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Qualitative analysis of Cohen-Grossberg neural networks with multiple delays
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It is well known that a class of artificial neural networks with syInmetric interconnections and without
transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all tra-
jectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative
properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small de-

lays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-
Grossberg network with mu1tiple delays is globally stable and possesses the same asymptotically stable
equilibria as the corresponding network without delays. An effective method of determining the asymp-
totic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented.
The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and

by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qual-
itative analyses of Hopfield neural networks with one time delay. The present work generalizes these re-
sults to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks consti-
tute special cases of Cohen-Grossberg neural networks.

PACS number(s): 43.64.+r, 43.70.+i, 43.71.+m, 43.80.+p

I. INTRODUCTION

Cohen-Grossberg neural networks constitute a class of
artificial feedback neural networks whose activation
equations are of the form

x;= —a;(x;) b;(x;)—g t; s (x ), i=1, . . . , n .
j=1

In (1.1) x,. denotes the state variable associated with the
ith neuron, the function a; represents an amplification
function, and b, is an arbitrary function; however, we will
require that b; be sufficiently well behaved to keep the

solutions of Eq. (1.1) bounded. The matrix T=[t; ]„&&„
is a real and symmetric matrix and represents the neuron
interconnections. The real function s is a sigmoidal non-
linearity representing the jth neuron. The neural dynam-
ics model (1.1) has been widely studied (see, e.g. , [1—10]).
One of the useful qualitative properties of (1.1) is that it is
globally stable [i.e., every trajectory of (1.1) converges to
some equilibrium]. It is well known that (1.1) includes
the Hopfield neural networks as a special case, a class of
neural networks that has been studied widely (see, e.g.,
[4—10]). Hopfield neural networks are described by a
system of equations of the form

gy have been realized (see, e.g. , [11—13]). However, in
the implementation process of artificial neural networks,
time delays are unavoidab1y introduced and it is known
that such delays can cause systems to oscillate (see, e.g. ,
[14—16]). Therefore, it is important to take time delays
into consideration and to investigate the qualitative prop-
erties of neural networks of the type (1.1) and (1.2) with
delays. A class of Hopfield neural networks with identi-
cal delay for each state can be described by equations of
the form

x;(t)= c;x;(t)+ g—t; s (x (t —)r),i =. 1, . . . , n, (1.3)
j=1

where r) 0 denotes the time delay. System (1.3) has re-
cently been studied by several workers (see [14,17—20]).
It is shown in [14,20] that system (1.3) is globally stable
and that it possesses the same set of asymptotically stable
equilibria as system (1.2), if the delay r is less than a cer-
tain bound.

In the present paper, we extend the results of [20] to a
significantly larger class of systems. Specifically, we con-
sider Cohen-Grossberg neural networks (1.1) endowed
with multiple delays, described by equations of the form

x;(t)= —a, (x, (t)) &, (x, (t))—g t,',"s,(x, (t))
j=1

x;= —c;x;+ g t; s.(x ), i=1, . . . , n,
j=1

(1.2)

where c; )0 and x;, t;, and sj are the same as in (1.1).
Since neural networks (1.1) and (1.2) have the potential of
serving as associative memories and performing parallel
computations, some electronic implementations of these
neural networks in very-large-scale-integration technolo-

l 1 p ~ ~ ~ y n (1.4)

where the t,' 's denote the interconnections which are as-
sociated with delay ~k, ~k denotes the kth time delay for
k=0, 1, . . . , E such that 0=~0&~1 & . - &~z, and x;,
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b;, and s are the same as the corresponding quantities in
Eq. (1.1). We will establish bound conditions for the de-
lays under which Cohen-Grossberg neural networks with
multiple delays described by Eq. (1.4) will exhibit qualita-
tive properties similar to the corresponding original
Cohen-Grossberg neural networks without delays, de-
scribed by Eq. (1.1) [i.e., conditions under which system
(1.4) is globally stable and has the same local stability
properties as system (1.1)]. More specifically, we will
show that when the delays are small enough to satisfy the
established bound conditions, then system (1.4) is globally
stable and has the same set of (asymptotically) stable
equilibria as system (1.1). From this result it is concluded
that not only the global stability of system (1.4), but also
the local stability of each equilibrium of system (1.4) will
be unaffected by sufficiently small delays. Moreover, we
will establish an effective criterion for the (asymptotic)
stability of each equilibrium of system (1.4).

