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Reaction rate kernel for dichotomous noise-induced transitions in bistable systems
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We present a study of the kinetics of transitions between two stochastic states induced by external di-

chotomous noise in deterministic bistable one-variable systems. The time dependence of the rate kernel
describing the transition is studied by relating the kernel to the spectrum of the stochastic dynamical
operator projected onto fast time scales. The formalism is applied to an exactly solvable case (the piece-
wise quadratic potential) and numerically to a quartic potential. This analysis is useful for the study of
memory e6'ects in fast reaction rate processes.

PACS number(s): 05.40.+j, 05.20.Dd, 05.90.+m, 82.20.—w

I. INTRODUCTION

Bistable dissipative systems abound in nature [1—3].
These are characterized by the coexistence of two attrac-
tors for a given set of control parameter values. When
nonlinear systems are subjected to external noise, in-
teresting dynamical behavior may arise. Under stochas-
tic dynamics, new states may be created which have no
deterministic counterpart [4,5]. Moreover, if many states
coexist, transitions from one state to another may be in-
duced as the phase point wanders randomly from one
basin of attraction to another [6]. It is of interest to in-
vestigate the kinetics of such noise-induced transitions.

In this paper, we consider simple one-variable dissipa-
tive systems which can be described in terms of a deter-
ministic bistable potential. The systems are driven by ad-
ditive dichotomous noise, which is characterized by an
amplitude 5 and a noise correlation time y '. This
description may be used to model far-from-equilibrium
noise-induced transitions in chemical systems, lasers, or
nonlinear optical devices [4,6—8].

For a wide range of the noise parameter values, it is
known [6] that the kinetics of such noise-induced transi-
tions is analogous to the kinetics of isomerization reac-
tions between two chemical species. In the noise-induced
rate process, the deterministic basins of attraction may be
identified as distinct "chemical species" that "react" un-
der the effect of the random fluctuations driving the sys-
tem. If the relaxation time of the species population
numbers is much larger than all other time scales in the
model, then the dynamics of the population numbers
obeys a simple phenomenological law characterized by a
first-order rate coefficient. Direct simulations techniques
have been used [9] to compute explicitly the rate
coefficient. The results are consistent with those obtained
from a first passage time formulation [10—13].

In general, however, such a clear separation of time
scales is not valid. This is typically the case when the ra-
tio of the potential barrier height with the noise strength
(defined as b, /y) is small. In this case, the decay of the
population numbers follows a generalized rate law which
is nonlocal in time ("memory effects").

It has been previously shown [14] that these effects

II. BASIC FORMALISM

A. Integrated rate kernel

We consider a single dynamical variable x(t) obeying
the overdamped dynamics:

x =f(x)+I(t) . (2.1)

The deterministic part of the evolution derives from a po-
tential exhibiting bistability f(x):—d V/dx. Two stable—
fixed point xz, xz coexist separated by an unstable one at

may in principle be investigated by determining the ei-
genvalues and eigenfunctions of the stochastic dynamical
operator. However, such an approach may have a limit-
ed use since a large number of spectral components must
be determined in order to obtain convergent results, even
at relatively large times. In order to circumvent these
difficulties, a different spectral method may be developed
to investigate the memory effects. This method relies on
the spectrum of the stochastic dynamical operator pro-
jected onto the small time scales and was first applied to
the cases where a bistable system is subjected to white
Gaussian noise [15] or Bhatnagar-Gross-Krook kinetics
[16,17]. In this paper, we apply such an approach to di-
chotomous noise.

The paper is divided as follows. In Sec. II we present
the basic formalism. The derivation of the generalized
rate law is reviewed. It is seen that the memory effects
may be described in terms of an integrated rate kernel
K(t) We disc. uss the spectral properties of the projected
stochastic operator and show explicitly that —y is an ei-
genvalue and that 0 is a doubly degenerate eigenvalue.
We also relate the rate kernel to this spectrum. In Sec.
III we consider an exactly solvable case: the piecewise
quadratic potential. The model is presented and an out-
line of the solution to the eigenvalue problem is given.
Two different situations are discussed: a high barrier and
a low barrier case. In Sec. IV we present a numerical ap-
proach to solve the eigenvalue problem for the quartic
potential. Two similar cases are again discussed. Finally,
concluding remarks are given in Sec. V. Two appendixes
complete the analysis.
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xo. In Eq. (2.1), I(t) is an external Poisson dichotomous
noise process: it takes one of two discrete values +6 with
a Poisson distributed transition time [4, 18—20]. The sta-
tistical properties of this stochastic forcing are described
by

(1(t))=0, (1(t)l(t+r)) =6 exp( —y~r~), (2.2)

where 6 is the amplitude of the noise and y is twice
the mean frequency of transition +6~ + A. The
evolution equation for the probability density

p (x, +b„ t ) =p + (x, t ) in the extended phase space [x,I ]
may be written as

where 8(x) is the Heaviside step function and o z s =+1,
respectively. This definition rejects the fact that whenev-
er the dynamical variable is in the basin of attraction as-
sociated with one stable fixed point, it contributes to the
corresponding population number. The nonequilibrium
average population number is therefore

Nz s(t) = f p(x, t )8(cr „s(xo —x(0) })dx . (2.10)

The overbar corresponds to a nonequilibrium average
over the stochastic realizations. The stationary popula-
tion numbers are

p(x, t)=D p(x, t), (2.3) Xp M~
YJA ps x dx& YJB ps x dx (2.11)

where the vector p(x, t)=(p+(x, t),p (x, t}) and the
stochastic evolution operator is We define the projector onto the population numbers

