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Pulse switching in nonlinear fiber directional couplers
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A comprehensive analysis of the propagation of short pulses in fiber nonlinear directional couplers is
presented. In particular, the limitations as well as the merits of the variational approach to describe
power- and phase-controlled pulse switching are discussed. Relying on beam propagation calculations a
trial function that accounts for variable width, amplitude, phase, and chirp of the pulses is proposed.
The corresponding Euler-Lagrangian equations for the pulse parameters are derived and solved. Con-
cerning power-controlled switching an excellent agreement of the switching curve with beam propaga-
tion results is found. Moreover, even the evolution of the various pulse parameters is shown to be de-
scribed reasonably by the analytical model used. Eventually, optimum criteria for efficient phase-
controlled switching may be easily derived by using the model presented.

PACS number(s): 42.81.Dp

I. INTRODUCTION

Nonlinear coherent couplers, originally invented in
1982 [1,2], have attracted a great deal of interest as basic
all-optical elements because the output may be routed be-
tween the two channels as a function of the input power
launched into one channel (power-controlled switching)
[3,4] or the phase difference between a strong and a weak
input signal in different input channels (phase-controlled
switching) [5]. The stationary response of that device has
been discussed in detail for numerous situations (for a
summary, see, e.g. , the review papers [3,4], the references
therein and [5]). For the particular case when the non-
linear coherent coupler has a preferred direction of
switching and the interaction between the channels is
constant, it is called the nonlinear directional coupler
(NLDC).

Mathematically, the problem is described in terms of a
coupled mode theory (CMT) by a set of (coupled) non-
linear ordinary differential equations (ODE's) for the
slowly varying amplitudes of the guided modes in both
channels. That approach also holds in the nonstationary
regime, provided that the pulses are sufficiently long or
the waveguides are short. In that case the dispersion of
the group velocity (GVD) may be neglected and, conse-
quently, all frequency components of the pulse have a
common group velocity. The time in the reference frame
of the pulse enters the coupled mode equations merely as
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a parameter. This has the consequence that the coupling
behavior (efftciency and coupling length) depends on the
instantaneous intensity of the pulse at a certain time. It
is evident that this leads to the detrimental pulse break
up [6—12] and thus to an incomplete switching between
both channels. This phenomenon limits considerably the
opportunity of different cascading switching elements.

In view of this phenomenon, optical fibers have attract-
ed a particular interest as waveguiding channels of a non-
linear directional coupler. Fused-silica optical fibers have
two properties that are rarely encountered in nonlinear
materials; their GVD is anomalous for wavelength
A, ) 1.3 pm, and they exhibit an instantaneous, local, and
focusing Kerr nonlinearity in that wavelength domain.
Both peculiarities allow for the formation of stable,
robust pulses that maintain their shape in the course of
propagation even in the presence of small perturbations.
Those pulses are called (bright) optical solitons, and have
been at the center of both theoretical and experimental
research for more than a decade [13,14]. The underlying
mechanism of soliton formation can be easily understood
if one looks at the interplay between the frequency chirp
and the width of a short pulse. In a linear medium with
nonvanishing GVD the pulse acquires a negative frequen-
cy chirp (down-chirp) in the course of propagation that
leads ultimately to a pulse broadening, because the indivi-
dual components of the pulse propagate with different
group velocities. If an instantaneous local, focusing non-
linearity comes into the play, an additional intensity-
dependent positive chirp (up-chirp) is provided by self-
phase modulation that depends critically on the pulse
shape. If the GVD is anomalous (this is the case we are
interested in here) both contributions to the chirp may
balance, provided that a certain relation among pulse
width, GVD, and optical intensity holds and that the
pulse has a particular shape. Because in that case the
net chirp acquired vanishes, the pulse width remains con-
stant in the course of propagation in a medium with an
anomalous GVD. The exact balance appears if the pulses
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have the famous sech shape, although it has been shown
that the behavior may be somewhat similar for Gaussian
pulses with a certain relation between width and ampli-
tude [15,16]. Keeping the remarkable robustness of soli-
tons in mind, it may be anticipated that they prevail
against the perturbation provided by the linear coupling
of the guided modes taking place in the NLDC. Indeed,
it has been shown numerically as well as experimentally
that the detrimental pulse breakup can be avoided
[17—21].

