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Boundary-value problems of enhanced backscattering in a random medium
and the inner structure of the Bethe-Salpeter equation
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Boundary-value problems of enhanced backscattering in a system consisting of a random medium and
boundaries are investigated, based on the Bethe-Salpeter (BS) equation formalism. The solutions are
shown to be obtained, independent of the boundary-value problems involved, from the incoherent part of
the solutions when normal scattering is assumed throughout, and also from the variety of expressions
that are available to choose from, according to a previous theory that was developed to write various re-
sults in a unified form, so that the medium and boundaries are involved on exactly the same basis. The
method is based on the coordinate-interchange principle, and the procedure is simple when the inter-
change is made through optical expressions. The BS equation of the second-order Green's function can
be regarded as a four-coordinate function equation. This observation leads us to write basic equations in
a manifestly invariant form against an arbitrary coordinate interchange of the four coordinates involved.
A detailed inner structure of the BS equation is found therefrom, independently of the specific medium
involved. A close relationship with the fourth-order Green s function is shown.

PACS number(s): 03.20.+i, 05.40.+j, 03.80.+r, 05.60.+w

I. INTRODUCTION

In previous papers [1], scattering by a system of ran-
dom media with rough boundaries was investigated,
wherein a scattering matrix of the entire system was con-
structed by successive addition of independent scattering
matrices of the medium and the boundaries, together
with the optical condition of each scattering matrix in-
volved, as well as that of the entire system as one scatter-
er. The theory was developed based on the Bethe-
Salpeter (BS) equation, which was introduced for a sys-
tem of random layers with a possible fixed scatterer em-
bedded [1,3] and in which the random medium and the
rough boundaries were treated on exactly the same foot-
ing so that several expressions are possible for the same
quantity by interchanging the roles of the medium and
the boundaries, providing us with a variety of expressions
to choose from. Based on the reciprocity principle,
enhanced back-scattering was understood as a natural
consequence of requiring the coordinate-interchange in-
variance for the solution of the BS equation, as had been
emphasized by Vollhardt and Wolfe [4] in connection
with the Anderson localization problem in condensed
matter [5,6]. The cyclic diagrams had been introduced
and evaluated previously to account for the enhanced
backscattering [7]. Also for light waves, enhanced back-
scattering by a random medium has been investigated
both theoretically and experimentally [1,8 —10] and the
coordinate-interchange principle was utilized to derive
the results in a simple manner, within the diffusion ap-
proximation. Here the boundary condition for the
diffusion equation changes from one boundary to anoth-
er, depending on a surface impedance determined by the
boundary scattering matrix [1]. Enhanced backscattering.
by a fixed scatterer embedded in a random medium was
investigated in detail [10] and effective scattering ma-

II. BASIC EQUATIONS

The coordinate vector in three-dimensional space is
denoted by x=(x„x2,x3)=(p,z) with p=(x„x2) and
z=x3, where the z axis is taken in the direction normal
to the average boundaries (Fig. 1). The scalar product of
two space vectors a=(a, z, ) and b=(b, b, ) is denoted by
a.b =a.b+ a,b„where a.b =a

&
b

&
+a z b 2. We first con-

sider two random layers separated by a rough boundary
which is planar on average, as illustrated in Fig. 1. A
scalar wave function g(x)e' ', where co &0 and t is time,
is considered and is denoted in each layer by g, (x),
a = 1,2, whose wave equation is

[X,—q, (x) ]g, (x)=j,(x), (2.1a)

trices of the scatterer for both the normal and the
enhanced backscattering were introduced, which include
effects of the multiple scattering between the scatterer
and the surrounding random medium, as well as the sha-
dowing effect, with particular attention to detailed equa-
tions of power conservation involved.

In this paper, basic equations are first briefly reviewed
by following the procedure of previous papers [1—3], to-
gether with alternative versions of the equations (Sec. II).
The BS equation thus derived for the second-order
Green's function is naturally a two-coordinate matrix
equation and is rewritten as a four-coordinate function
equation which enables us to formulate equations of the
enhanced backscattering systematically in a unified form
for a composite system of random layers and rough boun-
daries (Sec. III). The BS equation is further rewritten in a
perfectly symmetrical form with respect to the four coor-
dinates involved, leading to a detailed inner structure of
the BS equation and related optical relation (Sec. V).
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FIG. 1. Geometry of a rough boundary for Eq. (2.4). The
real boundary S is distributed within the range 0)z & —d&.

trix in view of having symmetrical matrix elements, as
can be shown by applying the Green's theorem to the
boundary space enclosed by S, and Sz and using Eq. (2.4)
for arbitrary two solutions g, (x) and g,'(x), say, with the
vanishing contour surface integral over both sides of S.
Hereafter, the boundary space will be neglected, on let-
ting d2 ~0, unless otherwise noted; so that S]2=S& +S2
at z =0 represents the two reference boundary planes to-
gether. The wave equations (2.1) and the boundary equa-
tion (2.4) can be written by one wave equation of the form
[1,3]

(2.6)

a —k„ 1m[k, ] (0 . (2.1b)

Here both B,'b ' and q, are regarded as x-coordinate ma-
trices, defined by the elements

Here q, =q,* is the random part of the medium and j, is
a source term; k, is the propagation constant when the
medium is free from the random part and the medium is
assumed to be nondissipative for the time being. The
boundary condition is first assumed to be the continuity
of g, and its gradient normal to the (real) boundary sur-
face and, consistently with this, the power Aux vector
W, (x) in the k, space is defined by

B,'b ~(xIx')=5(z+d, )B,'b i(pIp')5(z'+db), dt =0 (2.7)

and q, (x x')=q, (x)5(x—x'). The solution is subject to
the boundary condition that 8'„'g, =0, a =1,2, inside the
boundary space 0 & z & —d2. The proof can be given by
integrating Eq. (2.6) with respect to z over two
infinitesimal regions enclosing S, and S2, separately;
hence Eq. (2.4) is reproduced.

With a matrix U defined by the elements

W, (x)=g;ag, (x),
with a vector operator a defined by

a=(2i)
BX

(2.2a)

(2.2b)

Ub=q 5b+Bb (2.8)

g (Ã, 5„—U„)g,„(xIx')=5,b5(x —x'), (2.9a)

the equation of the deterministic Green's function for the
wave equation (2.6), g,b(x I

x ), can be written as

.g W, (x)=g (2i) '[@,'j, (x)—P,j,'(x)],
X a a

(2.3)

except the boundary. Here W, (x)=0 for x in kbWk,
space.

The boundary condition can be transferred from the
real boundary S onto two reference boundary planes, say,
S& and S2 at z=O and —d2, respectively, chosen such
that the change of the boundary height is ranged between
S, and Sz (Fig. 1); hence, with the notation
8'„'=n ' (0/Bx), where n" is the unit vector directed
outward normally to S„ the boundary equation can be
written as [2]

where the left and right overarrows mean the operation
on the left- and right-hand sides, respectively. Hence the
power equation is

or in matrix form as

(X—U)g =1, U =q+B'"' . (2.9b)

Here u may be regarded as an e6'ective medium represent-
ing both the medium and the boundary on an equal basis.
Since U is a symmetrical matrix with respect to both the
coordinates and the subscripts, v =U, the unified wave
equation (2.9b) shows that the Careen's function is also
symmetrical, i.e.,

g —g, U =U (2.10)

being subject to the reciprocity.
For a general class of scalar waves, the continuity con-

ditions on the (real) boundary can be reduced to those of
1t, and g, 'B„g„with some constant g, depending on
the ath medium, and the equations can be similarly for-
mulated without changing the basic form [2].

—~' 4.(p)= X J dp'B'b"(pIp')A(p') .
b=1

(2.4) A. Statistical Green's functions

Here g, (p) denotes g, (x) bounded on S, and when the
boundary is nondissipative,

B (pIp') =B (p'Ip) =B (pIp'), (2.5)

i.e., the matrix defined by the elements B,'b '(pIp') is Her-
mitian with respect to both the coordinates and the sub-
scripts. This means that B" ' is a real symmetrical ma- (X—M)G=1, G=(g) (2.11)

Equation (2.9b) enables us to obtain the statistical
Green's functions in exactly the same form as those in an
inhomogeneously random medium u and the results are
summarized as follows [1—3]. The averaged version of
Eq. (2.9b) can be written as
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in terms of an effective medium M of v, defined by K'~'(1;2)I(1;2)= & bq (1)hq(2)g'(1)g(2) &, (2.21a)

MG=&., &, M=M«~+M~»~. (2.12) K ' (1'2)I(1;2)= & hB t «( l)bB (2)g~(1)g(2) &,

Here M'q' and M" ' are also defined in the same fashion,
by

M'~'G =
& qg &, M" 'G =

&
B" 'g & (2.13)

and are approximately equal to the independent contribu-
tions from the medium and the boundary, respectively,
with the elements M,'~'5,

b and M,'b '. More precisely,
M' ' includes its change caused by the presence of the
boundary B" ', say, M'q' ', which works as an effective
change of B" ' due to the medium fiuctuation [see also
(3.47)]. The situation is the same also for M" '. The ma-
trix M has symmetrical elements as the whole, i.e.,

K'~' '(1.2)I(1 2)=&hq (1)EB" '(2)g (1)g(2) &

K" g'(1 2)I(1; 2)= &bB" ' (1)b q(2)g'(1)g(2) & .

