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Reaction probability derived from an interpolation formula for diffusion processes
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The present article focuses on a dynamical simulation of molecular motion in liquids. In the simula-

tion involving di6'usion-controlled reaction with discrete time steps, lack of information regarding the
trajectory within the time step may result in a failure to count the number of reactions of the particles
within the step. In order to rectify this, an interpolated diffusion process is used. The process is derived
from a stochastic interpolation formula recently developed by the first author [J. Math. Phys. 34, 775
(1993)]. In this method, the probability that reaction has occurred during the time step given the initial
and final positions of the particles is calculated. Some numerical examples confirm that the theoretical
result corresponds to an improvement over the ClifFord-Green work [Mal. Phys. 57, 123 (1986)] on the
same matter.

PACS number(s): 02.50.—r, 02.70.—c, 82.20.Wt

I. INTRODUCTION

Many reactions in solution dealt with in radiation
chemistry are diff'usion controlled [1—3]. They are deter-
mined by the rate at which reaction particles encounter
each other in the course of diffusion. Hence, in chemical
reaction models, diffusion processes are implemented to
determine the trajectories of the particles, which are
often assumed to be governed by the following (one-
dimensional) stochastic differential equation:

dX(t)=b(X(t), t)dt+o(X(t), t)dw(t), X(0)=xo,

where b =b(x, t) is a dynamical variable of the particles
called the "drift velocity, " o (x, t) is a nondynanucal vari-
able called the "diffusion function, " and w ( t } is a given
standard statistical trajectory called the Brownian pro-
cess (Wiener process). Moreover, "an infinitesimal incre-
ment" dw(t)=w(t+dt) —w(t) of process w(t) for a
small time interval dt )0 is a Gaussian random variable
with mean 0 and variance E[dw(t)dw(t)]=dt, where
E[ ] denotes the expectation. Equation (1} tells us that
the infinitesimal increment in position dX(t)=X(t+
dt) X(t) consists of tw—o parts; a smooth dynamic part
b(X(t), t)dt and a random part cr(X(t), t)dw(t). This
last term may be understood as a Auctuation of particles.
For a precise meaning of the stochastic differential equa-
tion, see, for example, Ref. [4]. In this framework, reac-
tions are combined with reactive boundary conditions—
either a perfectly absorbing boundary condition or an
elastic one. However, it is dificult to find a solution
analytically to Eq. (1) under such conditions, and hence
one needs to perform a numerical simulation for the sto-
chastic equation by using a 6nite difference approxima-
tion to Eq. (1). For example, in the Euler-Maruyama

scheme, the diff'erence equation to Eq. (1) is given by [5]

X„+,=X„+b (X„,n 5t)5t+ cr(X„,n 5t)y „5t
(n=0, 1, . . . )

Xo Xo

(2)

where 5t is the discrete time step, X„=X(n5t), and y„ is
a random variable drawn from a normal distribution
N(0, 1). Through Eq. (2), an approximate trajectory for
the true solution to Eq. (1) with a boundary condition is
built up over successive time steps.

Clifford and Green simulated reactions in radiation-
induced spurs on the basis of Eq. (2) with an absorbing
boundary [1—3]. Their simulation is outlined as follows:
The evolution of interparticle distances in the spurs is de-
scribed by Eq. (2). If the distance of a pair of particles in
the spur is within the reaction distance during the course
of their random flight, reaction occurs and the particles
are removed. Thus the reaction distance plays the role of
an absorbing boundary for the diffusion process of the in-
terparticle distance. However, in this framework, one
may fail to count the number of the reactions which
would have occurred within the time step, since we only
know the positions of the particles at the beginning and
end of each step. This failure can be reduced by decreas-
ing the size of the time step 5t; but this exceedingly con-
sumes computer time in the simulation mentioned above.
Therefore, Clifford and Green proposed a method of in-
terpolating the initial and final positions of the particles
by a pinned Brownian process [4]:By using the interpola-
tion process, they calculated the probability that a reac-
tion has occurred at the absorbing boundary during the
time step, and thereby they counted the number of reac-
tions that would have been missed in the simulation.
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This idea is very appealing, but the method seems to be a
bit rough. Indeed, the connection between the original
diffusion process (1) and the pinned Brownian process is
ambiguous.