In the proofs of the preceding statements, we make use
of an energy functional for system (1.4) and we show that
this energy functional decreases along the solutions of
(1.4), ultimately converging to some equilibrium of sys-
tem (1.4). We will also show that any (asymptotically)
stable equilibrium of (1.4) corresponds to a local
minimum of the energy functional.

In the next section we provide the necessary notation
used throughout this paper. In Sec. III we provide some
preliminaries. In Sec. IV we establish our main result for
the global stability of Cohen-Grossberg neural networks
with multiple delays (1.4). In Sec. V we investigate the
local stability properties of equilibria of system (1.4).
Some concluding remarks are provided in (Sec. VI).

II. NOTATION

III. PRELIMINARIES

In the present paper, we assume that the Cohen-
Grossberg neural networks (1.1) and (1.4) satisfy the fol-
lowing assumptions.

Assumption A. (i) The function a; is bounded, positive,
and continuous; (ii) the function b; is continuous; (iii)

T= [t; ]„„„is a symmetric matrix; (iv) sJ EC (E,E) is a

sigmoidal function [so that s'. (x. ) = dsj (x. )/dx & 0,
lim„+„s (x )=1, lim„„s (x.)= —1, and

J J
lim~

I
„sj'(xj)=0); and (v) lim„+„b;(x;)=+ oo and

J
lim„„b;(x,. ) = —oo. S

t

Remark 1. Assumption A is hypothesized in many
references dealing with feedback artificial neural net-
works without delays (see, e.g. , [3]). We note in particu-
lar that part (v) of Assumption A ensures the bounded-
ness of the solutions of the neural network (1.1) (un thout'
delays). In the following, we show in Fact 1 that part (v)
of Assumption A ensures also the boundedness of the
solutions of the neural network (1.4) (toith delays).

More generally, we could replace part (v) of Assump-
tion A by some other hypothesis which ensures the
boundedness of solutions of (1.4). For example, it can be
shown that parts (e) and (f) of Theorem 1 in [1]ensure the
boundedness of the solutions of neural network (1.1) and
also of neural network (1.4).

Fact i. If Assumption A is satisfied for systems (1.1)
and (1.4), then any solution of (1.1) and (1.4) is bounded.

Proof. We only need to consider system (1.4) since (1.1}
is a special case of (1.4). We know by Assumption A that
the terms s (xj (t)) and s (x (t .rk)} are bo—unded for all

j=1, . . . , n Furth. ermore, since lim„+„b;(x, )=+ oo
t

and lim„„b;(x;)=—oo, there must exist an M &0
l

such that

Let lR denote the set of real numbers and let 1R" denote
real n space. If x HE", then x =(x&, . . . , x„) denotes
the transpose of x. Let 1R" denote the set of n X m real
matrices. If B =[b;i]„x HE"", then B denotes the
transpose of B. For x C E", let llx ll denote the Euclidean
vector norm llx ll

=(x x )
'~ and for A EE" ", let ll A ll

denote the norm of A induced by the Euclidean vector
norm, i.e.~ IIAII=[Amax(A A)]' . I denotes the identity
n Xn matrix.

Let 1R+ denote the set of non-negative real numbers,
i.e., E+ = [0, + oo ). I.et X be a subset of E" and let Ybe a
subset of E . We denote by C(X, Y) the set of all con-
tinuous functions from X to Y and we denote by C "(X,Y)
the set of all functions from X to F which have continu-
ous derivatives up to order k. With ~)0,
x HC([ r, + oo ),E"},—and with t &0, we define

x, E C([—r, 0],E") as x, (s) =x(t+s) for s H [ —r, 0].
For any PEC([ —r, 0],E"), the norm of P, denoted by

is defin«as lgl =max{ llew(t)ll: t & [ —~,0]].
The system (1.4) is said to be globally stable if for any

solution x(t), lim, x(t) exists. For the definitions of
stability and asymptotic stability of an equilibrium of
(1.4), refer to any of several standard texts (see, e.g. , [21]).