To the first-order approximation

K' '(1'2)=&q(1)q(2)&,
K" '(1'2) =

& b(1)b(2) &,

(2.21b)

(2.21c)

(2.21d)

(2.22)

M =M, 6 =6 (2.14) while E' ' ' and K" 'q' are of higher order. Their dia-

although M' ' AM' ' and M" ' AM" ', strictly speak-
ing. Dividing B" ' into two parts, &B" '&+i, with the
deterministic part &B" '& and the random part b, the di-
agrams of M'~' and M' '=M" ' —&B" '& are shown in
Fig. 2(a) in series (to the approximation of Cxaussian
statistics).

For the statistical Green's function of second order,
defined by

I,„.,„(x„xenix„x2)—&g„(x,ix, )gbd(xzixz) &,

or in matrix form by

I(1;2)=&g'(1)g(2) &

(2.15a)

(2.15b)

(a)

aU =U —M =aq+as(12),

where

(2.16a)

(here and hereafter, the subscript 1 is attached to the
coordinates of quantities of the complex-conjugate wave
function and the subscript 2 is attached to those of the
original wave function), we first introduce a matrix hv,
defined by

I

„(q)(„)
I

I

2

t

P,

K(l2)( ) . 2 )

QqqM(q)gg(12)g(12)M(12)

and employ the expression

g =G(1+hvg ), & b,vg & =0

(2.16b)

(2.17) 2' (1;2)=
for both g'(1) and g(2) on the right-hand side of Eq.
(2.15b). Hence we obtain an expression

I(1;2)=G ( l)G(2)[1+K(1;2)I(1;2)] (2.18) (b)

z =ac(q)+z(")+ac('")+z("q), (2.20)

which are respectively defined with Eq. (2.16a), according
to

of the form of the Bethe-Salpeter equation, with a matrix
K(1;2), defined by

K(1;2)I(1;2)= & b v ~(1)hv(2)g (1)g(2) &, (2.19)

in the same fashion as M has been defined by Eq. (2.12).
Here the matrix K can be divided into four parts as

FICx. 2. (a) Schematic diagrams of M' ' and
M'b'=M" ' —

&
B" '

&, defined by (2.13), are shown to the fourth
order of q and b, assuming Gaussian statistics. Here G, q, and b
are represented, respectively, by a solid line, filled circles, and
open circles and are connected in the order of their matrix mul-
tiplication. & q

. q & is represented by dashed lines connecting
the filled circles of the q's and & b . . b & is represented by wavy
lines connecting the open circles of the b's. The terms from
M' ' ' and M" ' are included by the last diagram of each, re-
spectively. (b) Nonvanishing elements of X'~'(1;2), X" '(1;2),
and K" ~'(1;2) de6ned by (2.21) are shown to the lowest order
of approximation, with the same notation as in (a).
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~P(x) =I (x)—EG(x)X . (2.23)

Here the matrices EG(x~ 1;2; ) and I (x~1;2) are defined
by

b G(x~ 1;2)=5(x~ 1;2)(2i ) '[G (1)—G(2)], (2.24)

grams are shown in Fig. 2(b) to the same approximation
as in Fig. 2(a) for M's' and M' '. They play an essential
role in the enhanced backscattering and we will return to
this problem in Sec. III. For the time being, however, we
approximate X(1;2}by an independent sum of K'q' from
the medium and Ã" ' from the boundary, as in (2.31).

The matrices M and K, as defined by Eqs. (2.12) and
(2.19), respectively, are not quite independent of each
other, subject to a local (optical) relation of the form

E(1;2)=J '~'(1;2)+E" '(1 2) . (2.31)

Here K ' is a diagonal matrix with respect to the sub-
scripts, having only the elements IC,' '=—IC,'~.'„,while the
important elements of IC" ' are IC,'b ' ——IC,",.bb. Hence, in
terms of the notation I,'$+' '=I„.

&b and

U,'p(1;2) =G,~( l)G,b(2), (2.32)

the BS equation (2.18) can be written in 2 X 2 matrix form
as

B. Case of neglecting the enhanced backscattering

The terms E's' ' and K" s' in (2.20) for the in-
coherent factor IC are of higher order and negligible, as
long as the enhanced backscattering is not considered.
Hereafter in this section, we approximate K(1;2) by an
independent sum of IC'~' and IC ' ' as

I (q+12) U(c)[ 1+(It (q)+It (12) )I(q+12) ] (2.33)
I (xi 1;2)=5(xi1;2)(2i) '[M*(1)—M(2)], (2.25)

wherein 5(x~ 1;2) is defined by the elements

5,b (x
~ x, ;x2) =5,b 5(x—x, )5(x—xz) (2.26)

such that, for any matrices A '(1) and 8(2), the product

The situation is the same also for the case of a random
layer, as illustrated in Fig. 3, and various equations for-
mally remain unchanged with setting

(2.34)

(2.35)
5(xil;2)A (1)8(2)—:A 8(xil;2)=A B(x)

represents

g J dx, dx25, b(x~x„x2) A,', (x, ~x))Bbd(x2~xp)
a, b

ts,s(xlx~;x2) =5gb(xlx~'x2)(2i)
Bx)

Hence, with a matrix a(x) defined by the elements
T

(2.27a)

(2.27b)

(2.28)

Thus, using the notation I,')+' + ', a, b =1,2, 3, for the
second-order Green's function in this case, we obtain the
BS equation in 3 X 3 matrix form as

I~9+»+»~= U~c~[1+(~~e~+It ~»~+It ~»~)I~q+»+»~]

(2.36)

Here IC'~' is a diagonal matrix with the elements
K,')'=E,'~'5,

b and E" ' and EC' ' are the contributions
purely from the boundaries S&z and S23, with the nonvan-
ishing elements IC,'b ', a, b =1,2, and IC,'& ', a, b =2, 3.

the BS equation (2.18}leads to

.(a+P }I(x)=b.G(x), (2.29)

equivalent to the averaged version of power equation
(2.3), except the P term, which represents an additional
power flux by a surface wave propagating along the
boundary.

A local o tical relation similar to (2.23) holds true also
for each M ' and IC' ', approximately, providing the opti-
cal condition of each constituent; e.g., for M' ' and E'~',
Eq. (2.23) is replaced by

z=O

k2
1

12

C. Solutions and scattering matrices

To obtain the solution of the BS equation (2.33), we
first introduce the solution in the special case K'~'=0 (on
keeping M'~'%0), say, I"2', so that

I'~'(x) —b G' '(x)IC'~'=0 . (2.30)
2

k2 q2

Here G' ' is the Green's function in a homogeneous space
of M'~' and the replacement of M —+M' ' and IC —+JC'q'

has been made in view of the negligible boundary efFect
on M'~' and K'~'. The local relation (2.30) leads to the
conventional optical relation of the medium cross section
per unit volume, by the x integration and subsequent op-
tical transformation (Appendix B). The same also holds
for the boundary counterpart.

