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Mechanism of time-delayed fractures
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We use atomistic Monte Carlo simulations to reexamine competing theories of fracture nucleation in
solids under weak external stresses. We argue that the energy of the critical Griffith crack is not the ac-
tual barrier for thermal fracture nucleation in brittle solids as frequently assumed. The nucleation is
dominated by the activation of vacancy clusters and not of microcracks, as assumed in the conventional
theory of fracture nucleation.

PACS number(s): 05.40.+j, 64.60.Qb, 62.20.Mk

I. INTRODUCTION

Fundamental aspects of the fracture physics, such as
the very nature of the state of a stressed solid and the role
of thermal fluctuations, have been addressed in a number
of recent studies [ I —5]. There it is posited that a stressed
solid can be treated as a metastable state of matter analo-
gous to, say, supercooled liquids. In this picture, the
failure threshold corresponds to a metastability limit, or
spinodal point, at which the external stress o. as a func-
tion of the strain reaches its maximum tr,„[2—4].

If the external tensile stress is smaller than o. ,„, the
stressed sample will still break, however, with a time-
delayed fracture. The sample lifetime depends on the
temperature and the applied stress [6]. This phenomenon
is believed to be directly related to the process of micro-
crack nucleation and growth [2—5]. Microcrack nu-
cleation is phenomenologically similar to that of the
stable phase droplets in a metastable state [7]. The semi-
nal work of Griffith on fracture mechanics [8] already
contains all the elements to construct a phenomenologi-
cal theory of microcrack nucleation. The critical,
Griffith crack behaves like a critical droplet: Cracks
larger than the Griffith crack grow irreversibly in a rapid
fashion [9]. On the other hand, the growth of cracks that
are smaller than the Griffith crack size is energetically
disfavored. Their size can still change in time, however,
in a slow fashion via an activational dynamics [4,5].

In this picture, the energy of the Griffith critical micro-
crack is naturally identified as the relevant energy barrier
for the fracture nucleation. Thus, the rate of nucleation
Rz behaves as R& —exp( EblktiT), whe—re the energy
barrier Eb is identified with the Griffith crack energy E .
Such a picture of fracture nucleation is frequently accept-
ed as plausible. We shall refer to this picture as the con-
Uentional theory of fracture nucleation.

Recently, this conventional theory has been challenged
by Golubovic and Feng (GF) [5]. GF argued that the
effective fracture nucleation barrier is much smaller than
the Griffith energy E . In their phenomenological model,
GF include irreversible processes such as the surface
diffusion that restructures microcrack surfaces. This res-
tructuring inhibits microcrack healing and thus yields a
fracture nucleation rate much faster than the rate given

by the conventional theory.
In this paper we use atomistic Monte Carlo simulations

to critically reexamine the fracture nucleation problem.
We argue that the Griffith crack energy is not the actual
barrier for the fracture nucleation in stressed solids. We
find that critical stress-induced defects leading to fracture
nucleation have primarily the character of vacancy clus-
ters (microcavities), not of Griffith-type critical micro-
cracks. Thus, the relevant energy barrier for thermal
fracture nucleation is the energy of a critical vacancy
cluster. This energy barrier turns out to be the same as
the barrier suggested by Golubovic and Feng in Ref. [5].

This paper is organized as follows. In Sec. II we re-
view phenomenological theories of fracture nucleation.
In Sec. III we present results of our simulations and in-
terpret them in Sec. IV discussing vacancy clusters. In
Sec. V we discuss our results.

II. PHENOMENOLOGICAL THEORIES
OF FRACTURE NUCLEATION

IN BRI'I I'LE SOLIDS

We begin by reviewing first the conventional theory of
fracture nucleation inspired by the pioneering work of
Griffith [8]. In this picture microcracks play a role analo-
gous to that of the stable phase droplets in a metastable
state. Griffith established a criterion for crack growth by
estimating the energy cost of creating a brittle crack of
length L in a solid under a uniaxial stress o. perpendicu-
lar to the crack. Creation of the crack, for example, in a
two-dimensional solid, costs an energy of the order

2L 2

E(L)=gL-
2F

The first term in (I) is the energy cost of creating crack's
edges by breaking atomic bonds. Thus ga, with a the
atomic size, is of the order of a bond energy. After crack
creation, its edges will separate, with maximal opening
displacement of the order

d= —L,0
F

where Y is the Young modulus. The crack opening re-
laxes the stress in a domain of size L and lowers the elas-
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FICx. l. "Instantaneous" fracture under a strong tensile force f=120 at the temperature kz T=O. 15 (in units for which the stan-
dard parameters of the Lennard-Jones potential are unity, i.e., o.