x = —A(x}[B(x)—TS(x)] . (3.1)

When delays are present in the Cohen-Grossberg neural
networks, we need to modify (3.1) as

b;(x;(t))—g tJ 'sj(xJ.(t))—g g t i"'~i(sx (tJ—rz})&0
j =1 k =1 j=1

whenever x, (t) &M and

K n

b, (x;(t))—g t,'. 's (xj(t))—g g t,(J"'s (xj.(t —rk )) &0.
j=1 k=1 j=1

whenever x;(t) & —M for all i =1, . . . , n Since a;.(x;(t ))
is positive by Assumption A, it can be concluded that, for
any solution x(t) of (1.4), x;(t) &0 whenever x;(t) &M
and x;(t) &0 whenever x;(t) & —M for all i =1, . . . , n

We may assume that for the initial condition xo( ) (xo is
a function) lxol &M, for otherwise we just pick a larger
M. Thus we can conclude that llx, (t)ll &M for all t &0
and all i =1, . . . , n. S

If we let x=(x&, . . . , x„) HE", A(x) =diag{a&(x&),
. . . , a„(x„)jEE""",B(x) =(b, (x, ), . . . , b„(x„)) EE",
T=[t; ]„x„,and S(x). =(s&(x&), . . . , s„(x„)),then Eq.
(1.1) can be rewritten as
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x(t)= —A(x(t}) B(x(t))—TOS(x(t))
IV. GLOBAL STABILITY ANALYSIS OF

COHEN-GROSSBERG NEURAL NETWORKS
WITH MULTIPLE DELAYS

K
TkS(x(t r—

k ))
k=1

(3.2)

b i (x, ) b„'(x„)
J(x)= —T+diag

s', (x, ) s', (x, )
(3.3)

and b (x; ) =db, (x; ) Idx; fo.r i = 1, . . . , n.
It can be proved using Sard's theorem (see Lemma 3.3

of [8]) that the following result is true.
Lemma 1. For almost all TER" " (except a set with

Lebesgue measure 0), system (3.1) satisfies Assumption B.
R

Furthermore, by using the inverse function theorem
(see Remark 3.4 of [8]), we can establish the following re-
sult.

Lemma 2. When system (3.1) satisfies Assumption B,
the set of equilibria of system (3.1) is a discrete set. ~

where the Tk make up the interconnections associated
with delay ~k, k=0, 1, . . . , K, so that T=Tp+T1
+ . + Tz, O=ro&r, « rz, and A(x), B(x ), T,
and S(x) are the same as in Eq. (3.1). Clearly, Eq. (3.2) is
equivalent to Eq. (1.4).

In order to ensure that the Cohen-Grossberg neural
networks (3.1) [or equivalently (1.1)] possess global stabil-
ity, we will require that the set of all equilibria of (3.1) be
a discrete set. This requirement can be ensured by almost
all choices (in the sense of Lebesgue measure) of the inter-
connection matrix T (see [1]). For this reason, we assume
throughout this paper that system (3.1) [or equivalently
(1.1)] satisfies the following assumption.

Assumption B. For any equilibrium x, of (3.1), the ma-
trix J(x, ) is nonsingular, where

In the present action, we address the global stability
properties of Cohen-Grossberg neural networks with
multiple delays described by the retarded type
differential-difference equation (3.2), or equivalently by
Eq. (1.4). To establish the main results of the present sec-
tion, we require the following properties of system (3.2).

Lemma 3. If system (3.2) satisfies Assumption B, then
the set of equilibria of system (3.2) is a discrete
set. 8

Remark 2. The set of equilibria of system (3.2), which
is identical to the set of equilibria of system (3.1), is a
discrete set, by Lemma 2. Furthermore, it follows from
Lemma 1 that for almost all T EIR" " (except on a set of
Lebesgue measure 0), system (3.2) satisfies Assumption B.

We are now in a position to establish the main result of
this section.

Theorem 1. Suppose that for system (3.2), Assump-
tions A and B are satisfied, and suppose that

X «k~llTkll}&1
k=1

(4.1)

andwhere P=max „„llA (x)S'(x )ll S'(x )

=diag{s', (x, ), . . . , s„'(x„)]. Then system (3.2) is globa1
ly stable.