Mathematically, under approximations reasonable for
picosecond pulses the evolution of the slowly varying en-
velope of a guided mode in an isolated, monomode fiber is
governed by the nonlinear Schrodinger equation (NLSE)
(see [13,14]). This equation is exactly integrable in the
framework of the approach given by the inverse scatter-
ing transform (IST), leading to fundamental and higher-
order solitons [22]. In a two-core NLDC the pulse dy-
namics may be described by two coupled NLSE's, where
the coupling is coherently mediated by a linear coupling
term. In contrast to the situation known as Manakov's
system [23], the coupled NLSE model is not integrable.
There are two opportunities left to solve the coupled sys-
tem of partial differential equations (PDE's); by fully nu-
merical or by approximate methods. Usually, one scales
the system appropriately so that only one parameter is
left, say the scaled coupling coefficient. This means that
one may cover different physical situations in solving the
system once, making numerical methods less time con-
suming. On the other hand, the completely numerical
solution, e.g. , by the beam propagation method (BPM)
(see, e.g., [24] to cite a few), is not very appealing from
the theoretical point of view, but it is considered to yield
quite accurate results with respect to the evolution of the
pulses in both channels as well as to the switching curve,
and hence the critical power. That is why this method
may serve as a solid benchmark in estimating the results
provided by quasianalytical, and hence sometimes ap-
proximate, models. Nevertheless, it is interesting to dis-
close the performance of approximate models because
they may become attractive if one encounters more com-
plicated situations such as nonlinear ¹ ore couplers that
are interesting with respect both to steeper switching
curves [25,26] and to their combined nature as mixed
continuous-discrete systems [27,28]. Even for the two-
core coupler it may turn out to be difficult to identify the
critical points for phase-controlled switching if one uses
purely numerical methods. Among the approximate
models two are particularly popular, relying either in the
constants of motion of an integrable system or on a varia-
tional approach. The idea of the former model is to
rewrite the system as an integrable one (e.g. , the
Manakov system [23]), leaving the additional terms as
perturbations [3,28 —30]. The solutions of the unper-
turbed system are then used as trial functions with pulse
parameters that are allowed to vary adiabatically with
the propagation distance. Those trial functions are insert-
ed into the conserved quantities that vary now adiabati-
cally. Eventually, one obtains a system of effective
ODE's which describes the evolution of the pulse param-
eters.

The variational approach was successfully applied to
optical solitons by Anderson and co-workers [15,16].
Here the idea consists of using the Lagrangian for the
complete system under consideration. The solutions of
the decoupled system (e.g. , the fundamental soliton) are
then inserted into that Lagrangian where the pulse pa-
rameters may again depend on the propagation distance.
A subsequent integration with respect to time leads to an
averaged Lagrangian. If one performs the variations
with respect to the free parameters, one ends up with the
Euler-Lagrangian equations being a set of coupled
QDE's. Generally, this set may be cast in a Hamiltonian
form where the conjugated variables provide a clear
physical picture (e.g., it turns out that phase and intensity
difference in both channels as well as pulse width and
chirp are conjugated variables, which agrees well with
the fundamental physics of soliton formation). It is evi-
dent that both approaches are similar. The key point of
both models consists of choosing appropriate trial func-
tions, in particular in fixing the number of free parame-
ters. Furthermore, one should be aware that both
methods are integral ones, leading to the conclusion that
integrated quantities (such as the energy transmission)
should be predictable more precisely than the details of
the evolving pulses (such as the pulse width and peak
power transmission). There is another restriction that
concerns the very pulse shape, that was pointed out re-
cently [31—33]. There the authors focused their attention
on stationary coupled soliton states propagating in a
NLDC. It has been shown, partly analytically and partly
numerically, that there are symmetric as well as antisym-
metric states the wave-number shift of which depends
nonlinearily on the guided intensity (nonlinear dispersion
relation). Moreover, bifurcation from both solutions
forming different asymmetric states could be identified.
Note, however, that the asymmetric state and the bifur-
cation leading to it from the symmetric one was first
found in Refs. [34,41] in the framework of the variational
approximation. In investigating the stability of all
branches of the nonlinear dispersion curve, it has been
shown that the symmetric state loses stability beyond the
bifurcation point, whereas the merging asymmetric state
is stable. Concerning the antisymmetric state the situa-
tion appears more involved. There, numerical calcula-
tions have shown that beyond a certain energy, well
below the bifurcation energy, the solution becomes unsta-
ble. This holds likewise for the complete asymmetric
curve branching off from the antisymmetric one [33].
Furthermore, the authors show that soliton states may
emerge, the shape of which may be different from those
of the fundamental solitons. In those situations, where
the pulse form seriously deviates from the trial function
chosen, both approximate methods certainly fail. This
may appear if one launches strong pulses into both chan-
nels of the coupler, but is not anticipated to happen if
only one channel of the coupler is excited (power-
controlled switching) or an additional weak signal is
launched into the second channel (phase-controlled
switching), as it is normally the case in a switching exper-
iment. Here we are exclusively interested in that situa-
tion. Although the normal mode analysis [31—33] is very
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interesting from the theoretical point of view, it describes
only the evolution of a coupled stationary state where the
power is launched initially into both cores of the guide as
close as possible to a certain stationary solution. The
method is not able to describe the typical situation one is
interested in when inspecting switching processes; that is,
when a nonstationary (with respect to the direction of
propagation) state is initially excited. One can only pre-
dict that the critical power for switching is we11 beyond
the bifurcation point.