z J= 1 and eLJ= 1).
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tic energy of the stressed solid by an amount of the order
L o /2Y. This yields the second term in (1), which, in
contrast to the first one, energetically favors crack
growth. [For simplicity, in (1) and (2), and in the follow-
ing, we suppress various numerical factors of order uni-
ty. ] Crack energy (1) reaches its maximum at L equal to
the critical Grif5th length Lg,

(3)

corresponding to the energy of the order
2 Y

Eg =E(Lg )=

The crack state with L =L is unstable. For L )L, the
crack growth decreases E(L). This leads to the well-
known irreversible, very rapid crack growth [9]. For
L, &L, an increase of L costs a positive amount of ener-

gy (1). This hinders the crack growth for L (Lg. This
picture resembles that of standard nucleation phenomena
[7], with E playing the role of the nucleation energy bar-
rier Eb. Thus nucleation rate R&—or the time needed
for the fracture to be nucleated by thermal
Auctuations —can be, in general, estimated by the Ar-
rhenius law [7]

=1R~= -exp

Within the conventional fracture nucleation picture Eb is
identified with E,

YE =E = (6)

This conventional theory was criticized by Golubovic
and Feng (GF) [5]. They consider surface processes such
as surface diffusion [10], which restructure crack edges
and may inhibit healing of microcracks shorter than the
Grif6th length (3). These processes become active as
soon as the crack opening displacement in Eq. (2) be-
comes larger than the atomic size a. By (2), this happens
for L )L;„with

E
E (L;„)

L Y
L min

(10)

Thus, for weak strains cr/Y, the nucleation rate predicted
by GF is enormously larger than that of the conventional
theory.

III. NUMERICAL SIMULATIONS

To clarify the nature of fracture nucleation we per-
formed atomistic Monte Carlo simulations of a two-
dimensional (2D) Lennard-Jones solid under a tensile
stress. Our simulation is similar to a recent simulation of
Selinger, Wang, and Gelbart [4]. Their main objective
was to obtain the temperature dependence of the fracture
stress o „under which the solid breaks instantaneously,
i.e., with no significant time delay. o. ,„corresponds to
the spinodal point, i.e., to the maximum of' the o. versus
strain curve [4].

Our main concern here is fracture nucleation phenom-
ena in a time-delayed fracture. Let us first illustrate the
difFerence between the "instantaneous" fracture, occur-
ring for cr )o. ,„, and the time-delayed fracture, occur-
ring for o. & o.m». In Fig. 1 we give the time evolution of
the solid under a strong external tensile force f along the
vertical direction. We see a rapid nucleation of numerous
dislocation dipoles that cooperatively generate a fracture
going across the sample at the time t —1200 MCC [one
Monte-Carlo Cycle (MCC) involves updates of all parti-
cles' positions via the standard Metropolis algorithm].

With decreasing tensile force, one crosses over from
this instantaneous fracture to a time-delayed fracture.
This is illustrated in Fig. 2, giving the time evolution of
the sample's vertical size for various values of the tensile
force f. At a weak tensile stress, the sample's vertical
size vs time has a plateau ending at the instant of frac-
ture, at the time scale t —1/Rz. Thus the fracture is de-
layed in time.

Figure 3 illustrates the time evolution of a sample un-
der a weak tensile force yielding a long metastable pla-
teau, i.e., a long sample lifetime of the order 10 MCC.
Up to t -5000 MCC, we observe in Fig. 3 only rare dislo-
cation dipoles or isolate dislocations generated from the

L min (7)

or, asg=aY,

min (8)

16
vgrtical
size

15
f=40

f=30

By considering surface processes inhibiting crack healing,
GF argued that the efFective energy barrier for the frac-
ture nucleation is of the order E(L;„).Thus, by (8) and
(1),
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in the phenomenological theory of fracture nucleation
proposed by GF.

By (3), (4), (8), and (9),
FIG. 2. Time evolution of the sample's vertical size for vari-

ous values of the tensile force f.
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FICx. 3. Vacancy cluster nucleation in a time-delayed fracture under a weak external force f=30. Note that in most of the figures
we give only a portion of the samp1e around the microcavity. (The size of the circles representing the atoms is of no significance. In
some figures we use smaller circles to make atomic confIgurations more clear. )
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surface of the sample. Their number is not increasing
with time indicating that the system is in a local, metasta-
ble equilibrium. This is in contrast to the instantaneous
fracture in Fig. 1, where a metastable equilibrium is ab-
sent and the solid is actually unstable.