2
k3

'23

FIG. 3. Geometry and notations of a random layer for Eqs.
(2.36), (2.74), and (2.75).
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I(12)—U(C)(1+I(.(12)I(12))

with the solution

(2.37) explicit by introducing a solution of Eq. (2.50) in the case
o-" ' =0, say, S' ' ', defined by

I(12)—U(&) + U(&) + U(&)S(12)U(&) (2.38)
S(oq) =J,""(1+US'"') =(1—It. (q) U)-'X(q), (2.51)

S(12) I(. (12)(1+U(C)S(12)) (2.39)

in terms of an (incoherent) scattering matrix S" ' ofE" ', defined by

so that Eq. (2.50) is written, on using (2.45), as

S(q/12) —S(oq)(1+ U~(12) US(q/12) )

=(1—S(oq)U ( )U) S( q)

(2.52a)

(2.52b)

and given formally by

S(12) (1 I(. (12)U(C)) —1It (12) (2.40)
I(q+12)—I(12)+(1+U (12))g(q/12)( (12)U+1) (2.53)

Thus I'q+' ' of (2.48) is finally written, with Eq. (2.45) for
I', in the form

The Green's function G,b can be written in the same
form

6 G (0)g +G(0)T( 12)G (0)
ab a ab a ab b (2.41)

U, (1;2)=[G,' '(l)]*G,' '(2),
U' ' of (2.32) can also be written in the form

U' '(1;2)= U(1;2)+ U(1;2)V" '(1;2)U(1;2),
with a coherent scattering matrix V" ' defined by

(2.42)

(2.43)

V( )(1~ 2) = T( 2)*(1)T(12){2)+T(12)*(1)[G(o)(2)]

+T(' )(2)[G( )'(1)] (2.44)

Herein the interference terms are negligible when the
source and the observer are both separated enough from
the boundary, while they are otherwise not negligible
[e.g., (2.46) and, in the case of shadowing, (3.55)].

Thus, with (2.43), Eq. (2.38) can be written in the form

I(12) U + U (12)U (2.45)

Here o" ' means a resultant scattering matrix of the
boundary S12 and is given by

u" '= V" '+(1+ V" 'U)S" '(UV" '+1) . (2.46)

The introduction of I" ' by Eq. (2.37) enables the BS
equation (2.33) to be rewritten as

I(q+12)—I (12)( 1+~(q)I(q+12) ) (2.47)

in terms of Green's function 6,' 'in a homogeneous rnedi-
um of M,'q' and a boundary scattering matrix T,'b ' (Ap-
pendix A is devoted to deriving a specific expression of
T" ' in terms of M" '). Therefore, by introducing a di-
agonal matrix U, (1;2), defined by the elements

Here the entire effect of the random medium appears
only through a new matrix J(q ' ', defined by

g(q/12) US(q/12) U

and given as the solution of
g(q/12) g(Oq)( 1+ (12)g(q/12)

)

where, from Eq. (2.51), 2( q' is the solution of

US(o, ) U

= m 'q'( U+ g(Oq) )

(2.54)

(2.55)

(2.56a)

(2.56b)

l. Example: Case ofa semi infnite ran-dom layer
(qg =0, qg+0)

We have S(1'q'= J'1$ ' '=0, b =1,2, and the only non-
vanishing matrix element of S(q/' ' is S2($/' ', which, from
Eq. (2.55), is the solution of the integral equation

g(q/12) g(Oq)(1+ (12)g(q/12)
)2q2 22 2

Here J(2 q' is the solution of Eq. (2.56b); hence

'= U I(.' '(U +2' '),

(2.57)

(2.58)

which, to the optical approximation, can be converted to
the radiative transfer equation with an incoherent source
term and subject to the condition of no reAection at the
boundary of the medium E' ', distributed over the range
0+z ~ —~ (Fig. 1). Hence, when the wave source is lo-
cated in k, space, I 'q+ ' ' in the same space is given ac-
cording to (2.53), by

and is a diagonal matrix with respect to the subscripts,
each matrix element of which is the independent solution
in a semi-infinite random layer of qi (z &0) or q2 (z & 0),
and tends to zero as EC 'q' —+0.

and hence the solution as

I(q+ 12)—I( 12)+I(12)S(q/12)I ( 12)
7

I(q+ 12) I(12) + U (12)g(q/12) (12)U11 11 1 O 12 22 O-21 1

and the wave transmitted into the k2 space is
2.48

(2.59)

in terins of a scattering matrix S' ' ' of E ' ', defined by I(q+12) I(12)+(1+U (12))g(q/12) (12)U
21 21 2~22 2Z ~21 (2.60)

~(q)I(q+ 12) S(q/12)I(12)

and hence governed by

S(q/») =I(.(q)(1+I(»)S(q/»))

(2.49)

(2.50)

Another expression of I ' + ' ' is obtained by inter-
changing the roles of the medium q and the boundary S12
and is given by

with the superscript (q/12) meaning the dependence on
g " ' through I" '. Here the effect of g " ' can be made

I( q + 12) I(Oq) +I (Oq) ( 12/q )I (Oq) (2.61)

Here I,),
q' ——I(oq)S.„, I."q' = U. +2."q', with the in-
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(12)g(q /12) (12/q ) g(Oq)

g(q/12) (12) g(Oq) (12/q)
7

(2.62a)

(2.62b)

coherent part 2(, q' of Eqs. (2.56}, is the solution of the BS
equation in a homogeneous medium of X,' ' when
o" '=0 and the factor o" q' means an effective scatter-
ing matrix of o" ' as affected by the medium fluctuation;
it is defined by

with a scattering matrix o' q+' ' of o' ', defined by

(23)g(q/12+23) — (23/q+ 12)g(q/12) (2.73a)

Here it can be shown that

(23/q+12)
[ 1 (23/g) g(0q) (12/q) g(Oq) ]

—1 (23/q )
7

(2.73b)

which enables Eq. (2.55) to be written by

g(q/12) —g(Oq)+ g(Oq) (12/q)g(Oq)

together with the inverse relation

(12/q) (12)+ (12)g(q/12) (12)

(2.63)

(2.64)

which has been given exclusively in terms of the effective
scattering matrices of the boundaries o' ' and o"
and the boundary values of 2' q' on S,2 and S23.

2. Example: Case ofa random layer
(q z

=q3 =0. q~&0)

(12/g ) (12)[ 1 + g(Oq) (12/q ) ]

which formally gives o" q', by

(2.65)

Substitution of relation (2.63) into Eq. (2.62a) leads to
The only nonvanishing element of J(q/' + ' in (2.70) is

g2($/' + ' in this case. Hence, when the source is in k)
space and the layer width L is large enough so that
y2L »1, I'q+' + ' within the same space is given, with
I(12+23) I(12) by

(12/q) [ 1 (12)g(Oq) ]
—1 (12) (2.66)

I(q+12) = U + U (12/q)U
11 1 1~11 1 (2.67)

in terms of (7" ' and the boundary values of 2( q' on S,2.
When q( =0 and (I2%0, Eq. (2.61}shows that

I(q+12+23) I(12) + U (12)g(q/12+23) (12)U11 11 1~12 22 ~21 1

—I(q+12) + U (12/q)g(Oq) (23/q+12)
11 112 2 22

X g(Oq) ~ ( 12/g) U2 21 1

(2.74a)

(2.74b)

I(12+23) U g + U (12+23)fIab a ab a ~ab b (2.68)

Here, when the distance between the two boundaries L is
sufficiently large compared with the wave coherence dis-
tance, say, y2 ', so that y2L »1, o" + ' can be approxi-
mated by

(12+23) (12)+ (23) (2.69)

being the independent sum of the two boundary scatter-
ing matrices o" ' of S12 and o' ' of S23. Thus the solu-
tion I'q+' + ' of Eq. (2.36) can be expressed, in refer-
ence to Eq. (2.53) for I'q+' ', by a 3X3 matrix equation
as

I'q+ "+"'=I'"+"'+(1+U '"+"')
)& g(q»2+23)(~(»+23) U+ 1)

(2.70)

Here, with the approximation (2.69), Eq. (2.55) is
changed to

which provides an alternative expression of (2.59).
Also for the case of three random layers, as illustrated

in Fig. 3, the situation becomes the same by introducing a
solution of when X,'q'=0, a =1,2, 3, say I" + ', and let-
ting I ' + ' do all the roles of I" ' in the equations of
I'q+' ', that is, the basic equations (2.53)—(2.56) remain
unchanged with the replacement of the superscript (12)
by (12+23) and using the expression

I(q+ 12+23) U (23)g(q /12+ 23) (12)U34 3O 32 22 ~21 1

o (23/q+ 12)g(Oq)(T (12/q ) U3o 32

(2.75a)

(2.75b)

where the contribution from I3'1 + ' has been neglected
and the second expression is a direct consequence of rela-
tion (2.73a).

In Eqs. (2.74a) and (2.75a), the random medium is in-
volved only through the boundary values of 22($/' + ' on

S,2 and S23 and, in view of the present condition
y2L »1, the latter can be approximately obtained from
the boundary-value solution of a diffusion equation sub-
ject to appropriate boundary conditions that are deter-
mined by o" ' and 0' ', as was previously done for the
present case in some detail [1]. The same is also true for

to numerically evaluate (7" / ', o' q' and
o' /q+' ', according to Eqs. (2.66) and (2.73b), and there-
by to obtain I()f+' ' and I((f+' + ' according to Eqs.
(2.67) and (2.74b), respectively.