The variational approach was applied to the coupler
geometry by Pare and Florjanczyk [34]. As emphasized
the crucial point of that approach consists of choosing
appropriate trial functions. Obviously, the more free pa-
rameters one selects the better the results meet the exact
solution. There will be a tradeoff between simplicity and
exactness. Pare and Florjanczyk [34] have shown that
variable amplitudes and phases, but constant widths and
zero chirps, lead to an analytical solution that differs
from the cw result only by a different definition of the
modulus of the Jacobian eHiptic function describing the
coupler transmission. Consequently, the analytically pre-
dicted critical power differs from the cw case, but also by
approximately 12%%uo from the numerical result.

The most important complete trial function was pro-
posed by Cagliotti et al. [35] using a momentum expan-
sion that results in a bulky set of ODE's. Moreover, in
general, the integration ean be carried out on1y for
Gaussian pulses rather than for sechlike ones. Although
this model contains the other ones as particular cases, it
provides no immediate insight into the switching dynam-
ics.

Very recently, compromises between those two ap-
proaches were presented [36,37]. Kivshar [36] reduced
the number of free parameters by relating the amplitudes
and widths, and set the chirp to zero as it appears for iso-
lated solitons. Obviously, this ansatz is at first glance
very appealing. However, it assumes that solitons main-
tain their very identity at all times during the coupling
process, as could be anticipated for very weak linear cou-
pling. Furthermore, it requires an input in both chan-
nels, as it would result in an infinite width of the soliton
in the initially unexcited channel for the one channel in-
put [37], which is of particular interest for switching ap-
plications. Hence that ansatz may not be used for this
situation. Alternatively, it was shown [37] that a variable
but common width and zero chirp leads again to a one-
degree-of-freedom model, where a particlelike picture can
be adopted, and a slight improvement with respect to the
results of [34] could be obtained. However, there is a
fundamental objection against that approach, namely
that the width and chirp are conjugated variables in the
framework of a variational approach, as pointed out by
Anderson and co-workers [15,16], and thus the evolution
of the chirp due to linear coupling must not be neglected.
A chirped trial function for an incoherently coupled sys-
tem of NLSE's (orthogonal modes in birefringent fibers)
with variable widths and chirps for both pulses was used
in [38,39]. Furthermore, the importance of incorporating
variable width and chirp was pointed out in [40]. In two
recent papers [41,42] that dealt with the pulse dynamics

of NLDC's, a trial function, originally proposed by Mu-
raki and Kath [39],with variable but common width and
chirp and variable but different amplitudes and phases
was used. However, in the subsequent analysis the chirp
was omitted and, accordingly, the widths are postulated
to remain constant. Therefore, the analytical results ob-
tained for the switching problem in [41,42] were, in fact
identical to those reported by Pare and Florjanczyk [34].