Proof. Since inequality (4.1) is satisfied, there must ex-
ist a sequence of positive numbers (a„.. . , az), such
that

k=1

To prove the present result, we define for any
x, E C( [ —rz, 0],R") an energy functional E(x, ) associat-
ed with (3.2) by

n [x,(O)],.

E(x, )= —S (x,(0))TS(x,(0))+2 g f b, (o )s,'(o. )do.
i=1

+ g f [S(x,(8) ) S(x,(0) ) ] Tk fk(8)—Tk [S(x,(8) ) —S(x,(0) ) ]d8, (4.3)

where (a„.. . , az ) is a sequence of positive numbers such that condition (4.2) is satisfied and

fk(8) EC ([—rk, 0],R ), k =1, . . . , X, will be specified later. After changing integration variables, (4.3) can be writ-
ten as

n x,.(t)
E(x, )= —S (x(t))TS(x(t))+2 g f b;(o)s (o)do

i=1
K

+ g f [S(x(w))—S(x(t))] Tk fk(w t)Tk [S(x(w})—S—(x(t))]dw . (4.4)

The derivative of E(x, ) with respect to t along any solution of (3.2}can be computed as
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dE(x, )

dt
= —2S (x(t))TS'(x(t))A(x(t)) 8—(x(t))+ToS(x(t))+ g TgS(x(t ~—q))

K
+2x (t)B(x(t))S'(x(t))A {x(t)) 8(x—(t))+ ToS(x(t))+ g T&S(x(t —rz ))

[S(x(t r~)—)—S(x(t))] Tq fq( —rq)Tq[S(x(t ~q)—)—S(x(t))]

+ f [S(x(w)}—S(x(t))] Tz f/(w t) T&—[S(x( w)) —$(x(t))]dw
k

+ J' K T

B(x—(t))+ ToS(x(t))+ g T~S(x(t rq—))

X A(x(t))S'(x(t))T& f&(w t)T—&[S(x(w))—S(x(t))]dw

+ Sxw —Sxt T& &w —t T&S'xt Axt
k

K
X B(x(t)—)+ToS(x(t))+ g T~S(x(t —r„)) dw . ,

Jc =1
(4.5)

where f'(8)=df(8)/d8. If we adopt the notation

Ho = —8(x(t) }+ToS{x(t)}+g TqS(x(t rq ) ), — (4.6)

Hq = Tt, [S(x(t rq ))—S—(x(t ))], k =I, . . . , K

G& = Tz[S(x(w)) —S(x(t))], k =1, . . . , K

Q = A (x(t))S'(x(t)) =S'(x(t)) A (x(t)),

(4.7)

(4.8)

(4.9)

Eq. (4.5) can be rewritten as

dE(x, ) = —2S (x(t))TQHo+2x (t)8(x(t))QHo

r

Ha fa( ra)Ha+ f —[Gz f/(w —t)G&+HoQT& fz(w t)G&+G& f—z(w t)TaQHo]d—w .
a=i ~& k

K= —2HorQHo+2 X Hu'QHo
k=1

K

Hz fa( ~a )Ha+ J [—Gg fq(w —t)G&+HoQT& fq(w t)G&+Gq fz(w —t)Tu—QHo]dw .
a=] ~& k

X
2H~ QHo ' 2Ho QHo +H~ f~ ( r~ }Hg

k=1 &a

+ f [G„fz(w t)G& +HoQ&Tfz(—w t)G&+Gf—fz(w t)T&QHo]dw '—
k
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where [gk(x„8)] =[HO, Hk, Gk ] with Ho and Hk
given by (4.6) and (4.7),

Gk=Tk[S(x(t+8)) —S(x(t))], k=1, . . . , K (4.11)

2akQ QTk'f k (8)

Mk(x„8)=
+k

f.(8)T Q

fk(

fk(8~~

—1/2I 0

U, = (2a' ) 'I a' Ik k

1/2I&k

(4.12)

and I denotes the n Xn identity matrix. To obtain the
last expression of (4.10), we changed the integration vari-
ables from m to 0.