Recently, the first author has derived a formula which
expresses an interpolation process for the diffusion pro-
cess satisfying Eq. (1) [6]. The formula is based on a
pinned process which is defined by using the original
diffusion process (1) in a way analogous to that in the
derivation of the pinned Brownian process from the stan-
dard Brownian process. The first purpose of the present
article is to derive the reaction probability by using the
process obtained through this interpolation formula.
Then such a pinned diffusion process must yield a better
interpolation to the original process than the pinned
Brownian process. Therefore, one may expect to improve
Clifford and Green's reaction probability by using the
formula, and it is our second purpose to show this
through some numerical examples.

This article is organized as follows.
Section II is devoted to a review of the interpolation

formula mentioned above. Section III is concerned with
the derivation of the reaction probability on the basis of
the interpolation formula, in a way analogous to that in
Clifford and Green s work [1]. In Sec. IV, it is indicated
through some simple numerical experiments that the re-
action probability reduces the failure of counting the
number of the reactions, and that our theoretical result
corresponds to an improvement over Clifford and
Green's work. Finally, in Sec. V, some concluding re-
marks are given.

II. SUMMARY
OF A STOCHASTIC INTERPOLATION FORMULA

In this section, we give a brief summary of the first
author's stochastic interpolation formula. Since the re-
sult already appears in Ref. [6], we will review it with
stress on the technical ideas.

We first touch on a pinned Brownian process (Browni-
an bridge) [4], which is useful for interpolating between
the given two-boundary values [1—3]. Suppose that x and
y are given random variables on s and t, respectively,
where s and t are given values on 1R'. Then the pinned
Brownian process k(u) on the time interval [s, t] is
defined through the original Brownian process B(t) as
follows [4]:

Moreover, if x and y are compatibly given for B(s) and
B(t), respectively, the right-hand side of Eq. (3) deter-
mines an exact value of the Brownian motion B on each u
in [s, t]. Hence we may regard this process as a sort of
stochastic interpolation process between x on s and y on

Our stochastic interpolation formula is derived on the
basis of a pinned process which corresponds to an exten-
sion of this pinned Brownian process. The pinned pro-
cess is obtained as follows: Let X(t) be a one-dimensional
diffusion process satisfying Eq. (1). Then, replacing the
Brownian process B by this diffusion process X in the
above equation, we obtain a pinned process X'(u) on a
given time interval [s, t] as follows:

X'(u) = t —u

t —s
Q $x+ y

S

+ [X(u)—X(s)]
t —s

[X(t)—X(u)]—oo &s u t & oo,
t —s

X(u) —X(s)=b(X(s), s )(u —s)

+cr(X(s),s )[w (u) —w (s)]

(4)

where x and y are given values on s and t satisfying
X'(t) =y and X (s) =x, respectively. Our process X
reduces to the Brownian process 8, if we set b and cr in
Eq. (1) as 0 and 1, respectively. Hence X'(u) is a pinned
process which corresponds to an extension of the pinned
Brownian process B(u).

Since the original process X is governed by the stochas-
tic difFerential equation (1), we may expect that this pro-
cess is also written by the drift function b and the
diffusion function o. given in the equation; and our sto-
chastic interpolation formula is just derived through such
a procedure. Then, in view of the interpolation, it is as-
sumed that the increments X(u) —X(s) and X(t)—X(u)
in the right-hand side of Eq. (4) are forward and back-
ward in time, respectively. This assumption is essential:
Indeed, if both of the increments in Eq. (4) are forward,
they may be given approximately for the diffusion process
under t —s ((1by

k(u)= x+ yt —s t —s

and

X(t)—X(u) =b(X(u), u )(t —u)

+ [B(u) B(s)]-
t —s

[B(t) B(u) ]—oo & s & u & t & o—o .
S

(3)

It is easy to see that this process satisfies S(t)=y and
k(s)=x, respectively. That is, k(u) coincides with the
given variables at the two end points of the time interval.

o+( (X),uu )[w(t) —w(u)], (6)

respectively, since dX in Eq. (1) arises as a liinit of the
finite forward increment ~(t)=X( t +b t)