[9] acting upon a function g; (x, t ) (with i =+) as

a
Bx

[f(x)+b, ]—yl2

y/2

y/2

a
Bx [f(x)—b, ]—y/2

Pg;(x, t)= g f dx 8(xo —x)gj(x, t)
J

X q ~ '8(xo —x )p„(x )

(2.4)

The probability density contracted onto the dynamical
variable x of interest is then

+ g f dx 8(x —xo)g (~x, t)
J

Xg,-'8(x —x, )p„(x) . (2.12)

p( xt)=@+(x,t)+p (x, t) . (2.5)

The stationary probability density p, (x ) = lim, p (x, t )

is easily found to be [4,18]

z X
exp f dx'f(x')/D, (x'), x &JR

p (x)= ~ De x ~o

0, x8A, ,
(2 6)

where D, (x)=b [1 f (x)/b, ]ly and Z—is a constant.
The implicit relations f(M„ti)=+6 define the boun-
daries of the support Jkf, = [M„,Mz ]. The stationary den-

M~
sity is normalized in such a way that J M dx p, (x ) = 1.

The individual stationary densities p, +(x) are easily
found by setting Eq. (2.3) equal to 0:

p, z(x) =
—,'p, (x)[1T f(x)/b, ] . (2.7)

y /2 & max(s„s, ), (2.8)

where s„= f '(M„) & 0 and similarly —for ss.
We then define the instantaneous population number in

the states A, B as

N„~(t) =8(cr „~(xo—x(t))), (2.9)

If the noise amplitude and the noise frequency are
su%ciently large, the stationary probability density van-
ishes at the support boundaries and is bimodal with a
minimum at x0 and maxima at the deterministic fixed
points xz, xs [4,6]. It is this case that interests us here as
we will use the formalism of reaction dynamics. An
asymptotic analysis of the behavior of p, (x) near the
boundaries of the support indicates that the stationary
distribution is bimodal for

We denote the complementary projector as Q—:1 —P.
We assume that the initial distribution densities p; (x,0 )

are proportional to p, ;(x ) in each region A or 8 so that
ap;(x, O}=0 [9]. Applying standard projection operator
techniques on the stochastic evolution operator gives

Pp(t)=PD Pp(t)+ f drPD ea '.CD Pp(t —r) .
Bt 0

It is then easy to show [9] that the deviation of the popu-
lation numbers from their equilibrium values

5N„(t) =N„(t)

obeys a formally exact generalized rate law

5N„(t)= —f A(t r)5N„(r)dr .—

(2.13)

(2.14)

A similar relation holds for Ns. In Eq. (2.14), A(t)
denotes the rate kernel

A(t) = —g f dx 8(xo —x )

i,j,k, l

where

XD;~ ( e ')
Jk Dkip, &

(x )u ( x), (2.15)

u (x) =8(xo —x )g„'—8(x —xo )res
' . (2.16)

An equivalent formulation of the rate law can be ob-
tained by integrating (2.14) with respect to time:

5N„(t) —5N„(0)= —f K(r)5N„(t r)dr, (2.17)—
where the integrated rate kernel is

K (t) =f A(t')dt' . (2.18)
0
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When A(t) has a short memory compared with the re-
laxation of the mean population number, the integrated
rate kernel quickly reaches its asymptotic value K(~ ).
In this case, a simple phenomenological rate law

5N~(t) = —k5N„(t) holds, with the rate coeIIicient
k=K(~)= f "oA(~)d~ I.n general however, this time-
scale separation is not valid and a complete understand-
ing of the population number dynamics requires the full
knowledge of K(t).

Finally, we express the integrated rate kernel in terms
of projection operators. Using the facts that D.p, =O,
d8(+(xo —x))/dx =+5(x —xo), and xo is a determinis-
tic fixed point [f(xo ) =0], it is easy to show that

g;(x,0)=p„(x)u(x) . (2.24)

Note that g,.(x,0) is null for x outside the support JR.

B. Projected dynamics as an eigenvalue problem

QD.a(x ) =pa(x) . (2.25)

In the preceding subsection, we saw that the dynamics
of the integrated rate kernel is determined by the project-
ed evolution operator QD [Eq. (2.23)]. In order to solve
this problem, we consider the following eigenvalue prob-
lem. Let p be the eigenvalue of the operator QD with
right eigenvectors a=(a+, a ):

g f dx 8(xo —x)D; p, (x)u(x)=0 .
l, J

Hence

A(t)= —g, J k i f dx 8(xo —x)D; (ea ')
k

XQDkip, i(x)u(x) .

(2.19) Using Q= 1 P, the e—xplicit form (2.12) of P, and per-
forming the integrals, the eigenvalue problem reduces to

(D++ —p)a++D+ a = —Ap, +(x)gu(x),
(2.26)

(D —p)a +D +a+ = —bp, (x)gu(x),

where

Therefore Q —=a+(xo) a (xo) (2.27)

where we used the fact that K(0)=0, as is seen from
(2.19) or (2.18). Equation (2.20) can be written more
compactly as

K(t)= —g f dx 8(xo —x)D; g (x, t),
l, J

where

(2.21)

K(t)= —g f dx 8(xo —x)D,, (ea ') „p,„(x)u(x),
i,j,k

(2.20)

a+ are both continuous at the unstable fixed point xo.
It is necessary to introduce adjoint operators in order

to obtain the left eigenvectors. An adjoint operator A
is defined on the support such that for two vectors a, b we
have

(b~ A a)—:g, fM dx b; A; a =g; f~ dx(A, ~b~)a;

=( A'bia) .