The aim of the present paper is to disclose both the
merits and limits of the variational approach in describ-
ing power- and phase-controlled switching in nonlinear
fiber directional couplers. Furthermore, we discuss the
reliability of the trial functions used.

The paper is structured as follows.
In Sec. II we

briefly

discuss the main results of
continuous-wave (cw) switching, basically to show that
the problem of the fixed pulse width may be simply
mapped into it, provided a simple rescaling is made.

In Sec. III the basic equations describing the pulse
switching are introduced, and physically reasonable trial
functions are identified in studying numerically the evolu-
tion of the pulses along the coupler. It turns out that the
shape of the pulses (sechlike) is well preserved, at least if
the propagation distance does not exceed the half-beat
length considerably, whereas both pulses acquire a nega-
tive chirp due to the linear coupling of both channels.
Regardless of the different amphtudes, this chirp leads u1-

timately to a pulse spreading (increasing width) in both
channels. On the basis of these findings we introduce ap-
propriate trial functions in order to apply the variational
approach in Sec. IV. We end up with the ODE's of a
two-degree-of-freedom model. In Sec. V we solve those
equations for the case of power-controlled switching, and
compare the results obtained with those provided by
BPM calculations. An excellent agreement of both ap-
proaches can be identified. Eventually, in Sec. VI we
show that the optimum criteria for phase-controlled
switching can be derived easily by using the variational
approach. Finally Sec. VII concludes the paper.

II. MODEL AND CONTINUOUS-WAVE SWITCHING

If we assume a Kerr nonlinearity (n =nL +nzI, where
I is the local intensity) in the fibers and neglect attenua-
tion and higher-order dispersion, the coupling process is
known to be described by the coupled NLSE's in stan-
dard units

BQ 1 BQ
i +— +)u ) u +Ku3 =0, v=1,2 .

Bg 2

Here g=z/LL, and tr/~ arDe the normalized length
and time in the reference frame of the pulse, respectively,
where r0 is the pulse length. If Pz is the group-velocity
dispersion (Pz (0, because we are restricting to the anom-
alous dispersion region), A,s the effective core area, n2
the nonlinear coeKcient, co0 the mean frequency, L,~ the
linear half-beat length, and A the slowly varying en-
velope of the pulses, respectively, the normalizations read
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Ll, =

LDK=—
2 LH

(2)

For convenience, in our numerical calculations we choose
k =1 for the normalized coupling parameter. Hence the
linear half-beat length equals the soliton period and is
g=m. /2. First we briefiy consider the case of the cw
switching, and compare it below with the results obtained
for the pulse switching. In fact, the case of the cw
switching is very simple because of its integrability [1]. It
is described by the same system (1), but when time deriva-
tives are assumed to be zero (no dispersion effect). In that
particular case we have a system of two coupled ordinary
differential equations:

dQ)
+iu, i'u, = —Ku, ,

dQ2
i +lull u2= —Ku, .

(3)

(4)

sin(2$) =cos(28)[ I sin(28)+2' c—os/],d
(6)

dO

d
—K sin(b (7)

As a matter of fact, the dynamical model (6) and (7) is
another form of the equations derived by Jensen [1].
However, we would like to note that in their present form
Eqs. (6) and (7) are more conveniently compared with the
corresponding model of soliton switching.

Equations (6) and (7) are easily integrated because they
have the integral of motion (Hamiltonian)

H= —K sin(28) cosP —,'I sin (28), —

and different types of dynamical regimes are described by
elliptic functions [1]. However, to understand qualita-
tively the origin of the various types of system dynamics,
the best way is to use the phase plane (8,$). Equations
(6) and (7) are doubly periodic, so that the phase plane is
doubly periodic too. A straightforward analysis shows
that the phase plane of the dynamical system (6) and (7)
displays different modifications depending on the dimen-
sionless parameter a=I/K. For small values of a, i.e.,
when a(2, there are two sets of stable fixed points at
/=0 and vr which correspond to the stationary states
with equal intensities of the two modes but with the same
or opposite phases.