X(t) (b.t )0). Then Eq—. (4) is approximately rewritten
in a form containing b and o by substituting Eqs. (5) and
(6) into the right-hand side of Eq. (4). However, the
equation is not suitable as an interpolation formula.
Indeed, it seems natural that one may determine the
value of X' on u through an interpolation formula from x,
y, and the two boundary values of b(X(r), r) and
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d X(t)=b, (X(t), t )d, t+cr„(X(t),t )d„w, (t),
where

(7)

cr(X(r), r) at r=s and ~=t; however, through the above
equation we may not carry out such a procedure, since
Eq. (6) does not contain b(X (t), t ) and o (X(t)', t ). Such a
failure is caused by looking upon X ( t )

—X ( u ) as a for-
ward increment; therefore, one needs the assumption
mentioned above.

We now proceed to obtain an explicit form of our in-
terpolation formula under the above assumption; that is,
we put Eq. (4) for the pinned process X'(u) into a form
containing values of functions b and o. on s and t. As was
mentioned, if t —s &(1 holds, the increment X(u) —X(s)
is approximately rewritten by Eq. (5) containing the
values of the functions b and o on s. In contrast to this,
to rewrite the increment X(t)—X(u ) in a similar fashion,
we need the backward stochastic calculus proposed in
Refs. [7] and [8], since the increment is backward. Ac-
cording to the references, under weaker conditions on b,
o., and the probability density function p of X, the
diffusion process X (t) governed by Eq. (1) satisfies the fol-
lowing backward stochastic difFerential equation:

b, (x, t)=b(x, t) —— (cr p), cr(x, t)=o, (x, t),1

p Bx
(8)

and d, X(t) arises as a limit of finite backward increment
~(t) =X(t) X—(t b t) —(b t )0). Moreover, in Eq. (7),
w~ is a backward standard Wiener process identified
through

d, w, =dw+ — (per)dt .1 a

p Bx

Hence, on account of the meaning of d, X(t), the back-
ward increment X(t)—X(u) in Eq. (4) is given approxi-
mately by

X(t)—X(u) =b, (X(t), t )(t —u)

+cr, (X(t),t)[w„(t)—w, (u)] . (10)

Note that the right-hand side of this equation contains
the values of functions b and cr on t in terms of Eqs. (8).
Hence, substituting Eqs. (5) and (10) into Eq. (4) together
with Eqs. (8) and (9), we rewrite the pinned process X'(u)
in the form containing b and o. as follows:

X'(u) = x+ y+u —s (t —u)(u —s)
t —s t —s

b(X(s),s ) —b(X(t), t )+cr cr(X(t), t )

+ t —u

t —s
cr(X(s),s)[w (u) —w (s)]— u s

t —s
cr(X(t), t)[w(t) w(u)—], —oo (s(u &t & oo .

This is just the stochastic interpolation formula (its ap-
proximate version under t —s «1) we want. For the
precise procedure for the deviation of the stochastic in-
terpolation formula or for the exact version of it, see Ref.
[6]

Finally, we remark again that the above formula (11) is
an extension of a pinned Brownian motion (3) which is
used by Clifford and Green to derive the reaction proba-
bility [1]. Hence we may expect to improve their result
by using this formula, and in Sec. III, we will carry out
this attempt in a way analogous to that in Clifford and
Green's work.

Let us consider a difference scheme, e.g., Eq. (2), hav-
ing the discrete time step 5t for the difFusion process X(t)
described by Eq. (1). Then we denote the discrete times
n5t and (n+1)5t by s and t, respectively. In what fol-
laws, we further modify our interpolation formula (11) to
derive the reaction probability from it. First we assign
x =X(s)=X„and y =X(t)=X„+, in Eq. (11), since the
discrete values X„and X„+& determined through the
difference scheme are regarded as the values of X at s and
t. Next, for each u on [s, t], we replace the terms contain-
ing the differences w(u) —w(s) and w(t) —w(u) in Eq.
(11)as a random variable by

1/2

III. REACTION PROBABII.ITY
t —u

t —s
cr (X(s),s)+

t —s
cr'(X(t), t )