The left eigenvectors p=(p+, p ) of QD are solved by
the following eigenvalue problem:

g (x, t)=g(ea ').kp, k(x)u(x) .
k

(2.22)

g;(x, t)=g QD, g(x,t)"a
at

(2.23)

with the initial condition

The evolution of the integrated rate kernel can then be
interpreted in terms of the dynamics of an auxiliary vari-
able g;(x, t ), which obeys the following projected dynam-
ics:

(QD) t.P(x ) =pP(x) =D tQtP(x ) .

Here 2) is the operator adjoint to D,

(f+&) —y/2
Bx

(f &) —y/2—a
Bx

and Q"= 1 —P, with

(2.28)

(2.29)

M~ M~Pt(. )=8(xo —x) g f dx 8(xo —x)p„(x)( . )g„' +8(x —xo) $ f dx 8(x —xo)p„(x)( )g~'
i A MA

(2.30)

(D++ —p)P++D t+ P = —b 5(x —xo )R,
(D P)P +D +P+ =b—,5(x —xo )R,

(2.31)

In Eq. (2.30), it is understood that Mz (x (Mz.
Thus the left eigenvector problem takes the explicit

form

p+(xo+) —p+(xo )=p—(xo+)—p —(xo ) (2.32)

where R = fM dx(p+p, ++p p, )u(x). The left eigen-

vectors are thus determined by the unprojected adjoint
evolution operator 0 subjected to a discontinuity at the
unstable fixed point
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Here xo —= lim, o(xo+e).
By transforming the quantity (P~OD a), it is easy to

see that (a,P J form a biorthogonal set of eigenfunctions.
The normalization may be chosen so that

(2.33)

Here the eigenvalue dependence has been explicitly writ-
ten and the right-hand side is equal to one for p=p' and
zero otherwise. The orthogonalization condition is valid
if the boundary terms resulting from the integration by
parts in the transformation of (P QD.a) vanish. Using
the fact that f(M~)=b„ this condition gives the follow-
ing boundary conditions for the eigenfunctions:

g; (x, t ) =g c„a";(x)exp( pt—), (2.35)

where c„ is the expansion coefticient for mode p. Using
this expression in Eq. (2.22), performing the integrations,
and using f(xo) =0, we obtain

K(t) =g d„exp(pt ), (2.36)

where

ing the auxiliary functions g;(x, t ) [Eq. (2.23)] in terms of
the right eigenfunctions of the projected evolution opera-
tor 6D, we have

P+(Mz )a+(Mz ) =P (Mz )a (Mz ) =0 . (2.34) d„—:b, [a)+(xo ) —a)' (xo ) ]c„=AQc„ (2.37)

The behavior of the eigenfunctions near the boundaries
of the support can easily be determined by an asymptotic
analysis of the eigenvalue equations. We expand the
deterministic force about x =M~, say. We have to first
order f(x ) = b, +s~ e, w—here s~ = f '(M~ ) )—0 and
@=M~ —x &&1. We set the eigenfunctions proportional
to e —near M~, where y+ are some numbers to be deter-
mined. We balance the terms with the smallest power of
e in the eigenvalue equations (2.26) and (2.31). We finally
obtain the following behavior near Mz, consistent with
the required boundary conditions (2.34) and the existence
of a normalization (2.33): (i) for Re()M) )sz —y /2,

(p+ y/2)sB —1 (9+y/2)~B '
~O, a -e B

O

P+ —const, P —const;

are the rate spectral weights. To find the expansion
coefficients c, the orthogonality relation (2.33) is used
together with the initial condition (2.24). We obtain

MBc„=g J dx P";(x )p„(x)u(x) =R . (2.38)
M~

For p%0, the integration on the right-hand side of (2.38)
can be easily performed by using the left-eigenvalue equa-
tions (2.31). The result is

k TST
c =R=

+r)8[&+(xo ) ((I"—(xo )1] (M+0 .
(2.39)

(ii) for —y/2&Re(tu, ) &s~ —y/2, two families of solu-
tions exist, k = p, (x())g~ rl~

TST— —1 —1 (2.40)
(p+ y/2)sB —1 (p+ y /2)sB

CX
—E

B
O

)33+ —const, P —const

and

a+ -const, a -const,
—(p+ y/2)sB 1 —(p+ y/2)sB

P -e ' ~oo, P B
O

(iii) for Re((u, ) & —y/2,

a+ —const, a —const,
—(p+ y/2)s& ( —(p+ y/2)s&

e —+ B
O

A similar analysis may be performed near x =M~, for
which sz = —f'(Mz))0 and e=x —Mz «1. The re-
sults are similar except that s„replaces s~ and a+ and P+
replaces a+ and P+, respectively. In case (ii) above,
some eigenvectors components diverge at the boundary
of the support. Nevertheless, the eigenvectors are nor-
m alizable.

is the transition-state-theory rate [9]. The latter quantity
is the phenomenological rate coefficient determined by
considering the system initially located at the unstable
fixed point and omitting the multiple reAexions across the
potential barrier which may occur at later times. For
p=O the eigenfunction can be obtained exactly and its
contribution to the sum (2.36) easily determined. In the
following, we omit the superscript p on the eigenfunc-
tions. Equations (2.36), (2.37), and (2.39) constitute the
main results of this paper.