We will now show that if the hypotheses of Theorem 1

are satisfied, then Mk(x„8) is positive definite for all
8& [

—rk, 0] and all x, which satisfy Eq. (3.2), for
k=1, . . . , K. In doing so, we let U=U3U2U1, where

2fk( —rk) —p&0

is satisfied. For Mk 3, it is easily shown that if

fk(8) & —fk(8) II Tk II'

4 ak

fk —rk g
+k 2+k

(4.17)

It follows that Mk(x„8) is positive definite if and only if
Mk is positive definite and if and only if Mk 1 Mk 2 and
Mk 3 are all positive definite.

We now show that if the condition rkpIITkII &ak is
satisfied, where

P=max
II
A(x)S'(x )II =max IIQII,

x FIR xaam

then we can always find a suitable fk ( 8)
EC([—rk, 0],R+) such that Mk |, Mk 2, and Mk 3 are
positive definite for all x, which satisfy Eq. (3.2) and for
all 8E[—rk, 0]. From this it follows that Mk(x„8) is
positive definite for all k = 1, . . . , K and therefore
dE(x, ) idt & 0 along any solution x, of (3.2).

By the assumptions that s (x; ) )0 and a,.(x, ))0 for all

x, EIR, the matrix Mk 1 is automatically positive definite.
The matrix Mk 2 will always be positive definite if condi-
tion

I
0

0 0
I 0 +2rkg '

Q
' (4.18)

fk(8) 0 I is true, then Mk 3 is also positive definite. Notice that the
matrix

and
D=Q fk( —rk) g

+k 27k
+2rkg '

Q

U3= 0

1 Tk fk( rk)
0 ——fk(8) Q I

2 cxk k 27k

Mk diag {Mk, i,Mk, 2, Mk, 3 j (4.13)

It is not difficult to verify that Mk=UMk(x„8)U is a
diagonal matrix. In fact,

is a diagonal matrix, i.e., D=diag{d„. . . , d„]. If we
denote Q =diag {q „.. . , q„], then it is easy to show that

4fk( rk)q rk-
d; = for i =1, . . . , n .

Since q; & p by the definitions of p and Q, we have, in
view of (4.17), that

where

=2
+k

kr — g
k, 2

27k

(4.14)

(4.15)

4fk( rk )peak
d, (

2fk( rk ) —p—
Therefore, we obtain

4fk( rk )peak

2fk( —~k )
—P

and

M„=f„'(8)I—
20.'k

fk( —rk) I—
2 Tk

QTkfk 8+ 27 k 2ak

(4.16)

and, furthermore, condition (4.18) will be satisfied if
(4.17) is satisfied and

f I (8) 1 fg(8)
4 " a' 2fk( —rk) —p

(4.19)

is satisfied.
Next, we need to show that there is an

fk E C'( [ —rk, 0],R) such that conditions (4.17) and
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(4.19) are satisfied. We choose

fk( —k}= &~i,
ak

(4.20)

fk( —rk}
ak +1—

2

t3'~k
II Tk II'

2

& 0 (4.21)

is true because Prk II Tk II
& ak. It follows from (4.21) that

5fk( —rk)ri &1

where

5= II Tk II'fk( rk )&rk

ak [2fk(

(4.22)

(4.23)

Condition (4.17) is satisfied by the choice (4.20). Further-
more,

K—B(p(0))+TOS(p(0))+ g TkS(p( —rk ))=0, (4.28)
jc =1

Tk[S(p( r—k)) —S(p(0))]=0, k=1, . . . , E

T„[$(P(—8) )—S(P(0) ) ]=0

for all 8G[ rz—,O], k=1, . . . , K .

(4.29)

(4.30)

It is obvious that for any solution x, of (3.2),
dE(x, )/dt =0 if and only if E„=O.