X(t —u)B (u —s)
(t —u)(t —s)

(12)

In this section, by using our interpolation formula (11),
we will find the probability that passage to a reactive
boundary (absorbing boundary), at separation R, occurs
during the time interval 5t, given the discrete positions
X„and X„+&

through a difference scheme for the original
process X.

where B is another Wiener process, because of the Gauss-
ian nature of the Wiener process 8'. Moreover, we
rewrite u as s+v5t, where 5t= t —s( «1) and-
v=(u —s)l(t —s)(0& v& 1). Then Eq. (11) is put into
the following equation:

X'(s+v5t)=(1 —v)x+vy+v(1 v)5t(b b+c)+—+o (v)5t—(1 v)B,—0& v& 1,1 2 (1 v)5t— (13)
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where b&, b2, and c are constants on s and t given by
b, = b—(x,s), b2 b——(y, t), and c = [o (Bo /Bx )](y, t), respec-
tively (note that x and y are given values at s and t) T. he
function o (v) in Eq. (13) is given by

V

(1—v)5t '

Z(r) =( I+&5t )X'(s+v5t) x —(r—5t)R . (16)

cr (v)=(1—v)cri+vcrz, (14)

where o.
&

and o2 are also constants on s and t given by
o, =o (x,s) and o 2

=—o (y, t), respectively. Here we note
that Eq. (13) corresponds to Eq. (10) in Clifford and
Green's paper [1],which is the basic equation for finding
the reaction probability we want. Therefore, in a way
similar to that in their work, we change the variables v
and X'in Eq. (13) as

Bp 8
(g )+ o i} p

a~ az 2 a2'
where

(17)

Then, inserting Eqs. (13)—(15) into Eq. (16), we see that
Z (r}with the initial condition Z (0)=0 forms a diffusion
process whose transition probability density p(r, z, O) can
be shown to obey the following "Fokker-Planck equa-
tion" with absorbing boundary condition p(R —x)=0
[9,10]:

[(o~/o, ) —1]5t r[(o.2/cr, ) —1]5t
b(z, r) =

2
Z+1 (y —R)5t

2[1+v(cr2/cri) 5t](1+&5t) 2[1+x(cr2/o i) 5t](1+r5t)
r[(o z/o, ) —1]5t (b, b2+—c)(5t)
2[1+r(o.2/cr, ) 5t] (I+r5t) (18)

and

~,'+~',~st
o'(r) =o'(v(r))(5t )'= (5t )1+r5t (19)

I

If the function o (v} turns into the constant tr, then it is
easy to see that o (r}is given by the following constant:

O.2+O )
2 2

(5t)' .Now we proceed to obtain the reaction probability.
The probability we seek is just the probability that X'

reaches the reactive boundary at the separation R during
the time interval 5t=t —s. Then transformations (15)
and (16) indicate that this is equivalent to the probability
that the process Z (r) with Z (0)=0 reaches R —x during
the span in time. To calculate such a probability, we
need the transition probability density of Z(r) with the
absorbing boundary condition [9]; that is, we must find
the solution of Eq. (17) with (18) and (19) under the con-
dition p(R —x)=0. It is difficult, however, to solve the
equation with the boundary condition exactly, since b
and o depend on variables z and r. Moreover, in view of
practical simulations, it is desirable that the functional
form of the transition probability density be simple, even
if it is somewhat inexact as to the solution of Eq. (17).
Indeed, if the form is so complex, the reaction probability
derived from the density can also be given in a complex
form, so that the numerical calculation for the probabili-
ty may consume computer time in practical simulations.
On account of these facts, we approximate b and o by
"constants, " respectively, and thereby we obtain an ap-
proximate solution to Eq. (17) with the absorbing bound-
ary condition. First, we are concerned with d (r}. Equa-
tion (19) indicates that o become a function depending
on r because o, given by Eq. (14), is a function with
respect to v. Therefore, replacing cr (v) by an approxi-
mate value, we may transform function o (r) to a certain
constant. In view of this, as such a constant for o (v), we
choose the following average value of the function with
respect to the original time variable v (0 ~ v ~ 1):

(21)& (r)=o (5t) =

This is an approximate constant for d (r). Next, we turn
to function b: As was seen in Eq. (18), the functional
form is so complicated that we directly take a long-term
average for it. Then we obtain the following simple con-
stant:

T~
b = lim — b(z, r)dr=(y —R)5t .