Equations (3) and (4) conserve the total energy of the sys-
tem given by the relation I=~u, +~uz~, so that it is
convenient to reduce the number of the dynamical vari-
ables introducing the additional ones

if} . i/2u, =&I cosge ', u 2
=&I singe

The resulting system of three coupled equations can be
simplified further by introducing the relative phase
P=P, —$2, so that the final system of two dynamical
equations becomes

When the value of the dimensionless parameter u in-
creases, the fixed points of the phase plane ( 8, P ) change,
and, in fact, at a =2 the bifurcation of fixed points occurs
at /=0. Therefore, the cw switching analyzed from the
viewpoint of the stationary states on the phase plane
(8,$) displays the critical value of the key parameters
a =I/IC when the break of stability of the trivial station-
ary state occurs. For a) 2 the intensity of the stationary
states of two coupled modes are given by the relation

2 1/2

lu, I, lu, I

=—1+I 2K

III. VARIATIONAL APPROACH
AND PROPER TRIAL FUNCTIONS

The Lagrangian density X of (1) is given by

au) au2

2
"'

ag
+"'

ag

1

4

2 2

+ 0) Q2a~ a1-

+Ku&u2 +c.c. ,

where c.c. stands for the complex conjugation.
The idea of the variational approach consists of insert-

ing appropriate trial functions with free parameters into
(11), performing the integration with respect to w to find
the average Lagrangian I.=I X d r, and varying it

The break of stability of the stationary states is connected
with the idea of cw switching proposed by Jensen [1].
However, the nonlinear switching itself is a much more
complicated process which basically involved unstable
states above the critical point. Nevertheless, in the
framework of the model for the cw switching, exact
analytical solutions may be found because the model is
integrable.

The analysis briefly presented above may be compared
with results given by the constant-width-pulse approach
elaborated in Refs. [34,41,42] to analyze the pulse
switching. The key point of that approach is to assume
that pulse switching in the model (1) is realized through
the approximate ansatz

i rtp2

g sinOe g cosOe
Q) = Q2=

cos}1(7tt ) cosh(71 )t

where the parameter g is constant, and two variational
parameters are the effective angle 0, describing a relative
difference of the pulse amplitudes in two optical modes,
and P=P, —P2, the relative pulse phase, which are as-
sumed to vary with g. The pulses (10) used in the varia-
tional approach [34,41,42] result in a system of ODE's
for 8 and P which may be reduced to exactly the same as
those given in Eqs. (6) and (7), provided I=—', g . This
simple observation means that the approach used in Refs.
[34,41,42] formally coincides with the case of the cw
switching, and this is why it does no allow us to obtain a
deeper insight into the physics of pulse switching.
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@(g,r) =~(»)+b(g)r+q(BpM)(g)r (12)

We determine the parameters, a, b, and q{BpM) by sam-

pling the pulse at discrete points ~; and requiring

g u(r, )l I@(iipM)(r;) 4(r, ;~,b, q)—
l

~min . (13)

with respect to the free parameters. Eventually, one ends
up with the Euler-Lagrangian equations for those param-
eters that describe the evolution of the pulses (for details
see, e.g., [15,16,34]).

As already mentioned, in using the variational ap-
proach the critical point is the proper choice of the trial
functions because they should reAect, at least approxi-
mately, how the pulses evolve during the coupling pro-
cess. In this respect it is of particular interest to assess
the evolution of the pulse shape, the chirp, and the pulse
width.

In order to do this we have launched numerically a
fundamental soliton with the input peak power

I u, (0,0) I
=6 into channel 1, which is a representative

value because the BPM critical peak power is 6.592. Be-
cause we are interested in half-beat-length couplers
(g=m/2) it suffices to concentrate slightly longer propa-
gation distances. In Fig. 1 a comparison of the pulse
shape provided by the BPM calculations is performed
with proper sech functions for different propagation dis-
tances. It turns out that the sech shape is very well con-
served, at least up to the half-beat length. As already
stated, the chirp of the pulse is the crucial physical pa-
rameter that determines whether the pulse broadens (neg-
ative chirp), is compressed (positive chirp), or propagates
without changing the width (zero chirp). Usually, the
chirp is defined as the negative derivative of the time-
dependent phase leading to a time-dependent frequency.
In order to introduce a chirp parameter, we have to fit
the phase with a polynomial. We denote the phase of the
pulse by 4&(BpM)(r; ) and define a polynomial as