However, between t =5400 and 5600 MCC, a crucial
event occurs in Fig. 3. During this time interval one of
the dislocations evolves into a small microcavity having
the same Burgers vector as the original mother disloca-
tion. In the evolution that follows, the microcavity in-
creases in size, whereas its Burgers vector remains con-
stant up to t = 12 500 MCC, when the microcavity "neu-
tralizes" by a slip becoming an ordinary vacancy cluster
with zero Burgers vector (see Fig. 3 at t =13000 MCC).

As another example, in Fig. 4 we illustrate the
behavior of a larger polycrystalline sample containing a
grain boundary. Again, the dominant defects that are
thermally nucleated in a weak external stress are vacancy
clusters, now in the form of intergranular microcavities.
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FIG. 4. Intergranular microcavities nucleated in a polycrys-
talline sample under a weak tensile force f=40. (Note that, due
to a larger size of this sample, the stress here is smaller than in
the monocrystal in Fig. 3.)

ture is the nucleation of vacancy clusters or microcavities
(possibly having some nonzero Burgers vector), not of
critical GriKth-type microcracks. The energetics of a va-
cancy cluster nucleation is rather different from that of
the Griffith crack (Sec. II). For comparison with Sec. II,
let us consider a vacancy cluster in a 2D solid. If R is its
linear size, the cluster involves =(R/a) vacant sites. Its
size-dependent energy is of the form

R C
CT

(12)

whereas the energy barrier for the vacancy cluster nu-
cleation is of the order

(13)

This energy-barrier scale for fracture nucleation coin-
cides with that in Eq. (9) obtained by Golubovic and
Feng [5], however, from seemingly diFerent arguments.

V. DISCUSSION

Our results indicate that the kinetic mechanism dom-
inating time-delayed fractures, i.e., fracture nucleation, is
the nucleation of vacancy clusters (microcavities), not of
critical CxrifFith microcracks as assumed in the conven-
tional fracture nucleation picture. In particular, this im-
plies fracture nucleation rates much faster than those ob-
tained with the conventional theory. Thus, for a 2D
solid, within the microcavity nucleation picture we ob-
tain, by using (5), (13), and g =a F,

Y Tm
R& -exp

T
(d =2), (14)

with T =ga/kz, whereas from the conventional theory
one obtains, by (6) and (7),

E„„(R)=gR —o R

The first term in (11) is, as in Eq. (1), the surface energy
contribution (- perimeter —R in 2D). The second term

(11) is a stress-induced volume contribution
(-area-R in 2B) [ll). This volume term can be ra-
tionalized as follows. Consider a solid under a tensile
stress o. with no vacancy cluster initially present. As the
number of atoms is conserved, the creation of the cluster
induces an increase of the sample's linear size preferen-
tially along the direction of the applied stress [11]. This
lowers the energy by 6E =stress Xcluster volume-o. R
yielding the second term of Eq. (11).

By Eq. (11), the size of the critical vacancy cluster,
maximizing E„„(R), is of the order

IV. NUCLEATION
OF VACANCY CI.USTKRS (MICROCAVITIES)

Y Tm
R& -exp

o T
(d=2) .

The message of the simulations of Sec. III, is that mi-
crocavities (i.e., clusters of vacant sites) rather than mi-
crocracks (i.e., lines or surfaces of "broken bonds") are
major nucleated defects in the delayed fracture regime.
Thus, the major kinetic process in the time-delayed frac-

For weak strains c.=o./Y this conventional theory nu-
cleation rate is enormously smaller than that in Eq. (14).

These conclusions apply also to a three-dimensional
(3D) solid. Discussions of Secs. II and IV can be easily
extended to a d-dimensional solid. For example, the en-
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l

R -expN 0

d —1 Tm

with T =ga 'Ikz, whereas the conventional nu-
cleation theory would yield a much smaller rate:

ergy of a vacancy cluster of the. linear size R has the form

E„„(R)=gR" ' —oR

whereas the energy of a microcrack of the linear size L,

has the form

2L d

E(L)=gL"
2Y

and g =a Y. Within the microcavity picture one thus ob-
tains

This agreement is not accidental. These authors invoke
in their discussion diffusion processes that start to res-
tructure microcrack edges as soon as the microcrack size
reaches the lengthscale L;„ in Eq. (8). This lengthscale
coincides with the size of the critical vacancy cluster R,
in Eq. (12). As R, =L;„,one may argue that the pro-
cesses restructuring microcrack edges would transform
the microcrack of the size I, ;„ into a microcavity of the
size R„which then continues to grow irreversibly. In
this way one can rationalize the suggestion of Golubovic
and Feng that a crack with L, =I. ;„never heals and con-
tinues to grow irreversibly. Thus, I. ;„, rathr than the
Griffith length L in Eq. (3), is the critical size of defects
in solids under weak tensile stresses.

RN exp
0 T

(17)
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