In the case for which the potential is symmetric
[ V(x) = V( —x )], the eigenvectors are symmetric (or an-
tisymmetric) with respect to a change of sign in both x
and 6

a+(x ) =era+( —x ), P+(x ) =crP+( —x ), (2.41)

where o.=+1 or —1. In this case, only the odd eigen-
vectors (cr = —1) contribute to the rate kernel [see Eq.
(2.37) with xo =0].

C. Spectral representation of the rate kernel D. The case p=O

In this subsection we obtain an expression for the spec-
tral representation of the integrated rate kernel. Expand-

p=0 is a doubly degenerate eigenvalue of the projected
evolution operator. This property is also common to the
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projected Fokker-Planck evolution operator [15]. Setting
p=O, it is easy to see by inspection that a=(p, +,p, )

and P+ =P = 1 constitute one possible set of normalized
eigenvectors consistent with P+(Mz)P (Mz) finite and
a+(M„)=a (M~ ) =0. However, this solution does
not contribute to the rate kernel (2.36) since
Q =p, +(xo)—p, (xo) =0.

A linearly independent left eigen vector is simply
P+ =P—=8(xo x ) 8(x xo ). The corresponding
right eigenvector is found by solving Eq. (2.26). We find,
after some algebra,

+ J(x)[1 f(x—)/6],
2

(2.42)

C xa (x)=—p, (x)[1+f(x)/5] — f dx'p, (x')u (x')

0
+ J(x)[1+f(x)/b, ],

2

where Cis a constant, Q =a+(xo) —a (xo), and

(2.43)

p C xa+(x)= —p, (x)[1 f—(x)/b, ]+ f dx'p, (x')u(x')
A

I

J(x)—:—p, (x)b, ' f dx'[1 f (x')/—6 ]
' 2f(x')u(x')+[f'(x')+y]p, '(x') f dy p, (y)u(y)

0 A

The constant C is found by requiring the two @=0eigen-
vectors to be orthogonal: fM dx(a++a )=0, giving

p MB
A

C= Q —fM Jdx. The normalization condition allows

then the determination of Q:

~ exp —f dx'yf /(f b, )—
1+ii„'f p, dx' (2.48)

M~ x0 M~
Q = (il —il~)f dx J+ f dx J—f dx J.

MA MA x0

exp —f dx'y f /( f 4)—
(2.44) + y

2k
1+'gg f p~dx (2.49)

In the case of a symmetric potential, it is easy to see that
J(x)= —J( —x ), so that C =0.

This eigenfunction always contributes to the rate
kernel (2.36). In particular, substituting
P+=P =8(xo —x)—8(x —xo) in c„, the plateau value
of the integrated rate kernel is obtained,

Here K, and Kz are two integration constants. The
first relation (2.32) gives a relationship between these con-
stants: ill%, +i)„X2=0. With the help of Eq. (2.39), it
is then easy to verify that the second relation (2.32) is
identically verified, thus indicating that —y is indeed an
eigenvalue.

X( ~ ) =do =26Q (2.45) III. AN EXACTLY SOLVABLE CASE:
THE PIECEWISE QUADRATIC POTENTIAL

E. The case p= —y A. Model

It is also straightforward to verify that p = —y is an ei-
genvalue. Setting P (M~ ) =P+(M~ ) =0, we obtain,
from Eq. (2.31), for x )xo,

P+= exp —f dx'yf/(f b, )—
0

In order to illustrate the formalism of the preceding
section, we consider an example of bistable potential
V(x) which leads to an exactly solvable eigenvalue prob-
lem. The symmetric deterministic bistable potential has
the generic normal form

V(x)=ax /4 bx /2, — (3.1)

y
2k TsT 1 —g,-'f pdx'

0
(2.46)

y
2k~s~g~ gB ps dx

0
(2.47)

whereas for x &xp,

P = exp —f dx'yf /(f 6)—
x0

where a, b are positive coefFicients. The deterministic
evolution is then x =f(x)=bx —ax . The deterministic
fixed points are xo=0 and x„~~~=—(+ )v'b/a.

In this section we investigate a piecewise quadratic po-
tential which represents a good approximation of the nor-
mal form. We nondimensionalize x by &b/a and time
by b '. Matching the curvature of the potential at the
fixed points ( —1,0, 1) we can write the simplified poten-
tial as
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0.6

0.2

f(x)

separately, the problem reduces to finding the left eigen-
value problem for the unprojected evolution operator,
which was solved previously [14]. More explicitly, if we
eliminate f3, say, from Eq. (2.31), then for x&0, P+
must satisfy

-0.2

-0.6

- 2 -1.5 - 1 -0.5 0 0.5 I 1.5 2
X

(3.5)

Here the prime denotes differentiation with respect to x.
Once P+ is known, the other component is found from

FIG. 1. Plots of the piecewise quadratic symmetric bistable
potential in dimensionless units (continuous line) and the corre-
sponding force (dashed line). It is useful to introduce the change of variable

z = [1 f(x)A '—]/2,

(3.6)

(3.7)—X2+(x+1), x (—X,
V(x)= —x /2, ~x~ &Xi

—X2+(x —1), x &X(,
(3.2)

dVx=f(x)= — = x, ——'&x & —',
dx

2x+2, x )—
(3.3)

The boundaries of the support are then M~= —M„=1+6,/2. It is easy to see that the condition)
3 is required in order for the noise to bring the sys-

tem out of its deterministic bistable regime and induce
the transitions of interest here. The stationary density is
then

Z [Q2—(2—2~x
~

)2]2'~4 '[g2 —4
]

p, (x)= —', & ixi &Ms,

Z(+2 x2) —7/2 i
x~ (

(3.4)

In order for this stationary density to be bimodal, one
must choose y & 4 [Eq. (2.8) with s„=ss=2].