Since for any x, satisfying Eq. (3.2), x, is bounded (Fact
1) and since dE(x, )/dt &0, it follows from the invariance
theory (see Chap. 4, Lemmas 1.4 and 2. 1 of [21]) that the
limit set of x, as t~ 00 is the invariant subset of the set
A=I/PC([ —rz, O], R"): E&=0]. Therefore, we have
Ix, —/I~0 as t~~ for some PEA. In particular, we
have x, (0)~P(0) and x, ( —rk )~P( rk ) a—s t —+ ao,
k =1, . . . , E. Combining this with (4.28) and (4.29), we
conclude that

Since 5fk( —rk H k & 1, we can always find an l such that
0&1&1 and 5fk( r„) r—&I. Therefore, we will always
have y )0 where y is given by

and

—B(x,(0))+TOS(x, (0))+ g TkS(x, ( rk ) )~—0

l
5fk( —rk }

We now choose fk(8) on [ rk, 0] as—
lfk(8)=

5

(4.24)

(4.25)

It is easily verified that this choice is consistent with
(4.20}. Clearly, fk EC([—rk, 0],R+) since y) 0. The
derivative of fk(8) is given by

fk(8)= i =—fk(8))5f„(8}l 5
5(y —8)' (4.26)

dE(x, ) (0 (4.27)

along any solution x, of Eq. (3.2), where E(x, ) is the en-
ergy functional given by (4.3).

We know from (4.10) that if dE(x, )/dt =0, then
Hp =0 Hk =0, and Gk =0 for k = 1, . . . , K, where Hp,
Hk, and Gk are given by (4.6), (4.7), and (4.11), respec-
tively. For any PEC([—rz, O], R"), we denote

E4, =0

since 1 &1. Combining (4.23) and (4.26), we can verify
that f„(8)satisfies condition (4.19).

Therefore, we have shown that if Prk II Tk II
& ak, then

there exists an fk(8} [given by (4.25), where y, 5, and
fk( rk ) are given b—y (4.24), (4.23), and (4.20), respective-
ly] such that conditions (4.17) and (4.19) are satisfied.
Thus Mk(x„8) is positive definite for all x, satisfying Eq.
(3.2) and all 8E[—rk, 0] for k=1, . . . , K. We have
shown

x(t) = —Cx+ TOS(x(t) }+T,S(x(t —~)), (4.31)

where C=diag[c„. . . , c„] with c;)0 for i =1, . . . , n,
and To, T&, and S(x) are the same as in (3.2). System
(4.31) has been addressed by several workers. Applying
Theorem 1, we obtain that system (4.31) is globally stable
if

(4.32)

where P is defined in the same way as in Theorem 1, not-
icing, however, that A(x) equals the identity matrix in
this case. The bound condition (4.32) for the global sta-
bility of system (4.31) is identical to the result reported in
[20].

V. LOCAL STABILITY ANALYSIS
OF COHEN-GROSSBERG NEURAL NETWORKS

WITH MULTIPLE DELAYS

In the preceding section we showed that if
gk &rkPII Tk II

& 1, the Cohen-Cxrossberg neural networks

Tk[S(x,(P( —rk))) —S(x,(0))]—&0, k=1, . . . , J
as t ~~. It follows that —B(x,(0))+TS(x, (0) )~0 or

B(x(t))+—TS(x(t))~0, as t approaches oo. Now since
x, is bounded (Fact 1), we conclude that any point in the
limit set of x(t) as t ~~ is an equilibrium of system (3.2)
[or, equivalently, an equilibrium of system (3.1)]. Fur-
thermore, since the set of equilibria of system (3.2) is a
discrete set (Lemma 3), it follows that x(t) approaches
some equilibrium of system (3.2) as t tends to
00,

Remark 3. Consider a special case of (3.2), a Hopfield
neural network with the same delay v., described by the
equation of the form
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U(x„e)=[xeR": iix
—x, ii&e] . (5.1)

Since x, is a stable equilibrium of (3.2), there exists an
g&0 such that for any PHC([ —r, O], R") satisfying
~p

—x, ~
& il, ~x, —x, ~

& e for all t & 0, where x, is the solu-
tion of (3.2) with initial condition P. Thus

with multiple delays described by Eq. (3.2) [or,
equivalently, by Eq. (1.4)] possess global stability. Since
in the implementation of neural networks as associative
memories information is stored in specific asymptotically
stable equilibria (called stable memories), good criteria
which ensure the asymptotic stability of an equilibrium of
(3.2) are of great interest. We address this issue in the
present section.