The parameter q[BpM) is then called the chirp parameter.
Note that a positive value of the chirp parameter is
equivalent to a negative (down) chirp. From Eq. (13) it is
evident that the central part of the pulse provides the ma-
jor contribution to the averaged chirp parameter. In Fig.
2 the evolution of the chirp parameter is plotted both for
the bar and cross channels as a function of the propaga-
tion distance. It is interesting that the tendency in both
channels is similar. After the coupling process has start-
ed the chirp increases and is negative. That behavior
should ultimately lead to a pulse broadening in both
channels, regardless of the fact that in the bar channel
the amplitude decreases whereas it increases in the cross
channel. Eventually, we investigated the behavior of the
pulse width. To this end we defined the BPM pulse width—1
9(BPM)

l(BPM) 0

12 f r'lu (g, r)l «
Y=1,2 . (14)~' f Iu. (g, r)I'« '

The results are shown in Fig. 3. As anticipated the width
increases in both channels due to the negative chirp ac-
quired in the course of the coupling process.

In estimating the results depicted in Figs. 1 —3, we can
draw the conclusion that the trial function may be sech
shaped, and we may assume a common g-dependent
width as well as chirp for both channels. Obviously, the
two latter assumptions represent a fairly rough approxi-
mation, but they guarantee that all integrations in the La-
grangian defined through its density (11) can be per-
formed analytically. Because one argument in favor of
the variational approach is its simplicity, one should
avoid complicating it by including numerical integration
procedures. Furthermore, it is obvious that the trial
functions used in previous papers ([34] use the constant
width and zero chirp, [36] a width inversely proportional
to the amplitude and zero chirp, and [37] a common,
variable width, but zero chirp) do not properly refiect the
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10 The variation of (16) with respect to all g-dependent pa-
rameters leads to a conserved quantity such as

da
d

(17a)
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de = —K sin(2$), (17b)

and Euler-Lagrangian equations for the parameters that
remain:

0
0 2 3

Distance

d asin(28) = g sin(26)cos(28)
dg 3

I/: cos—(2$)cos(28), (17c)
FIG. 3. Widths of the pulses in both channels [calculated by

Eq. (14)] of the NLDC with input peak power P=6. Dashed
line: bar channel. Dotted line: cross channel.

d'g
2q YJ,

2q = —2q + Ig —a rl [1—
—,
' sin (28)]} .

(17d)

(17e)
physics of the coupling process and the energy exchange
between pulses belonging to the coupled channels. In
conclusion, one should expect that such trial functions as

u, (g, r) =a(g)&rl(g) sech[g(g)r]cos[6(g)]

Xexp[i[C&(g)+lt(g)+q(g)r ]],
u2(g, r)=a(g)&g(g) sech[g(g)r]sin[6(g)]

X exp I i [N(g) —g(g) +q (g)9]],

(15a)

(15b)

IV. BASIC EQUATIONS
OF THE VARIATIONAI. APPROACH

In this section we derive the basis system of ODE's
that governs the evolution of the pulse parameters during
the coupling process.

Inserting the trial functions (15a) and (15b) into the La-
grangian density X (2) and integrating with respect to r,
we obtain the time-averaged Lagrangian L, :

L =2Ka cos(2$) sin(26)

4 2—2a cos(28) ——'a q sin (26)
d 3

+ 3 a g —
—,
' a g —2a —— +2q

2dC 1 a m dq 4

dg 6 g~ dg

(16)

contain the principal effects taking place during the cou-
pling process, and that they should lead to a reasonable
improvement with respect to the characterization of the
switching process. Note that the reliability of the trial
functions chosen improves if one limits the coupler
length, about one-half-beat length being the case we are
interested in. The function 6(g') describes the energy
transfer between both channels similar to the case of cw
switching, and N(g) is a common phase that plays no role
in the dynamics of a directional coupler but comes into
play if one investigates loop mirrors. P(g) is twice the
phase difFerence, and q(g) is the inverse width. Similar
trial functions have been used in analyzing nonlinear cou-
pling in birefringent fibers [38—40].