III. COORDINATE INTERCHANGE INVARIANCE
AND THE ENHANCED BACKSCA'I 13ERING

where the second expression has been derived by substi-
tution of (2.72) and followed use of relations (2.62) with
expression (2.59) for I()f+' '. Thus the second term of Eq.
(2.74b) means the entire effect of the boundary S23, in
terms of the effective scattering matrix o" ' of S12 and
the corresponding matrix o' +' ' of S23, which in-
cludes all the effects of multiple scattering between o'
o" ', and the medium q2. Similarly, the wave transmit-
ted into k3 space is given by

gi(q/12+23) g(Oq) [ 1 + (
(12)+ (23) )g(q/12+23) ]

—g(q/12) [ 1 + (23)g(q/12+23) ]
—g(q/12)+ g(q/12) (23/q+12)g(q/12)

(2.71)

(2.72)

The deterministic Green s function is subject to the re-
ciprocity g(xix')=g(x'ix) or g =g, in view of u =u in
the governing equation (2.9b), and therefore not only the
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I(x» x2, x3p x4) =I(x, ~ x2 l xi ~x3&xp~x4)

and similarly a four-coordinate function U defined by

U(xi, xz, x3 x4)=G*(xilx3)G(x2lx4) .

(3.1)

(3.2)

Also we rewrite the matrix E in the BS equation (2.18) by
using the notation K12 to make sure that it is a two-
coordinate matrix with respect to x1 and x2 with the ele-
ments K(x„'xz x'„x2), on using the primed coordinates
for the row, so that K12I represents

first-order Green's function subject to G(xlx')=G(x'lx),
but also the second-order Green's function I(x»x2lx'»x2)
should be invariant for each of the interchanges x1~x1
and x2~x2, independently. This results in that, based on
this simple symmetry alone, we can find a fundamental
structure of the basic matrix K to a considerable extent
without knowing the details of the specific medium in-
volved.

We first consider the case of a homogeneously random
medium q so that K=K'~' [whenever necessary, we can
replace the E by that of a composite system, e.g., of
(2.20)] and introduce a four-coordinate function
I(xi x2 x3 x4), defined by

V

12 U34

Hence Eqs. (3.8a) and (3.8b) can be written as
VS=K12+E12U12S

=E12+K12E34I,

(3.10)

(3.11a)

(3.11b)

in a form similar to Eq. (3.5).
Here we observe that the function I is invariant against

the interchange of x2 and x4, as we already noticed based
V V

on the reciprocity, and therefore I=I12=I14 in view of
the matrix elements of I14 which are given by those of I12
with x2 x4 and x2 x4. Similarly, U= U14 and

V VS—S12—S14 (3.13)

and, therefore, by the interchange x2~x4 in Eq. (3.11a),

U,2U34=UiqU3~=U' '—:G (1)G(2)G'(3)G(4) . (3.12)
V

We can write the conventional reciprocity as I,2=I34,V

S12=S34 and E12 K34 which are the invariance
against the simultaneous interchanges x1+-+x3 and x2+-+x4.

Thus we learn from expression (3.5) of I that

fdx idx E2(xiyxplxiyxp)I(xiyx2px3yx4) (3.3)
V

S=K14+K14 U14S, (3.14)

In the same way, U will be rewritten by U12 when using it
in the original meaning and the original I wi11 likewise be
rewritten by I,2 whenever confusing. On the other hand,
the matrix E12 can also be regarded as the four-
coordinate function fCi2(xi, x2,x3,x4), defined in the
same way as I had been defined in terms of I=I12 by Eq.
(3.1).

Thus the BS equation (2.18) can be written by

V V PE12 =E +E14U14S, (3.15)

with a syminetrical (and irreducible as defined below) ma-
trix K subject to

E —K 12 E 14 K34 K32 ~ (3.16)

which, upon comparing with the original equation
(3.11a), shows that Kiz&EC, z and that Ki2 can be written
in the form [4]

I= U+ U12E12I,

with the solution

I= U+ U12U34S,

which represents

(3.4)

(3.5)

(3.6)

In fact, the second term of (3.15) is "U,2 irreducible" in
the sense of having no part that can be written in the
form A2U128, 2, so that its diagram is inseparable into
two parts 212 and S12 by cutting the two lines of
Uiz =G*(1)G(2) [Fig. 4(a)]. The substitution of Eq.
(3.15) into the first term of (3.11a) yields a syinmetrical
expression of S [Fig. 4(b)]

in terms of the scattering matrix Sof K, defined by

KI=SU, IE = US,
and given as the solution of

S=E +E12U12S+E14U14S,

(3.7) which, from (3.14), shows that
V V p

K14 =E +K12 U12S

(3.17)

(3.18)

S=E(1+US)'
=K+EIK .

(3.8a)

(3.8b)

Here U34 is the matrix when U is regarded as a matrix
with respect to x3 and x4, say, the x3-x4 matrix, with the
elements

which is the same equation as that obtained from Eq.
(3.15) by interchanging x2 and x4, as it should be to be
consistent. K,4 is U14 irreducible with the irreducible K
with respect to both U12 and U14.

Equations (3.7) can be written by the function equa-
tions as

U(x3,'x41 x3,'x4) =G '(x31x3)G(x41x4), (3.9) V

E12I= U34S E34I U12S (3.19)

and therefore commutable with U12 i.e., U12 U34
U34 Ui2 a function U34 is also defined by (3.9) with

x3~x 1 and x4—+x2, being cyclically changed within the
odd and the even numbers, respectively, hence

leading to the relations
V V

K12 U12S K34 U34S K12K34I (3.20a)
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'V

Ki2

3

S

4

preceding section are changed to U' ', defined by (2.32)
and written in the form (2.43). We also make the approx-
imations K,z =K,2 and K,4=K,~ in Eq. (3.17) to regard
it as a linear equation of S. Thus

S=K„+K'„U(;,)S,
K12=K +K14U(14 S,

(3.25)

(3.26)

S
where Eq. (3.26) is from (3.15).

To find an approxiinate K&2 from (3.26), we substitute
expression (3.25) for S, hence

K12 K +K14U14 K12
"0 0 (C)" (3.27)

FIG. 4. (a) Diagram of expression (3.15) for K». The broken
v Q 'V

lines and the bold broken lines represent X&2 and X.„(v=1,3;
p=2, 4), respectively, and the (horizontal) solid lines represent
G or G. (b) Diagram of the integral equation (3.17) for S with
the same notations as in (a).

upon neglecting the term E14U14 K,2U12 S, whose in-0 (C) 0 (C)"

tegrated contribution is generally small and is neglected
in consequence of being a cross product of K,4U14' and
E,z UPz'S. The solution of Eq. (3.27) can be written as

IC~2 S~~
—(1 Ko~~U(c) )

—iso (3.28a)

and, by the interchange x2+-+x4, also

K14 U14S —K32 U32S K 14K32I .

Thus Eqs. (3.15) and (3.18) can be written by
V' V' V'

K 12 K34 KO +K14K32I
V' V'

K14 =K32 =KO+K12K34I

(3.20b)

(3.21a)

(3.21b)

=K +E U14 14 14 (3.28b)

in terms of the S14 that can be obtained, on making the
interchange x&~x4, from the solution S,z of Eq. (3.8a) in
the case K =E .

Summarizing, the result (3.28b) can be written in the
form

and Eq. (3.17) by

S=E,+E"'I, (3.22a)
K=K +6K . (3.29)

in a symmetrical form in terms of a coordinate-
interchange-invariant matrix K' ', defined by

K K 12K34 +K14K32 ~ (3.22b)

The corresponding equation for I is given from (3.5) with
U' ' of (3.12), by

Here

aK =S' —K'=E' U'"S'
14 14 14 14

=K K 2I14

and the substitution of (3.29) into (3.25) leads to

(3.30a)

(3.30b)

I=U+U")S . (3.23)
S=S +5K . (3.31)

S=K"'+E'4'U"'S,
K")=K'+K")U .