B. The eigenvalue problem

With the expression (3.3) for the deterministic evolu-
tion, the eigenvalue problem (2.26) and (2.31) can be
solved exactly. It is in fact simpler to solve the left eigen-
value problem (2.31) first. For each interval x &0, x &0

I

where the constants Xi,X2 are found by continuity of V
and V' at x~ =X, : X, = —,', X2= —,

' (Fig. 1). The dimen-
sionless barrier height is [V(0)—V(1)]y/b, =y/(3b ).
Our simplified model is therefore given by the following
piecewise linear force:

—2x —2 x( ——'
3 0

thus mapping the support onto the interval [0,1]. The
point x = ——', corresponds to z =z

&

=——,'+ 1/3A; similarly,
x

3 corresponds to z =z 2 ———,
' —1 /3 4 . As is easily

verified, the solution for P+ is given in terms of hyper-
geometric functions F(a, b, e; z ). The exact solution is
explicitly given in Appendix A and involves eight con-
stants a; (i = 1 —8) (one of them being arbitrary).

The boundary conditions at z =0, 1 are determined by
the behavior of the eigenfunctions close to the support.
Four more boundary conditions are obtained by continui-
ty of the left eigenfunctions and its first derivative with
respect to x at x =+

3
..

P+ (z =z,+ ) =13+ (z =z
( ),

P+(z=z2+ )=P+(z=z2 ),
P'+(z=z(+ )+2P'+(z=z, )=0,
P'+(z =z2 )+2@'+(z =z2+ ) =0 .

(3.8)

(3.9)

Here z& corresponds to lim, ox = ——', +e and similarly

z2 corresponds to lirn, Ox =—3+@. The derivatives in
(3.9) are with respect to z. Finally, the discontinuity con-
ditions (2.32) provide two more boundary conditions at
z= —,'. With these conditions, the constants a; (one of
them is arbitrary) and the eigenvalue p can be found by
solving a set of linear homogeneous equations. The left
eigenvalue problem is thus solved.

The determination of the right eigenvector is slightly
more involved. It is convenient to use the symmetry rela-
tion a+(x ) = —a+ (

—x ) implied by the symmetry of the
potential. In this case, Q =2a+(x =0). Eliminating a
from (2.26), using the definition of p, +, p„and k, we
obtain after some algebra the following second-order in-
hornogeneous differential equation for a+ ..

(3.10)

ca+ a+
a'+ + [f ( 3f'+ y + 2(M ) bf ' ]+ [(f'+p )(f'+p +—y ) +f"(f 6)]-f2 Q2 f2 +2

= Qu (x ) [y ( b, +f ) (f 6)p 2b f '(f b, ) )
—kQ—5(x ) /—6, . — —

2(f —b, )(f+6)
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Note that the right-hand side is a priori unknown since Q
involves the value of a+ at xo =0.

The homogeneous part of this differential equation cor-
responds to the right eigenfunction equation for the
unprojected evolution [14]. Again, the solution of the
homogeneous equation is given in terms of hyper-
geometric functions. The solution of the inhomogeneous
equation (3.10) can then be straightforwardly found. The
explicit corresponding expressions are given in Appendix
B and involve six unknown constants b; (i = 1 —6) (one of
them being arbitrary).

The behavior of a+ at z=0, 1 provides two boundary
conditions. Two more boundary conditions are obtained
by continuity of the eigenfunctions at z =+—', :

In the first case b, = 1, y =20, giving
k =3.64123X10 . The barrier height is —', =6.67.
Table I shows the first few eigenvalues which contribute
to the rate kernel and the rate spectral weights d„. Fig-
ures 2(a) and 2(b) illustrate the first three normalized
eigenfunctions a+ and P+. a and P may be obtained
from these by using the symmetry relation (2.41) with
o = —1. From (2.45), we obtain the plateau value of the
rate kernel E(ao ) '=6.418 X 10, which is much smaller
than the first nonzero eigenvalue p&= —2.2469. This

a+(z=z,+ )=a+(z=z, ),
a+(z =z2+ ) =a+(z =z2 ),

(3.11)
1.5

0.5
~ ~

~ ~

~ ~

~ ~
~ ~
~ ~

~ ~
~ ~
~ ~
0 ~
~ ~
~ ~
~ ~
~ ~

a'+(z=zi+ )+2a'+(z=zi )=3a+(z=z, )/z2 . (3.12)

Another boundary condition can be obtained by integrat-
ing the differential equation (3.10) across the discontinui-
ty in f' atz= —

—,'. One gets

u
-0.5

-1 ~ 5

~ ~
~ ~~ ~
~ ~I ~
~ ~

~ ~
O~

~ ~

The corresponding boundary condition at x = 3,
a'+(z =z2 )+2a'+(z =z2+ ) =3a+(z =z2)/zi, is automati-
cally satisfied when the proper eigenvalue p is used. Us-
ing Q=2a+(z= —,'), these conditions are sufficient to
reduce the determination of the constants b; to the solu-
tion of a set of linear inhomogeneous equations. u is
then found through the symmetry relation (2.41) (with
cr= —1). The determination of the right eigenvector is
then complete up to an overall multiplicative constant,
which may be found from the normalization condition
(2.33).