Note that Eqs. (17d) and (17e) refiect the mutual inter-
play between the width and chirp of the pulses. From the
point of view of Hamiltonian mechanics, Eqs. (17b)—(17e)
are the Hamiltonian equations of a two-degree-of-
freedom model, where the phase difference and ampli-
tude, determined by 6(g), as well as the width and chirp,
respectively, are conjugated variables.

The Hamiltonian of the system (17b)—(17e) is now
written as

H= 2ICa cos(2$)s—in(26)+ —,'a g sin (28)

7T a——', a"g+ —,'a g + q3 ~' (18)

which represents another conserved quantity and which
may be used to reduce the system to three coupled
ODE's.

If g =const and q =0, we end up with the Pare-
Florjanzcyk model [34] being a one-degree-of-freedom
model, which allows us to adopt a quasiparticle picture
where the remaining equations can be integrated analyti-
cally. Although the trial functions (15a) and (15b) have
been used in [41,42], the authors have set the chirp to
zero and assumed the width to be constant. Consequent-
ly, some terms are missing in the averaged Lagrangian,
and the Eqs. (17d) and (17e) do not appear. Hence they
are left with Pare-Florjanzcyk results.

Note that the ODE's (17b)—(17e) may be used to de-
scribe both power- and phase-controlled switching. The
only difference consists of the difFerent initial conditions.
Furthermore, even effects such as symmetry breaking for
symmetric or antisymmetric input pulses fed into both
channels can be studied.

Obviously, the variational approach fails to predict the
bifurcation picture of the antisymmetric solution, because
both the antisymmetric solution and the asymmetric one
branching ofF at the bifurcation points are unstable [33].
Hence the approach introduced here should be reliable if
one studies switching processes in about one-half-beat
length couplers.
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V. POWER-CONTROLLED PULSE SWITCHING

u, (0,~) =a v'rj(0) sech[q(0)~], (19)

where a =&g(0).
First the energy transmission characteristics (switching

curve) have been calculated. In Fig. 4 the straight-
through transmission at the half-beat length I., =~/2,

In what follows we are going to solve system (17) for
the case of power-controlled switching, which means that
only one channel, say channel 1, is excited (one-channel
input). Similarly, we solve Eq. (1) by a standard BPM
procedure (see, e.g., [24]). We compare both the
transmission characteristics that represent an integral
quantity and the evolution of the pulse parameters pro-
vided by both procedures. Furthermore, besides the usu-
al soliton input we used properly tailored Gaussian pulses
as input and, showed that the behavior is similar and that
even those pulses behave as stable objects in the course of
the coupling process as mentioned above [35,37]. We
concentrate first the soliton input

tional approach yields reasonable results for the integral
quantity when using a proper trial function, but the ques-
tion remains whether the pulse evolution is described
adequately. To this end we study the evolution of the
pulse parameters both by BPM and by our model for
P1=4, 6, and 8, representing input peak powers well
below, close to, and well above the critical power, respec-
tively. We show simultaneously the propagation of the
pulses in both channels obtained from BPM calculations
and the evolution of the peak amplitudes, the widths, and
the chirp parameters, respectively, provided by both ap-
proaches. Width and peak powers are normalized with
initial values for (=0. Furthermore, it turns out to be
convenient to introduce an averaged width I /g, „,

12 f ~(l~)(g, r)l'+1~2(g, ~)l')«
(21)

n', „(g) ~' f" (lu, (g, r) I'+ lu, (g, r) I')dr

f lu, (L„r)l dr
oo

f u, (0, r)l d~
(20)

is plotted as a function of the input peak power
P, = lu, (0, )l . As usual, we define the critical switching
power by requiring that T=0.5. It is evident that our
model shows an excellent agreement with the numerical
results (the BPM critical power is 6.592, and the critical
power in our model is 6.775; the difference is 3% only).
Moreover, the slope of the transmission curve is very
similar to that provided by the BPM, and the respective
shapes coincide for high input peak powers (see, for com-
parison, the large deviations that are provided by the
constant width model). It is not surprising that the varia-
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FIG. 4. Straight-through transmission (energy in the bar
channel) of a one-half-beat-length NLDC as a function of the
input peak power for soliton (sech-shaped) input pulse. Solid
line: our model. Dashed line: BPM results. Dotted line: re-
sults given by the constant width model [33].