T +co T 0
(22)

Hence we choose this constant as an approximation for b
Replacing b and o in Eq. (17) by b and o (5t), re-

spectively, we finally find an approximate solution (transi-
tion probability density) of Eq. (17) with absorbing
boundary p(R —x) =0 and initial condition Z(0) =0 as

p(r, z, O) =q(r, z, O) —exp
4(y —R)(x —R )

(o i+o z)5t

Xq(r, z, 2(R —x) ), (23)
where

Xexp
[z —z —r(y —R )5t]

( +ocr )5t~r
(24)

For this solution, our reaction probability, denoted by 8'
is calculated by [1,9]

w= f'" f'" (25)
o +0

2
1 f o (v)dv=o2= (20)

Hence, inserting (23) with (24) into this equation, we
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finally obtain the reaction probability that Z(r) reacts at
R —x during the whole time; that is, X' reacts at R in the
time interval 5t =t —s under the conditions X'(t) =y and
X'(s) =x as follows:

[of course, Eqs. (28) and (29) are of this type] as follows:
(a) Euler-Maruyama scheme

X„+,=X„+b (X„)5t +o (X„)y „&5t

4(y —R)(x —R)8'= exp
(rr, +o 2)5t

(26)
where 5t is the discrete time step, and y„ is the N(0, 1)
random variable.

(b) The second order Runge-Kutta scheme

This is the desired result.
Remark. As mentioned in Sec. I, Clifford and Green

obtained the following reaction probability [1]:

X„+,=X„+—,'5t( f, +f2 )+ ,'&5t (—gi+g2)y„i,

where

(31)

2(y —R )(x —R )'ca. =exp
0 5t

(27)

where cr is a single value of the diffusion coefficient o (x, t)
in Eq. (1) at initial time s =n 5t. In contrast, our reaction
probability (26) contains two values of o(x, t) at initial
time s=n5t and final time t=(n+1)5t. This indicates
that the present result is more precise than Clifford and
Green's. Of course, such a difference between Eqs. (26)
and (27) are reduced by decreasing the size of 5t Mor. c-
over, in the case of o (x, t) =const in Eq. (1), two results
just coincide with each other. In Sec. IV, our result Eq.
(26) will be compared with Eq. (27) through a concrete
numerical simulation.

f, =b(X„),

g, =o(X„),
f2=b(X„+fi5t+giv'5t y„q),

g2=o(X„+f,5t+g, &5t y„2),
and y„, and y„z are mutually independent N(0, 1) ran-
dom variables.

IV. NUMERICAL SIMULATIONS

In this section, through some numerical experiments,
we show that (i) the reaction probability (26) is useful for
a more accurate count of the number of reactions in the
diffusion problem with the absorbing boundary, and (ii)
the result corresponds to an improvement over Clifford
and Green's. For these purposes, we give the following
equations as examples of the stochastic differential equa-
tion (1):

1800

1700

1600

1500

1400
O

1300-

1200 I I I

0 0.05 0. 1 0. 15

I I I I I I

0.2 0.25 '0.3 0.35 0.4 0.45 0.5

dX(t) = + dt+ 2d 8'(t), (28)
2000

dX(t) = 6+ dt+2&2X(t)d W(t),X(t) (29)

1900

1800
C

1700
where c is a constant. The former is often used in the ion
pair recombination model [3]: In this model, the equa-
tion represents the distance of a pair of particles which
diffuse under a potential c/x in three-dimensional space.
The latter is the equation which describes the diffusion
process for the square value of the distance process (28).