At the present time, there are no known general results
which provide necessary and sufficient conditions for the
asymptotic stability of an equilibrium for Cohen-
Grossberg neural networks with multiple delays (3.2).
Even for special cases of (3.2), a class of Hopfield neural
networks with one delay, given by (4.31), there are only
results which provide sufficient conditions for the asymp-
totic stability of an equilibrium. Some of these results are
obtained by linearizing (4.31) about an equilibrium of in-
terest (see, e.g., [14]}. Other results, which make use of
sector conditions for nonlinearities, have been obtained
by Lyapunov's second method (see, e.g. , [19]). In the
present section we will show that if the conditions of
Theorem 1 are satisfied, then the asymptotic stability of
an equilibrium of (3.2) can be deduced from the asymp-
totic stability of the same corresponding equilibrium of
system (3.1). In other words, if gk, rkp(IITk ~~

& 1, then
(as shown in the preceding section), Cohen-Grossberg
neural networks (3.1) and Cohen-Grossberg neural net-
works with multiple delays (3.2) are both globally stable
and, furthermore (as will be shown in the present sec-
tion), both have similar local stability properties at an
asymptotically stable equilibrium. This enables us to ver-
ify the asymptotic stability of the equilibria of system
(3.2) by ascertaining the asymptotic stability of corre-
sponding equilibria of system (3.1).

In order to proceed further, we require the following.
Definition An elem. ent tI)EC([ —r, O], R") is called a

local minimum of the energy functional E defined by (4.3)
if there exists a 5 & 0 such that for any P C C( [ —r, 0],IR"),
E(P) E(P) whenever ~P P~ &5. — ~

We are now able to establish the following results.
Theorem 2. Suppose that the conditions of Theorem 1

are satisfied. If x, is an equilibrium of (3.2), then the fol-
lowing statements are equivalent: (1) x, is a stable equi-
librium of (3.2); (2) x, is an asymptotically stable equilib-
rium of (3.2); (3) P„ is a local minimum of the energy

e

functional E given by (4.3), where P HC([ —r, 0],IR")
e

such that P =x, ; and (4) J(x, ) is positive definite, where
e

J(x) is given in Eq. (3.3) in Assumption B.
Proof.
(a) (1) - (2). Since Assumption B is satisfied, the set

of equilibria of system (3.2) is a discrete set by Lemma 3.
Therefore, when e )0 is sufficiently small, there is no oth-
er equilibrium in U(x„e), a neighborhood of x„given by

x, EC([—r, O], U(x„e)) for all t .In view of Theorem 1,
x, will converge to some equilibrium of system (3.2).
Since x, is the only equilibrium of (3.2) in U(x„e), it fol-
lows that x, converges to x, . Thus we have shown that
x, is an attractive equilibrium of system (3.2). Therefore,
the stable equilibrium x, of (3.2) is an asymptotically
stable equilibrium of system (3.2).

(b) (2) = (3). Since x, is an asymptotically stable
equilibrium of system (3.2), there exists an il )0 such that
for any PHC([ —r, 0],R") satisfying ~P

—x, ~ &g, x, con-
verges to x„where x, is the solution of (3.2) with initial
condition P. Therefore E(P ) &E(x, ) &E(P) for any

p C C( [ —r, 0],R") satisfying
~ p —x, ~

& il. Therefore, p„
is a local minimum of the energy functional E.

(c) (3) - (4). Let E be a function from R" to R
defined by

n x,.
E(x)= S(x)T—S(x)+2 g f b;(o )s (o )der . (5.2)

Comparing E with E, we note that E is a function defined
on R", while E is a functional defined on C( [ —r, 0],R").
Since P„ is a local minimum of E, x, must be a local

e

minimum of E. Otherwise there would exist a sequence
Ix„]C:R" such that x„~x, as n ~ ao and
E(x„)&E(x, ). Let P„denote the constant function

n

P„=x„ in C( [ —r, 0],IR"). Then
~
P„—P„~—+0 as

n~oc and

E(P )=E(x„)&E(x,)=E(P ) .

This contradicts the fact the P„ is a local minimum of E.
e

Therefore, x, is a local minimum of E. Hence J(x, ) is
positive semidefinite (see, e.g., Theorem 3.6 of [22]),
where J(x) is the Hessian matrix of E given by

J(x)= (5.3)

It can be shown that

J(x)=2S'(x)J(x)S'(x),

where S'(x)=diagIsi(xi), . . . , s„'(x„)] and J(x) is given
by Eq. (3.3) in Assumption B. Therefore, J(x, ) is also
positive semidefinite. By Assumption B, J(x, ) is a non-
singular matrix. Thus we have shown that J(x, } is posi-
tive definite.