Finally, for @=0, the expressions (2.42) —(2.44) with
C=0 are used.

C. Results and discussion

10

5 w

o
+

5

-10

I I I I I I

I
q

I
I

I
~ g

I
I

r

- 2 -1.5 - 1 -0.5 0 0.5 1 1.5 2
X

The determination of the complete solution of the ei-
genvalue problem can be straightforwardly carried out
with the help of a symbolic manipulation software. For
illustrative purpose, we consider here two choices of the
noise parameters h, y. We recall that the deterministic
(i.e., "molecular" ) time scale is b—:1 [see Eq. (3.3)].

10

9

- 2 -1.5 - 1 -0.5 0 0.5 1 1.5 2
X

(c)

TABLE I. The first few eigenvalues and spectral weights con-
tributing to the integrated rate kernel for the piecewise quadra-
tic symmetric potential. The first two columns correspond to
6= 1, y =20, the last two to 6=5, y =20.

10 dR

10

0
—2.2469
—4.0038
—5.7398
—8.2426

—11.7573

6.4180
2.3757
1.7305
3.2105
2.8799

—3.3810

0
—3.6564
—7.2814
—8.7827

—12.7186
—16.3436

0.5245
0.2041
0.2132

—0.1223
—0.1965
—0.2041

FIG. 2. The first three normalized eigenfunctions of the pro-
jected stochastic operator and the integrated rate kernel for the
piecewise quadratic potential with 5=1, y=20 (high barrier).
For both (a) and (b) p =0 (continuous line), p = —2.2469
{dashed line), and p= —4.0038 (dotted line). (a) Right eigen-
functions a+, (b) left eigenfunctions P+, (c) integrated rate ker-
nel I(.
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case presents a clear separation of time scales and we ex-
pect a phenomenological rate law to be valid with a phe-
nomenological rate coefficient equal to k =K(oo ) and a
"transmission coefficient" k/k =0.1762 [9]. Figure
2(c) gives the plot of the integrated rate kernel as a func-
tion of time. This plot is valid for times longer than the
inverse of the absolute value of the smallest eigenvalue
considered in the summation (2.36): t )0.085. It is seen
that the rate kernel quickly reaches its plateau value k in
a time scale —I/~pi~ comparable to the deterministic

0.8
0.6
0.4

0.2
0, 0

-0.4
-0.6
-0.8

time scale, but short compared to the transition relaxa-
tion time 1/k.

In the second case, 6=5, @=20, giving 1™=2.0254.
The barrier height equals, 4, =0.27 and is much lower
than in the first case. Again Table I gives the first few
contributing eigenvalues and the rate spectral weights.
Figures 3(a) and 3(b) illustrate the first three normalized
eigenfunctions and Fig. 3(c) shows a plot of the integrated
rate kernel as a function of time. This plot is valid for
t )0.06. The plateau value is IC( Oc ) =0.5245. However,
in contrast to the previous case, K(oc ), ~p, ~

=3.6564, and
the inverse of the deterministic time scale (unity) all have
the same order of magnitude. In this case, a simple phe-
nomenological law is not valid and the behavior of the
rate kernel K(t) must be considered to establish the
kinetics of the transition. Finally, although none were
found in practice, it is possible that complex eigenvalues
occurring in conjugate pairs exist.

The case of a nonsymmetric piecewise quadratic poten-
tial may also be straightforwardly investigated in a simi-
lar manner.

IV. QUARTIC POTENTIAI. :
A NUMERICAL APPROACH

2

-4 -3 -2 -1 0
X

1 2 3 4 The simplest bistable potential with continuous
derivatives to all orders is the quartic potential
V(x)=ax /4 bx /2+c—x, with a and b positive. In this
section, we numerically solve the eigenvalue problem for
the projected dynamics in a symmetric potential (c =0).
In this case, it is sufficient to solve the problem on the in-
terval [M~, O] or [O,M~] and the symmetry relation
(2.41) with cr = —1 can be used. The generalization of the
algorithm to the case cXO is straightforward. Scaling x
by v'b/a and time by b ', the deterministic potential
and the force become

-4
-4 -3 -2 -1 0

X
1 2 3 4

V(x)=x /4 —x /2, f(x)=x —x

The dimensionless barrier height is then y/4h .

A. Numerical algorithm

(4.1)

0.8

0.6

K 0.4

0.2

(c)
We first consider the case Re(p) )2 —y/2 or—y/2 & Re(p) & 2 —y/2 (first solution family). From the

asymptotic analysis of the behavior of the left eigenfunc-
tions near M~, we expect P;(M~ ) to be a nonzero con-
stant. p+(M„) is arbitrarily set equal to unity. Evaluat-
ing Eq. (2.31) at M„gives p (M~ )=y/(2p+y). For a
given value of the eigenvalue p and with these initial con-
ditions, the system of difFerential equations (2.31) is then
numerically solved until p+(0 ) are obtained. Using the
jump conditions (2.32) with (2.39), together with the sym-
metry relation (2.41), it is seen that the following relation
is true:

FIG. 3. The first three normalized eigenfunctions of the pro-
jected stochastic operator and the integrated rate kernel for the
piecewise quadratic potential with 5=5, @=20 (low barrier).
For both (a) and (b) p =0 (continuous line), p = —3.6564
(dashed line), and p= —7.2814 (dotted line). (a) Right eigen-
functions a+, (b} left eigenfunctions P+', (c) integrated rate ker-
nel E.