(3.24a)

(3.24b)

A. Approximation

In this section we consider a complex system of ran-
dom medium and boundaries; hence, all the U's in the

Equations (3.22a) and (3.23), which are written in a
manifestly coordinate-interchange-invariant form, corre-
spond to the original equations (3.8b) and (3.6), respec-
tively, and provide a basic set of equations to find the
four-coordinate functions S and I, with the approximate
K' ' obtained by setting K =K; the latter approximation
can be avoided with Eqs. (3.21) for K,. (where v=1, 3
and @=2,4) at the expense of solving the resulting non-
linear equations of S and I. Thus we obtain a governing
equation for S in the form

Hence the resulting I from (3.5} can also be divided into
two parts as

I0+I(back) (3.32)

Here I is the term due to the normal scattering and,
from Eq. (3.30a),

I(back) U (4, C)gK

U""i'— (3.33)

(3.34}

in which U' ' ' is the same as U' ' of (3.12) except that U
has been replaced by U' ' of (2.43); the first term is that
which is obtained from 2, the incoherent part of I, by
the interchange x2+ x4', the last term is a contribution by
the single scattering by K, which will often be neglected
hereinafter. Thus we learned that, to find the term I' ""'
which is responsible for the enhanced backscattering, we
only need the incoherent term in the normal scattering,
independent of the boundary-value problems involved.
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B. Case of a semi-in6nite random layer
(q) =0, q2+0)

As the basic matrix K in this case, we choose

z'=z(&)+x'"' (3.35)

from (2.31); more exactly, the right-hand side should be
written as EC' ' ' + E' ' ', say, as a sum of independent
contributions from the media q and 8,2. Hence the
second-order Green's function in the case of the normal
scattering is I' +' '= U' )+2( +' ', with the incoherent
part 2( +' ' to be given by (3.38), while the basic matrix
K can be written, from Eqs. (3.29) and (3.30), in the form

sc =ac(q)+x(")+ave,

bK=[(K"'+K'"') (K"'+K'"') i "+"']
(3.36)

(3.37)

Here hK includes only the second- and higher-order
terms of&' '+&" '.

Shown in Fig. 5(a) are the diagrams of the first several
terms of the original (3.37) before the coordinate inter-
change (assuming Gaussian statistics as in Fig. 2), while
shown in Fig. 5(b) are those after the interchange x2~x4,
which are, therefore, those of the resulting AK. In Fig.
5(b) the first term is just the second-order term of K" '

defined by Eq. (2.21b) and the first term of the second line
is the first nonvanishing term of E' ' ' defined by Eq.
(2.21c); b,K naturally depends on V" ' to fulfill the
boundary conditions involved. Thus X' ' ' and E" '~'

are both produced as a consequence of considering the
coordinate-interchange invariance and are nonlocal,
long-range functions fulfilling all the boundary conditions
involved, in contrast to the basic parts K' ' and K" '

chosen for K in (3.35), which are short-range functions
of the order of the medium correlation distances.

In the present case in which q, =0 and q2%0, we
choose expression (2.59) for I(4+' ' in the region z & 0 to
give the incoherent part S()f+' ' by

g(q+ 12) g(12) + U (12)g(q/12) (12)U14 11 112 22 21 1 (3.38)

C. Case of a 6nite random layer

(q& =q3 =0, q2%0)

With the geometry in this case as shown in Fig. 3, we
now choose

z'=re(&)+z(")+ac(") . (3.39)

where 2(I'I ) is the contribution purely from I(I'I ) [the sub-
scripts in (3.38) refer to the space numbers and not to the
coordinate numbers as employed in (3.34)]. Thus, once a
specific expression of J(I]+' ' is obtained with an ap-
propriate method including the diffusion approximation,
for example, I' ""' can be obtained therefrom by the
coordinate interchange x2~x4 according to Eq. (3.34).
Appendix B is devoted to the interchange procedure to
derive I' ""'from the optical expression.
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hence Eq. (3.36) and (3.37) are replaced simply by

z =z(&)+z (")+x(")+az,
bK = [(K"'+K'"'+K'"')„

(3.40a)
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I U'c'= U+ UV'"+"'U,

where

(3.41a)

X(K'~'+K" '+K' ')32I'~+ '] (3.40b)

with the replacement of K" '~E" '+K' ' and
+ I +1 +2

y(12+23) y(12) + y(23) (3.41b)

V'(b) aK&2

1
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/
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/
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II I
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/
/
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/
/

I
X/
/X

I
l

/

when the two boundaries are separated enough to be
y2L »1, like cr" + ' in (2.69). Hence most of the previ-
ous equations remain the same with the replacement of
the superscript (12)~ ( 12+23 ). Thus the entire in-
coherent part of I(If+' + ', 2()f+' + ', is given, from
(2.74a), by

g(q + 12+23) g(12)+ U (12)g(q//12+23) (12)U11 1 ~12 22 ~21 1 (3.42)

FIG. 5. (a) Diagram series of b,X&4 from (3.37) before the
coordinate interchange x2~x4. The dotted lines and the dot-
dashed lines represent EC' ' and E" ', respectively, and the
square box represents T" ' defined in (2.43) with (2.44). The dia-
grams in the first line are the contributions purely from the
boundary and those in the second line are from the close terms
made by the medium and the boundary. (b) The diagrams of
4X=4E» are shown, which are obtained from those of (a) by
the interchange x2~x4.

Here J' ' + ' is given by (2.72) in terms of 9('1/I2) and
of (2.73b), which means an effective

scattering matrix of the additional boundary S23 at
z = L, while, when y2—L »1, J(2$/' + ' can be directly
obtained as the boundary-value solution of a diffusion
equation [1].

Thus, once a specific expression of the last term is
found, e.g., through its optical expression, the wave in-
tensity due to the enhanced backscattering by the bound-
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ary S23 can be found based on the principle (3.34), by the
coordinate interchange according to (B21) with (B25) and
(B26}.

~a

r

D. Fixed scatterer embedded in a semi-infinite random layer

Here we consider the case in which a fixed scatterer
q (x) is embedded in the random layer of q2(x) at
p =(p, z = L)—with the geometry of Fig. 6, so that the
original wave equation (2.1a) is changed, with q~q+q
and y y", to

(3.43)

except on the boundary S12. Correspondingly, the equa-
tion of the deterministic Green's function in this case, say
g' ', is changed from Eq. (2.9b) to

T ~ =q' (1+6M T ) =(1—q' GM ) 'q' (3.48)

Thus, by the fixed scatterer, U(o)(1;2) of (2.43) is
changed to U' ' '(1;2), say, of the form

FIG. 7. Diagram of hM defined by (3.45) for a fixed scatter-
er. Here 6, %=K, and T ~ are, respectively, represented by
solid lines, broken curves, and triangles.

(X—
q

—u)g' '=1 u=q+B" ' (3.44} U(C, a) U+ UV( + ) U . (3.49a)

(ug' ')=(qg' ') =(M+5M )G'a'; (3.45)

i.e., hM is a change of M caused by the scatterer and
has the diagram as shown in the series in Fig. 7, upon
neglecting the corresponding effect by the boundary S,2.
Hence we can write the average of Eq. (3.44), as

(X—M —q' )G' '=1,
q' =q +AM

(3.46a)

(3.46b)

in terms of the effective scatterer q', and the solution as

Thus the equation becomes formally the same as in the
previous case of three random layer in which
U =q+B" '+B' ' and, consequently, the followed equa-
tions also become written by the same equations with the
replacement of o' ' by an effective scattering matrix of
the scatterer [1,10].