(d) (4) - (1). We need to prove that x, is a stable
equilibrium of system (3.2), i.e., for any e) 0, there exists
a 5&0 such that for any PEC([ —r, O],R"), if

~ P
—x, ~

& 5, then ~x, —x, ~
& e, where x, is the solution of

(3.2) with initial condition P.
Since J(x, ) is positive definite, then J(x, ) must also be

positive definite where J(x) is the Hessian matrix of E
given by (5.4). Furthermore,

V E(x}=2[—TS(x)+B(x) b] S'(x), —

where S'(x) is given in part (b). Therefore, V„E(x,)=0
since x, is an equilibrium of (3.2). It follows (by Theorem
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3.6 of [22]) that x, is a local minimum of E, i.e., there ex-
ists a 5i & 0, 5, & e such that whenever 0&)~x —x, ~~

& 5„
E(x, )&E(x). Let r=min[E(x): ~~x

—x, ~~=5, ]. Then it
is true that r &E(x, ). Since E(ttp„)=E(x, ), it follows

e

that r &E(P„). Note that E is a continuous functional.
e

Therefore, there exists a 5&(0,5, ) such that whenever

~P
—x, ~

&5, where tbEC([ —r, 0],IR"), we have E(P) &r.
Suppose x, is any solution of (3.2) with the initial condi-
tion P such that

~ P —x, ~

& 5. We will show that
~x, —x, ~

& 5, & e. Otherwise there would exist a tc & 0
such that ~[x, (0)—x, ~~=5„ i.e., ~~x(tc) —x, ~~=5, . By the

definition of E and E, we have E(x, ) &E(x(tc)) &r.
0

Therefore, we obtain E(x, ) &E(P), which contradicts
0

the fact that E is monotonically decreasing along any
solution of (3.2). Thus we have shown that x, is an
asymptotically stable equilibrium of system
(3.2). 8

Remark 4. We note that statement (4) in Theorem 2 is
independent of the delays ~k, k =1, . . . , K. Therefore, if
system (3.2) satisfies Assumptions A and B and if the con-
dition gk, rkp(( Tk ~~

& 1 is satisfied, then the locations of
the (asymptotically) stable equilibria of system (3.2) will
not depend on the delays ~k for k=1, . . . , K. This is
true if, in particular, ~k =0, k=1, . . . , K. Therefore, if

,rkp~~Tk ~(
& 1, then systems (3.2) and (3.1) [obtained

by letting rk =0 for k =1, . . . , K in (3.2)] will have iden-
tical (asymptotically) stable equilibria. We state this in
the form of a corollary.

Corollary 1. Under the conditions of Theorem 1, x, is

an (asymptotically) stable equilibrium of system (3.2) if
and only if x, is an (asymptotically) stable equilibrium of
system (3.1). This is true if and only if J(x, ) is positive
definite, where J(x) is given in Eq. (3.3) (in Assumption
B).

Remark 5. Corollary 1 provides an effective criterion
for testing the (asymptotic) stability of any equilibrium of
Cohen-Grossberg neural networks with multiple delays
described by (3.2). This criterion constitutes necessary
and su%cient conditions, as long as
Xk =1+kPII Tk II

& 1. S
VI. CONCLUDING REMARKS

In this paper we considered the local stability as well as
the global stability of Cohen-Grossberg neural networks
with multiple delays given by system (3.2). We showed
that if the condition gk =,rkp~~ Tk ~~

& 1 is satisfied, then
Cohen-Grossberg neural networks with multiple delays
and corresponding Cohen-Grossberg neural networks
without delays given by system (3.1) have identical
asymptotically stable equilibria and both networks are
globally stable [i.e. , any trajectory of system (3.2) ap-
proaches some equilibrium of (3.2)]. In addition, we
proved that if the above bound is satisfied, then any equi-
librium x, of system (3.2) is asymptotically stable if and
only if J(x, ) is positive definite.
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