P+(0 ) =P (0 ) (4.2)

if p is a proper eigenvalue. The value of p is then
changed and the procedure iterated until relation (4.2) is
obtained within a tolerance limit.

For the case —y/2 & Re(p) & 2 —y/2 (second solution
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family) or Re(p) & —y/2, one expects P (M~) to be
zero. We arbitrarily set )33+(0+)=1. Using (2.32) with
(2.39) and the symmetry relation, one obtains
P (0+)=(k +)u, )/(k —p). With these initial con-
ditions, the system (2.31) is solved and the eigenvalue p,
adjusted until P (M~ ) is zero within a tolerance limit.

In both cases, we obtain the right eigenfunctions in the
following way. We arbitrarily set a+(0)=1. The sym-
metry condition (2.41) gives a (0)= —1, so that Q =2.
With these initial conditions, the system (2.26) is then

solved until a+(Mz ) is obtained. Finally, the overall nor-
malization constant is determined by numerical integra-
tion of a+P++ a P [see (2.33)].

The differential equation solver uses a fifth-order
Runge-Kutta method with adaptive step size. The value
of p, (x ) that appears on the right-hand side of (2.26) is
obtained by numerical integration using Simpson's rule.
Our algorithm is general and can be applied to other
types of bistable potentials. The algorithm was verified
by comparing its results for the piecewise quadratic po-

0.5
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(c) (c)

3 K 0.2

2
Q

10
-0.6

0.4 0.8 1.2 1.6

FIG. 4. The first three real normalized eigenfunctions of the
projected stochastic operator and the integrated rate kernel for
the quartic symmetric potential with b =1, y=33 (high bar-
rier). For both (a) and (b) p =0 (continuous line), p = —1.3702
(dashed line), and p= —1.9214 (dotted line). (a) Right eigen-
functions a+', (b) left eigenfunctions P+, (c) integrated rate ker-
nel K.

FIG. 5. The first three real normalized eigenfunctions of the
projected stochastic operator and the integrated rate kernel for
the quartic symmetric potential with 5=5, y =33 (low barrier).
For both (a) and (b) p =0 (continuous line), p = —5.9972
(dashed line), and p= —14.1378 (dotted line). (a) Right eigen-
functions a+, (b) left eigenfunctions P+, (c) integrated rate ker-
nel K.
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TABLE II. The first few eigenvalues and spectral weights contributing to the integrated rate kernel
for the quartic symmetric potential. The first two columns correspond to b =1, y =33, the last two to
5=5, y=33.

0
—1.3702
—1.9214
—3.1284
—4.7141
—6.8061
—9.5927

—12.7574+2. 3138i
—13.2493+4. 3013i
—13.3619+6.0946i
—13.4468+7. 8783i
—13.5653+9.5245i

—13.6774
—19.3226

4.284
—0.664
—1.158
—1.184
—0.038
—1.253
—1.256

—0.291 T 1.149i
—0. 149+ 1.412i

0.313+ 1.221i
0.218+0.700i

—0.050+ 0.980i
—1.238
—3.320

0
—5.9972

—7.8909+5.8367i
—8.3173+10.4670i
—8.8185+14.4400i
—9.0215 + 17.9368i

—14.1378
—27.0028
—33

0.704
—0.353

0.206+ 0.240i
0.037+0.094i

—0.082+ 0.046i
—0.057+- 0.060i

—1.250
—0.437
—0.704

tential with the exact results of Sec. III: they were undis-
tinguishable.

B. Results and discussion

Two values of the noise parameters are adopted in this
study such that k is comparable to the values obtained
for ihe two piecewise quadratic potential cases.

first case, Q = 1, y =33, giving
=3.1855' 10 and —Mz =M& =1.324717 9. The bar-
rier height is —", =8.25. Table II shows the first few ei-
genvalues and the rate spectral weights d„which contrib-
ute to the integrated rate kernel. Figures 4(a) and 4(b) il-
lustrate the first three normalized real eigenfunctions. In
contrast to the piecewise quadratic potential case, there
exist complex eigenvalues. The search in the complex p
plane was limited to low frequencies [ ~lm(p) (10]. Fig-
ure 4(c) shows the plot of the integrated rate kernel
as a function of time. This plot is valid for
r) 1/Re( —p),„=0.052. On the scale of the plot, the
complex spectral weights do not show any significant
effect as their contribution is small. The plateau value of
the rate kernel K(ao)=4.284X10, which is much
smaller than the first nonzero eigenvalue p&= —1.3702.
As in Sec. III, this case presents a clear separation of time
scales. The phenomenological rate transmission
coefficient is k/k =K( ~ )/k =0.1345.

In the second case, 5=5, y =33, giving
k =2.48653 and —Mz =M& =1.9041608. The bar-
rier height is low and is equal to 0.33. Again Table II
gives the first few contributing eigenvalues and the rate
spectral weights. Complex eigenvalues are found
and their search was limited to low frequencies
[ ~lm(p) ~

(20]. Figures 5(a) and 5(b) show the first three
normalized real eigenfunctions and Fig. 5(c) gives the
plot of K(t) This plot is val.id for t )0.03. The plateau

value is K(~)=0.704. Again, as in the low barrier
piecewise quadratic potential case, a simple phenomeno-
logical law is not valid. Another feature to be observed is
the presence of oscillations in K(t) refiecting the multiple
barrier crossings under rapid stochastic dynamics. Of all
the complex eigenvalues, those with the three smallest
imaginary parts dominate the contribution to K(t). Thus
the contribution of higher frequency components

~
lm(p)

~

)20 is expected to be negligible.