On the basis of these equations, we perform numerical
experiments in a similar way to that in Clifford and
Green's work, as was mentioned in Sec. I. First, we set
an initial value X(0) and an absorbing boundary value R,
which corresponds to an interparticle distance and a re-
action distance in the chemical reaction model, respec-
tively. Moreover, we prepare two numerical schemes for
the above stochastic differential equations: One is the
Euler-Maruyama scheme and the other is the second or-
der Runge-Kutta scheme [5,11]. They are given for a
scalar autonomous stochastic differential equation

dX(t) =b(X(t))dt+o(X(t))dW'(t)

1600-

1500

1400
K

1300 "

1200 I 1 I I I I I I

0 0.05 0. 1 0.15 0.2 0,25 0.3 0.35 0.4 0.45 0.5

FIG. 1. (a) Comparison of the number of survival samples
under 6t =20X 10 ( ), 5t =20X 10 ( ), and
5t=2.0X10 with the reaction probability (26) ( ——) in the
Euler-Maruyama scheme (30) for Eq. (28). t ( =n6t) is dimen-
sionless. (b) Comparison of the number of survival samples un-
der 5t =2.0X 10 ( ), 5t =2.0X 10 ( ), and
5t=2.0X10 with the reaction probability (26) ( ———) in
the Runge-Kutta scheme (31) for Eq. (28). t (=n5t) is dimen-
sionless.
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We first focus on the result for the stochastic
differential equation (28). Here we remark that our reac-
tion probability (26) is agreed with Clifford and Green's,
Eq. (27), for this stochastic differential equation, since the
diffusion function in Eq. (28} is a constant (see the Re-
mark in Sec. III). Hence in this case we examine only
fact (i) through the numerical result.

Figures 1(a) and 1(b} show a comparison between the
numerical results under 5t =2.0X10 and 2.0X10
without a consideration of reaction probability (26), and
the revised result under 5t =2.0X 10 by (26): the form-
er is obtained under the Euler-Maruyama scheme (30)
and the latter is obtained under the Runge-Kutta scheme
(31). In each figure, we see that the revised data for
5t =2.0 X 10 nearly agree with those for
'6t =2.0X10 . Obviously, by decreasing the size of the
time step 5t, we obtain a more accurate numerical result
for our diffusion problem, and hence the above fact indi-
cates that reaction probability (26) improves the accuracy
of the numerical data for 5t =2.0 X 10 . Thus we
confirm the utility of our reaction probability for count-
ing the number of reactions in the numerical simulation
of a diffusion process with the absorbing boundary.

Next we turn to numerical simulations for the stochas-
tic differential equation (29). Through the results, we can
compare the utility of our reaction probability with that
of Clifford and Green's, since the diffusion function in
Eq. (29) is not constant. The numerical data are given by
Figs. 2(a) and 2(b) and 3(a) and 3(b): They indicate the
number of survival samples under 5t=2.0X10 and
2.0 X 10 together with the revised data for
5t =2.0X 10 by the reaction probabilities (26) and (27).
From these figures, we find that data revised by (26) are
more similar to data for 6t=2.0X10 than those re-
vised by (27) in the Euler-Maruyama or Runge-Kutta
schemes. This fact means that probability (26) gives a
more accurate approximation of the number of reactions

in our diffusion problem than (27), and hence we confirm
that the theoretical result obtained in Sec. III is an im-
provement over that of Clifford and Green. Thus we
have observed the utility of our reaction probability (26),
and its superiority to (27) in the numerical simulations for
the reaction model mentioned above.

V. CONCLUDING REMARKS

In this paper, we obtain an alternative reaction proba-
bility (26) by using the first author's stochastic interpola-
tion formula (11);it rectifies a failure to count the number
of reactions in the numerical simulation for the chemical
reaction model described by a diffusion process with the
absorbing boundary. Moreover, through some numerical
examples, we confirm the utility of our result and its su-
periority to Clifford and Green s. Finally, as concluding
remarks, we will comment on the following.

(1) As numerical examples in Sec. IV we treated only
the simple reaction model to examine the utility of Eq.
(26). However, even in the case of more complicated re-
action models, it may be useful for the reduction of
failure to count the number of reactions, as Clifford-
Green's works dealt within such models [1—3].

(2) We have focused on a reaction model with an ab-
sorbing boundary condition, but do not treat a model
with an elastic boundary condition. In a similar way to
that in this paper, the reaction probability may also be
obtained for such a model on the basis of the interpola-
tion formula (11).

We will come back to these problems in a future paper.
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