To obtain the first-order Green's function
G' '= (g' '), we observe that the M, as defined by (2.12),
is changed to M+ AM by an amount AM, according to

Here, when y2L &&1, V' +' '= V' '+ V" '; hence we can
write

U(C, a) —U(C)+ g U(a) g U(a) —UV(a) U (3.49b)

g(q+12+a) —g(q+12)+ U (12/q)g(Oq) V(a/q+12)
11 11 1~12 2 22

X y(Oq) (12/q) U&21 (3.50)

Here V' /q+' ' is given, from (2.73b) with o' )~V' ', by

V(a/q+12) —
I 1 V(a/q) g(0q)(r(12/q)g(0q) ]

—1 V(a/q) (3 51)22 22 2 ~22 2 & 22

Here, from (2.66),

where hU( ' means the change caused by the scatterer
and V' '(1;2) is given by the same expression as (2.44) for
V (1;2), except T TM

Here, to obtain the incoherent part of wave in the
present case, say cF((']

' + ', we observe that another ex-
pression (2.74b) for I',$ ' + ' can be conveniently uti-
lized as it is, with the replacement of the superscript
(23)~(a). Hence

G"=G+GT.,G, V(a/q) [1 V(a) g(oq) ]
—1V(a)

22 22 2 22 (3.52)

P34

34

z=O

g2— a(12)

FIG. 6. Geometry of random layer and fixed scatterer for Eq.
(3.44).

in terms of G =GM in the medium M and the scattering
matrix T ~ of q', defined by

which means an effective scattering matrix of the scatter-
er q

' embedded in a semi-infinite random layer
0 & z ~ —~, with a free boundary at z =0; it includes the
entire effect of the multiple scattering between the
scatterer and the random medium, and its optical cross
section, say V' q'(Q~Q') for the wave incident from
direction 0' and scattered in direction 0, becomes criti-
cally negative in the shadow direction, in view of the
original V( )( Q

~

Q'), which is given by [10]

V' '(Q~Q')=(r' '(Q~Q') —y' '(Q)5 (Q —Q') (3 53)

with the conventional cross section o' )(Q~Q') and the
total cross section y' '(Q) of the scatterer. Hence

fdQV' '(Q~Q')- f dQV' q'(Q~Q')-0, (3.54)

meaning that the total scattered power should be nearly
zero as the whole. This is a consequence of the shadow-
ing effect which results from the interference terms of
V' ' similar to those in (2.44) for V" ' (for details, see
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IV. BASIC EQUATIONS IN AN INVARIANT FORM
OF THE COORDINATE INTERCHANGE

The previous equations can be rewritten in a more
symmetrical form with respect to the coordinates in-
volved. We first assume a homogeneously random medi-
uin with the BS equation of the form (2.18); the extension
to the case of a composite system of random rnediurn and
boundaries can be achieved simply by the replacement
(2.20) or, more briefiy, (2.31), as we did in Sec. III. We
first introduce the notations h . and m. defined byVP VP

h, =K, U,

=1—h. =1—K. U.
VP VP VP VP

(4.1a)

(4.1b)

where v=1, 3 and p=2, 4 and observe that Eqs. (3.11a)
and (3.14) can be unified to be written by

Ref. [10]).
The integral (3.54) has a small negative value and the

absorbed power thereby is spent to make the enhanced
backscattering by the scatterer. Here the latter wave in-
tensity observed in the k

&
space can be obtained from an

optical expression of the second term of (3.50), with the
coordinate-interchange method as described in Appendix
B.

can be unified to be written by

K. I=U "S, K„vI=U".S, (4.10)

h. i=a'Pi=U"'S .
VP

(4.12)

The E. 's are expressed in terms of S through Eqs.
(4.4), which are expressed by

E.„=K +h".S

=K +K".K I=K "
V P

(4.13a)

(4.13b)

Here the second expression has been written in a symme-
trical form, with the aid of (4.11), and the last relation is
the reproduction of the conventional reciprocity. E is
fully irreducible, subject to the condition (3.16), i.e.,

K =K.
VP

(4.14)

with the superscripts v and p, which stand for the sub-
scripts with the complementary odd and even numbers,
respectively. Equations (4.6) provide another version of
the same relations, yielding

h. S=h "S=K. K PI (4.11)
VP VP

the counterpart set of equations in which the roles of I
and S are interchanged are

S=E, +h. S

or simply

(4.2) A manifestly symmetrical expression of S is obtained
by rewriting Eq. (4.5) as

(4.4)

m, S=X, (4.3)
V'

which says that the operation of ~, on S yields its U, -

irreducible part K, . From Eqs. (3.15) and (3.18), the
K. 's are written in terms of K and S, by

K]2=K +hi4S, K)4=K +h&2S,

S=If + ( h, 2+ h )4 )S+h 32(S—K,4
—h, 4S )

+h34(S —J )2
—h, 2S) . (4.15)

S=(h)2+h, 4+h34+h32)S —(h )2h34+h, 4h33)S+J,

Here the last two terms are identically zero in view of Eq.
(4.2). Hence

and S is governed by Eq. (3.17) or

S=K +(h, 2+h, 4)S . (4 5) where

(4.16)

Also, froin Eqs. (3.20), there exist the following relations
between S, I, and E. :

h )2S =h 34S Ki2K34I (4.6a)
V' 'V

h )4S =h 32S K]4K32I . (4.6b)

I =U„. [1+X I,. ], . . (4.7)

The BS equation (2.18) as a two-coordinate matrix
equation can be generalized to be written by

J=E —K'~ 'U, (4.17)

and works as a source term when solving Eq. (4.16) with,
say, the approximations K. =E. and h. =h . . The

VP VP VP VP

first term on the right-hand side of (4.16) is then linear in
h . and the second term works to eliminate the excess

VP

terms of doubled diagrams to be made by the first term.
Equation (4.16) can be rewritten in terms of m, of (4.1b)
as

which is reduced, in terms of the transposed matrices h .
VP

and F, of h, and m, respectively, by

V'

S= ( h, 2 ir34+ h 34~,2+ h, 4m 32+ h 32
m. ,4)S

+(h,3h34+h, 4h3$)S+J . (4.18)

h. =U. K. , m. . =1—h.
VP VP VP VP VP

to the function equations

(4.8)

m. . I=Im. =U. (4 9)

in the same form as Eq. (4.3) for S. The functions I and S
are connected with each other by relations (3.19), which

Here we can directly observe that Eq. (4.18) is equivalent
to Eqs. (3.24), the sum of the first term and J being re-
duced to K"' of (3.24b) in view of relations (4.3). It may
be noticed, however, that the two equations are not
equivalent to each other when making the approximation
E, =E . on the respective right-hand sides, with the ex-

VP VP

pectation that Eq. (4.16) provides an improved version of
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the original equation (4.5), as long as the same approxi-
mation is employed on the both right-hand sides. Each
term on the right-hand side of (4.18) has a particular
meaning as follows: the term h &~34S is the U, 2-
reducible but U34 irreducible part of S, the term h347TI2S
is similarly the U34 reducible but UI2-irreducible part of
S, the term h &2h34S is the reducible part for both UI2 and
U34 and all the other terms are the irreducible parts for
the both. The same is also true for another pair of com-
bination UI4 and U32 constituting U' ' of (3.12).

V STRUCTURE OF Xo

"0 "00 V ] V ] V'

E K +K24 U24X I3 +XI3 UI3E 24 +KI3 UI3IC24 U24X

(5.2)

in the same fashion as Eq. (4.18) for S; i.e., the second
term is U24 reducible but U, 3 irreducible, the third term
is similarly U, 3 reducible but U24 irreducible, the last
term is reducible for both U&3 and U24, and, as it is re-
quired, the whole right-hand side is irreducible for all the
U, 's for the same reason that the right-hand side of
(3.15) is U&2 irreducible. By using Eqs. (5.1), the factors
K I3 and K 24 can be eliminated from (5.2) to obtain a
symmetrical expression of K, as

In expression (3.17) for S, the term K is irreducible
with respect to U&2, U34, UI4, and U32, but still reducible
with respect to U, 3=6*(1)G'(3) and U34=G(2)G(4)
and can be divided into a few reducible and irreducible
parts of them by following the procedure to derive the
preceding expressions for S. We first write S by two
equations as

K =K +(h, 3+h24 AI3h34)S
V

QQ
V=K +S—mI3m24S,

in terms of the notations

Ajh'jKjU'j i,j=1,2, 3,4

17 "=17 =1—"h "= 1 —K"U"
J1 gj lJ gJ gJ

(5.3a)

(5.3b}

(5.4a)

(5.4b)

S=XI3+EI3 UI3S
V' ]=K24+ %24 U24S,

(5.1a)

(5.lb)

~00—~00 ~00 yj 00 ~00
12 34 14 32 (5.1c)

which is irreducible with respect to U, 3, U24, and all the
U. 's, and express K by

with a UI3-irreducible matrix KI3 and a U24-irreducible
matrix K24 [Fig. 8(a)], in the same fashion as Eqs. (3.1la)
and (3.14). Here K» =K3, is an x,-x3 symmetrical ma-
trix and @24=%42 is likewise an x2-x4 symmetrical ma-
trix. Unlike K,2 from K,2, the four-coordinate function
K I 3 is not directly connected to the matrix elements of

V'

E I 3 and simply means the U I 3 -irreducible part of S,
which is possibly reducible for all the U,. 's and U34 [see
(5.14)]; similarly, K24 simply means the U24-irreducible
part of S. Here, to write K, we introduce a symmetrical
function

S=(h,3+hl4+h32+h34+h, 3+h34)S
v vo—(h,2h34+h, 4h32+h, 3h24)S+ J

Here

(5.5}

J=K —K U, (5.6)

which di6'ers from J only by the term K being changed
to K . In Eq. (5.5}, the four coordinates are involved on
exactly the same footing. Briefly, the equation can be
rewritten as

"0
(17I21734+ 117I347+31TI31734 2)S =J

With the approximations

(5.7a)

which are similar to those by (4.1a) and (4.1b), except
here latin subscripts are used to refer to both the odd and
the even numbers without distinction. Thus Eq. (4.16) is
written, upon substituting the expression (5.3a} for K
into J, as

K24

2'

(5.7b)

we may regard Eq. (5.5) as a fundamental equation of S to
be solved.