V. CONCLUSION

In this paper, we presented a formalism for the study
of the kinetics of dichotomous noise-induced transitions
in a bistable system. Population numbers are associated
with the number of phase points evolving under stochas-
tic dynamics within a deterministic basin of attraction.
Assuming completeness of the eigenfunctions of the pro-
jected stochastic operator 6D, we used spectral methods
to determine the integrated rate coe%cient and to investi-
gate the memory effects in the decay of the population
number.

For two values of the noise parameters, this analysis
was carried out exactly for a symmetric piecewise quad-
ratic potential and numerically for a symmetric quartic
potential. For each potential, one case corresponded to a
high barrier potential, for which a phenomenological rate
law is obtained. The value of the rate coeKcient is deter-
mined. The other case referred to a low barrier, for
which the population number relaxation time scale is not
very different from the time scale of the dynamics inside
the well. The memory effects are then important.

An asymptotic analysis has shown [6] that the decay of
the population number may develop an algebraic tail in
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some special cases. To properly account for this
behavior, the continuous part of the spectrum should be
obtained, if it exists. However, the explicit determination
of such a continuous spectrum is still a challenge in gen-
eral.

The numerical approach presented here can be
straightforwardly generalized to an arbitrary bistable po-
tential. Possible extensions of this work would be to bist-
able systems described by the dynamics of two variables
or to rate processes induced by multiplicative dichoto-
mous noise.
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APPENDIX A

In this appendix we explicitly write the left eigenfunc-
tion P+ for the piecewise quadratic potential. Changing
the variable in (3.5) from x to z, as defined by (3.7), it is
easy to obtain the solution as a function of z:

a,F(p/2, p/2+y/2, p/2+y/4;z)+a2z' r~ "~ F(l+y/4, 1 —y/4, 2 —y/4 —p/2;z) for 0&z &z,

a3F( —p, —p —y, —p —y/2;z)+a~z'+ r~ +"F(l—y/2, 1+y/2, 2+y/2+p;z) for —,
' &z &z,

P+(z)= a~F( —p, —p —y, —p —y/2;z) +a z6'+ r~ +"F(1—y/2, 1+y/2, 2+y/2+p;z) for z2 &z & —,
'

a7F(p/2, y /2+p/2, 1+y/4+p/2; 1 —z )

(A 1)

as(1 —z) r~ "~2F(y/4, —y/4, 1 —y/4 —p/2;1 —z) for z2 &z &1 .

Here a; (i =1—8) are constants to be determined,
z, =——,'+1/3b„z2 =——,

' —1/3b, and the four ranges in (Al)
correspond to x & —

—,', ——', x &0, 0&x —'„and x & —'„
respectively.

The asymptotic behavior of P+ presented in Sec. II 8
implies the following choices.

(i) For p) 2 —y/2 or —y/2&p&2 —y/2 (first solu-
tion family), P+(z =0) and P+(z = 1) are constants. In
this case, a2 =a

8 =0. We also arbitrarily set a, = 1.
(ii) For —y/2 &p & 2 —y/2 (second solution family) or

p& —y/2, P+(z=0)=0, implying ai =0. Finally, from
the behavior of P+ about z = 1, we set a7 =0. We also ar-
bitrarily set a2 = 1.

APPENDIX 8

In this appendix we explicitly write the right eigen-
function a+ for the piecewise quadratic potential. The
starting point is the inhomogeneous differential equation
(3.10). It is easy to obtain the regular solution a+ of its
homogeneous counterpart as a function of z:

biF(1 —p/2, 1 —p/2 —y/2, 1 —p/2 —y/4;z)+bzzri +"~ F(1—y/4, 1+y/4, 1+y/4+p/2;z)
b3F(1+p, 1+y+p, 1+y/2+p;z)+b„z r~ "F(l+y/2, 1 —y/2, 1 —y/2 —p;z) for z2 &z &z,

H
+ b5F(1 —p/2, 1 y /2 p/2, 2 —y /4 —p, /2; 1 ——z )—

for 0 &z &z&

(81)

+b6(1 —z) '+r +" F(y/4, —y/4, y/4+p/2;1 —z) for z2 &z &1 .

a+(x)=y, (x)f dx h(x)y2(x)W(x)
M~

—y2(x) f dx h(x)y, (x)W(x) (82)

where y, 2(x) are the two linearly independent solutions
of the homogeneous equation [read off Eq. (Bl)], h(x)
denotes the inhomogeneous term on the right-hand side
of (3.10), and W'(x)=(dy, /dx)yz —(dye/dx)y, is the

Here b, (i = 1 —6) are constants to be determined (one of
them being arbitrary).

The particular solution of (3.10) a+ is easily found to
be

Wronskian. To obtain the complete solution, we perform
the change of variable z =[1—f(x)/b, ]/2 in (82) and
add the resulting solution a+(z) to a+(z).

The asymptotic behavior of a+, discussed in Sec. II 8
implies the following choices.

(i) For p) 2 —y/2 or —y/2&p&2 —y/2 (first solu-
tion family), a+(z =0)=0, implying b i =0. Finally, from
the behavior of a+ about z=1, we set b~=0. We also ar-
bitrarily set b2 = 1.

(ii) For —y/2 &p & 2 —y /2 (second solution family) or
p&y/2, a+(z=O) and a+(z=1) are constants. In this
case, b2=b6=0. We also arbitrarily set b) =1.
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