediate-k results of Eq.
(88).

In Fig. 8 we show the phase P(k, u) as a function of k
for various y values. The phase was calculated numeri-
cally from Eq. (10) and is compared in the figure with the
asymptotic forms of Eqs. (88). For y =2 the arctan rep-
resentation of Eq. (Bl 1) is considered. In all cases the nu-
merical results corroborate the asymptotic predictions.
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FIG. 8. k dependence of the phase P(k, u) obtained from the
numerical integration of Eq. (10). The numerical results are
given by full lines as functions of k on log-log scales for
u = 10 and for various y values as indicated. The dashed
liens show the approximate forms of Eq. (B8), except for the
Cauchy y=1 case at small k. For the Gaussian y=2 case the
dash-dotted curve is the arctan approximation of Eq. (811).

We now concentrate on the u dependence of the phase
P(k, u). For this purpose we consider the intermediate-k
regime in Eq. (88) as a basis and subtract the constant c2
and add the corresponding term; we obtain

FIG. 9. u dependence of the phase P(k, u) obtained from the
numerical integration of Eq. (10). Plotted is c2 —P(k, u) as a
function of u for a fixed value of k =10 . The numerical re-
sults are given by full lines for various y values as indicated.
The dashed lines give e

&
u ' ~/k according to Eq. (B14).

where c& is the constant in Eq. (89). Analogously we ob-
tain for the Cauchy y = 1 case

oo

P(k, z) =c2+ g Pf exp( —
n~q~ )dq

2+k „, n

oo n

P(k, z)=c2+ g Pf" exp( n~q~—~)dq .2~„, n — k —
q

1 z"—1=c,+
77 =1 n

(815)

=c,+ „r 1+—1 1 z"—1

mk y „,n'+'» (813)

Replacing the sum by an integral and using the small-u
approximation of z we recover the Saalschutz form so
that

1»
Q(k, u) =c~ —c,

k
(814)

(812)

We again approximate the denominator (k —q) ' by k
and find

oo n

P(k, z)=c2+ g P f exp( —n~q~r)dq
2mk , n

Replacing the sum by an integral, introducing the lower
integration bound e to avoid divergence, and using the
small-u approximation of z we find

—uy 1
P(k, u) =c2+ f dy

'lT E'

u lnu
2+ (816)

to lowest order. Again the logarithmic correction is con-
sistent with the divergence of c

&
=csc(m/y ) in Eq. (814)

for y ~ 1. The u dependence of P(k, u) is summarized in

Eq. (16) of the main text.
In Fig. 9 we show the phase P(k, u) as a function of u.

The numerical results are again in good agreement with
the predictions of exponents and prefactors in Eq. (814).
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