Here it may be worthwhile to confirm that, by setting
K &3 =K&4 =0, Eq. (5.7a) is reduced to the equation

( 17I21734+17I41732 1 )S=J0 (5.8)

v
K(3 So So So

which is equivalent to Eq. (4.16), except for the source
term J being changed to J; by further setting
K i4 %32 0 it is reduced to

"0 "00
7TI27T34S =J =m 34K (5.9)

$$$ $'~$$$$ ~ $~ $ ~ $ $$$$~$$$~$$
$$$$$$ ~ $~$$$~$~$$$$$$

FICx. 8. (a) First four lowest-order diagrams of the matrix
K24 are shown, which is defined by (5.1b) and represented by a
bold broken line in (b). The dotted lines represent K;~,
i,j=1,2, 3,4. (b) First three diagrams of the series (5.14a) for

OO "0 V V'
QQ

upon using X;J.=X,J in J . Hence m. &2S =K &2, which is a
reproduction of the original equation (3.11a) to the same
approximation on the right-hand side.

To investigate structure of the term K', 3, introduced in
Eq. (5.1a), in some detail, we first substitute expression
(5.3b) of K into the right-hand side of Eq. (4.5) and then
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write the result in the form
V' V'

K $ 37724S S0 ~

Here

S =K +(h i2+h, 4)S,

(5.10)

(5.11)

A. Fine structure of the optical relation

Expression (5.16a) for K, suggests that the x integrat-
ed version of optical relation (2.23} can be divided, upon
setting M=M +b,M defined by Eq. (2.12}as the whole,
as

which differs from S of (4.5) only by the first term K be-
ing replaced by E and is therefore irreducible for both
U13 and U24. Thus, since, from Eqs. (5.1a) and (5.lb)

f dxhG(x)K =(2i) '[(M )*—M ],
fdxbG(x)bK=(2i) '[bM —bM],

(5.17)

(5.18)

V I V

E )3 =m)3S,
v I V'

E q4 =~q4S,

we find, using (5.10), that
V

S—m)3 m24 S

K13 i724 S =(1+h24+h24+ . )S
0E24=~)~ S

(5.12)

(5.13)

(5.14a)

(5.14b)

in consequence of Eq. (2.25). Equation (5.18) suggests
that the enhanced backscattering contributes to the main
part of AM, in view of AE, 2 having the structure of
(5.16b) whose first term is an exact version of the second
term in expression (3.30b) for bK =b,K12 and therefore
fully responsible for the enhanced backscattering.

B. Relationship to the Green's function of fourth order

v0 "00 V' V

E =E +hq4m)3S+h )3m24S+h (3h24S . (5.15)

Hence, upon substitution into Eqs. (3.21), we can write a
full expression of E . in the form

E, =E +5K, (5.16a)

Here, for example,
V

biK 12 K 14K 32I+ ( h 24 ir 1 3 +h 13 ir24 +h 13 h 24 )S, (5.1 6b)

showing a detailed structure of the U. -irreducible factor
VP

K, to be in the generalized BS equation (4.7). Shown in

Fig. 9 is the diagram of K by using Eq. (5.15) with K', 3

and K24 of Eq. (5.12).

which show explicitly that K» contains U24-reducible
terms as well as those U &-reducible terms [Fig. 8(b)].

Expression (5.2) for K can be rewritten, in view of
Eqs. (5.12), by

Equation (5.5) for S is equivalent to the original equa-
tion (3.8a) and is nonlinear in view of the coefficients K;~
depending on S through Eqs. (4.13) and (5.3). By making
the approximation E; =E;. , however, the equation be-
comes linear and the results can be written in terms of a
Green's function I,234 defined as the solution of the in-
tegral equation

( ~12~34+~14~32+~13~24 }I1234

or the transposed equation

I1234 12 34 14 32 13 24 2)=U (4)

(5.19a)

(5.19b)

i=U"'S=I, i'.1234 (5.20)

The proof is given by substituting Eq. (5.7a) for J into
the right-hand side of (5.20) and using Eq. (5.19b).

The Green's function I)234 can be shown to be the
fourth-order Green's function, which is defined by

with U'4' of (3.12). Here the n;'s are to .be defined by Eq.
(5.7b) in terms of K;~ . That is, from Eq. (3.23), the in-
coherent part 2 of I can be written as

K0 K)g

~r$$$ ~$$$~ $$$$$

I1234 = (g "(1)g(2)g*(3)g(4)) (5.21)

and is governed by Eq. (5.19a), to first order. In the spe-
cial case in which K32=IC,4=K13=K24=0, Eq. (5.19a)
is reduced to F&2%34I]234 U' '; hence the solution is

I)234 I]2I34 as it should be.

VI. SUMMARY AND DISCUSSION

$$$ $$ ~ $$$$$$$$ $$$$$$$ ~ $ $$$$$~ $r
$

K24

$$~$$$ $$ $$$%

FIG. 9. Structure of EC (represented by a broken line in Fig.
4) is shown as a sum of four terms by (5.2). The function X is
represented by a dotted line.

In principle the boundary condition can always be
written in the form (2.4), in terms of the p matrix B" '

whose elements are determined once the height change of
the boundary surface is given [2]. This enables the origi-
nal wave equation (2.1) and the boundary equation (2.4)
to be unified to be written by one wave equation (2.6) or
by its Green's function equation (2.9) written in space-
coordinate matrix form, wherein v is an effective rnediurn
representing both the medium and the boundary on an
equal basis. Thus, with this unified wave equation, basic
equations of the statistical Green's functions can be for-
mulated in the same fashion as in an inhomogeneously
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random medium and in an exact form without depending
on any approximation [(2.11)—(2.21) and (2.23)—(2.29)].
The basic matrices M and E are strictly de6ned by Eqs.
(2.12) and (2.19), respectively, and various approxima-
tions are possible therefrom. A fixed scatterer q embed-
ded in a semi-infinite random layer is considered with the
wave equation (3.44). Here the scattering matrix T of
the scatterer q in a deterministic medium M, as de6ned
by (3.48), is assumed to be known either theoretically or
experimentally, in advance, and it is asked what is its
effective change caused by the medium fluctuation, which
should lead to the shadowing effect, enhanced back-
scattering, and other effects resulting from the multiple
scattering between the scatterer and the random medium
plus the boundary. A specific evaluation of the shadow-
ing and enhanced backscattering effects in this case was
made to the diffusion approximation in Ref. [10]. In the
case of a semi-infinite random layer, for example, the
boundary-value problem of enhanced backscattering is
reduced to find the last two terms K'~' ' and K" '~' in
expression (2.20) for K. These terms can be obtained,
based on the coordinate-interchange principle, from the
incoherent part of the solutions when the normal scatter-
ing is assumed throughout and also from the variety of
expressions that are available to choose from, as was
briefly reviewed with some additional expressions in Sec.
II. Here the coordinate interchange procedure is simple
when it is made through the optical expressions, with the
method as described in Appendix B; the method was pre-
viously applied to the case of a random layer to the
diffusion approximation [1].

The BS equation of the second-order Green's function
can be rewritten as a function equation of the four coor-
dinates involved. The latter formalism enables us to
write the basic equations in a manifestly invariant form
against arbitrary interchange of the four coordinates
x;~xj, i' =1,2, 3,4 (Sec. V), leading to a fundamental
function equation written in a fully symmetrical form by
Eq. (5.5). On the other hand, making the distinction be-
tween the coordinates of the complex conjugate wave
functions and those of the original wave functions, the
original BS equation (2.18) can be rewritten in a general
form by Eq. (4.7), with X, of the form of Eqs. (4.13),
wherein the term K is irreducible for all the U, 's but is
still reducible with respect to U&3 and U24, having an
inner structure as given by (5.3) with the term K, which
is irreducible for all the U; 's. Thus the irreducible ma-
trix K. is found to have the structure as given by Eqs.

VP

(5.16), together with relations (5.12) and (4.3) indicating
that the operation of m; on S yields the U; -irreducible
part of S. The present formalism naturally leads us to the
fourth-order Green's function defined by (5.21) as a basic
function, which is a coordinate matrix involving the four
coordinates on explicitly the same basis.

APPENDIX A: EXPRESSION OF T" '

IN TERMS OF M" '

AND THE SURFACE GREEN'S FUNCTION

We first introduce the Fourier representation of
G,' '(x —x') by

G,' '(x —x')=(2n. ) fdic, exp[ —iA, .(p —p')]

X G, (z —z'),
with the transform

G,' '(z —z')=[2ih, (A)] 'exp[ i—h, (A)~z —z'~] .

Here

(g) —[(k™}2+2]1/2

(A2)

Here

7 ~ ~=2gh (R~i2~) =7 ~

ab
— l a ab ba (A5}

where ( R,'b ') W (RiI,' ') is the refiection-transmission
coefticient of the boundary and, when it is perfectly
smooth,

h)+h2 h, +h2
(A6)

As will be shown shortly, it is generally given in terms of
the 2X2 matrix M" ', the Fourier transform of M" ' in
the p space, by

(R~iz~) =(ih —M ) (ih+M ) (A7)

where h is a diagonal matrix with the elements
h,b=h, 5,b. Hence, setting z=z'=0 in (A4), the use of
Eq. (A5) leads to the surface Green's function

G(z =O~z'=0) =(ih M" ')— (A8)

in a form similar to the original given by (2.11).
To derive Eq. (A7), we observe that, from Eq. (2.4), the

averaged boundary equation is given, in view of the
definition for M" ' in (2.13),by

2—a'„'(g, (p)) = g Jdp'M, 'b '(p —p')(g„(p'))
b=1

and hence the Fourier transformed version is

—a, &lt, &=M",,"&y &+M'"'(y &

+a, &y, &=M,","&y, &+M,","(y,) .

Here we introduce a particular solution

exp(ih, z)+exp( ih, z)(R» )—, z ~0
&g'"(z) &=

exp[ih, (z+d, )](R» ), z —d, ,

(A9}

(A10)

(Al 1)

written in terms of the reflection-transmission coefficients
(R» ) and ( R 2i ) . Another solution, say, ( g' '(z ) ), is
obtained by interchanging the role of the subscripts 1 and
2, with the coefficients (R2z) and (R,2). Thus those

(A3)
k.' '=(k.'+M,'")' '=k. , Im[k.' '] &0,

where M,'~'(A, ), A, =(A, , h, }, is the Fourier transform of
M,'~' and Im [h, ] &0. Hence G, b(x~x') of (2.41) has the
Fourier transform G,i, (z ~z'} of the form

G,b(z ~z')=G,' '(z —z')5,b+G,' '(z)T,'& 'G& '( —z') .

(A4)
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unknown (R;J )'s can be obtained, on substituting the
above two solutions into Eq. (A10), as the solution of a
2X2 matrix equation

Here k )&y ) lA, l and

y=(2ik) '(M' —M)(u) . (88)

ih—+ih(, R ) =M' '(1+(R )),
which leads to Eq. (A7).

APPENDIX B: OPTICAL TRANSFORMATION
AND COORDINATE INTERCHANGE

(A12) Hence we obtain an important relation that, for any slow-
ly changing function f(u),

(2qr) fdu U(u, A. )f(u)= f dQ U(Q, A, )f(Q), (89)
4m

where

To write equations in optical form, we first introduce
relative coordinates r and p, which are defined by

U(Q, A)=(y —iQ A, ) =U( —Q, —A, ),
f(Q)=(49r) 'f(u=kQ) .

(810)

(811)
r=x2 —x„p=—,'(x2+x, ), (81)

and the corresponding Fourier variables u and A, , defined
by

u= —,'(A,2+1,, ), A. =A,2
—A,

so that

(82)

—A, 'x +A2'x2=u r+A, p . (83)

Then we can write the matrix elements of K in the form

K(x(', x2l x(', x2) =K(r
l p —p'

l
r'), (84)

K(A, „'k2lAI;Az) =(29r) 5(A, —A, ')K(u u'), (85)

the dependence of K(ulu') on A, being suppressed. The
corresponding Fourier transform of S(r,plr', p') is writ-
ten in the original form by S(u, flu', A, '). Here, by chang-
ing the variable u by u=uQ, du=u dudQ, where
u = lul and Q =(Q, Q, ), Q =1, is the unit vector, the op-
tical expression S(Q,plQ', p') is obtained therefrom by
the Fourier inversion only with respect to A, and A, '.

As for the Fourier transform U of U, we utilize the re-
lation

U(1;2)= [6*(1)—G(2)] [G '(2) —[G*(1)] '] (86)

to find the expression

U(u, A, ) =G '(u —A, /2) G (u+ A, /2)

in view of the translational invariance, approximately in
the vertical direction. Here E is usually a short-range
function of p —p', with a nonzero range of the order of
the medium correlation distance. Hence we can write the
Fourier transform in the form

Here the A,, Fourier inversion of U(Q, A, ) is

U(Q, z) —= (2m. )
' f dA, , exp( ii—,z)U, (Q, A, )

lQ, l

' exp[ —Q, '(y iQ—
A, )z], Q,z & 0

0, Qz&0, (812)

while the three-dimensional inversion U( Q,p ) is given
by

U(Q, p)= Ipl 'exp( —ylpl)5'(Q —p/lp ),
fdQ5'(Q Q)—=1, (813)

where 5 (Q) is a two-dimensional 5 function with respect
to the solid angle O. Hence, for example, the optical ex-
pression of KUS becomes, according to formula (89)

fdQ"K(QlQ")U(Q", A, )S(Q",A, lQ', A, '), (814)

g(9/12+231 —U S(qI12+23)U22 2 22 (816)

similar to (2.54) and considering its Fourier trans-
form with respect to the p coordinates say
J22 (Qlk, lQ'), which is given with the aid of (812)

where

S(Q, A, lQ', A, ')=(4qr) S(u=kQ, A, lu'=kQ', 2'), (815)

and a similar expression for K(Q
l

Q') by (811).
The optical expression of Sz$i' + ' in (3.42), say,

'(Q,plQ', p'), z =z'=0, is obtained by using the
expression

=qr5(u —k )(ky —iu A, ) (87) by

Z""'+"'(QlzlQ )= f' dz f dz'U (Q, —z)S","'+"'(Q,.lglQ, , )U, (Q,, )—L —L

= lQ, Q,'l ' f dz f dz'exp[i', z i~,'z']Sz 2—' +9'(Q, zl~lQ', z'),
(817)

(818)

where

A,,= —i(y2 —iQ.A, )Q, ', Q, )0

A,,'= —i(y2 —iQ'. A, l(Q,') ', Q,' (0 .
(819)

exP[i( —A, x, +A2 x2+k3 X3 A4 x4)] (820)

To make the coordinate interchange x2~x4, we ob-
serve from (83) that the Fourier transformation function
is presently
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and the integral (817), rewritten by

S(,&'"'")(0»~Z» ——Z34~ 0„),
is changed to

S(&"'+'"(Q„~Z„=Z„~Q„). (821)

~12 ~34 ~14 ~32 ~ (824)

while the corresponding X, 's are to be given according to
(819) in terms of the A, 's. Equations (822) and (823) are
expressed in terms of the original variables Q,2, Q34 Ar]2,

and A,34 by

Here, from (82),

k012=utz= —,'(J(,1+J(.2),
A A

k 034=u34= —,'(A 3+A4),
A A

kQ, 4=u, 4= —,'(A, , —A,4),
A A

kQ32 —u3z —
—,(A,3 A,3),

(822)

Q14 g (Q12 034) (4k ) (A 12+ A 34)
A A A A
032 z (Q34 013)—(4k ) (A, ,2+ A 34)

A, ,4= —k(0,3+034)+ —,'(A, ,z
—

A 34),

A33= —k(012+034)+ —,'(A34 —
A, tz) .

(825)

(826)

and similarly

A, 12
= —

A, t+ A, 3,

with the relation

k34 = —A, 3+A,4,
A32= —

iL3
—

iL2

(823)

In the case of a fixed scatterer (Sec. III), the transla-
tional invariance does not hold any longer and A, ,2 and

X34 work as independent Fourier variables of integration,
in contrast to the transform (821). The integral was
specifically evaluated to the diffusion approximation in
Ref. [10].
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