FIG. 5. (a) Evolution of the pulse in both channels of the
NLDC for the input peak power P& =4 (BPM). (b) Normalized
peak power, chirp parameter, and normalized width, respective-

ly, for P& =4. Dashed and dotted lines: BPM results for bar and
cross channel, respectively. Solid lines: our model. Dashed-
dotted line: averaged width [calculated by Eq. (13)].
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In Figs. 5 —7 our results are plotted. The first conclusion
is that in the whole region of powers, even over large
propagation distances, neither pulse breakup nor the
creation of new soliton states can be observed. Minor de-
viations from the sech shape can be identified for propa-
gation distances that exceed the beat length (g=m ).
Second, it turns out that both the evolution of the widths
and the chirps is qualitatively well described by the mod-
el, at least for a few half-beat lengths. In particular, if
one takes into account that the difFerences with respect to
width occur only at those propagation distances where
the amplitude is almost zero, the agreement is even
better. This is rejected by the behavior of the averaged
width that practically coincides with the width calculated
by using our model. In conclusion, there is surprisingly
good quantitative agreement in the evolution of the pulse
parameters between the numerical and variational ap-

proaches. This provides further eviderice that the trial
functions used are properly chosen, and that the varia-
tional approach may be used in modeling the nonlinear
coupling in fiber couplers, at least as far as the one-
channel input and half-beat length couplers are con-
cerned.

Since the famous work of Anderson [15] it has been ap-
preciated that Gaussian pulses with a definite relation be-
tween amplitude and width behave similarly to solitons.
It has been shown that this holds true even for nonlinear
coupling [35,37,40]. If one assumes trial functions simi-
lar to those in (15) and replaces only the sech function by
a Gaussian, one ends up with the same kind of ODE's
(17) where only minor differences concerning the
coefBcients arise. We have performed the BPM calcula-
tions as well as the solution for the ODE's. It shall suSce
to present only the transmission characteristic (see Fig.
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FIG. 6. (a) Evolution of the pulse in both channels of the
NLDC for the input peak power P& =6 (BPM). (b) Normalized
peak power, chirp parameter, and normalized width, respective-
ly, for P, =6. Dashed and dotted lines: BPM results for bar and
cross channels, respectively. Solid lines: our model. Dashed-
dotted line: averaged width [calculated by Eq. (21)].

FIG. 7. (a) Evolution of the pulse in both channels of the
NLDC for the input peak power P, =8 (BPM). (b) Normalized
peak power, chirp parameter, and normalized width, respective-
ly, for P, =8. Dashed and dotted lines: BPM results for bar
and cross channels, respectively. Solid lines: our model.
Dashed-dotted line: averaged width [calculated by Eq. (21}].
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because it is much more convenient for optimizing the in-

put peak power and device length than the BPM.

0.8 VII. CONCLUSIONS

0.6

0 TH

0.4

0.2

0 1 2 3 4 5
Phase Difference ~(0)

6 7

FIG. 10. Switching characteristics [transmission as a func-
tion of the initial phase difference 2$(0)] for phase-controlled
switching with input peak power P, =7.6. Solid lines: our
model. Dashed lines: BPM results.

We have shown that a variational approach fits well to
the description of the pulse dynamics in one-half-beat
length nonlinear directional couplers, provided that suit-
able trial functions are identified. The key point is that
one takes into account the inherent correlation between
the pulse width and chirp. Concerning power-controlled
switching (one-channel input) an excellent agreement be-
tween our results and numerically obtained switching
curves could be identified. Moreover, even the essential
parameters that characterize the pulse (amplitude, width,
and chirp) have been shown to coincide fairly well. Fur-
thermore, it turns out that the variational approach
represents a useful tool in optimizing the configuration
for phase-controlled switching conveniently. The result-
ing switching curves are in very good agreement with the
BPM results if one takes into account a minor correction
of the input peak power.

spectively, are plotted in Fig. 10. Although the agree-
ment is reasonable it can be improved further if one takes
into account that the BPM critical power is a few percent
less than that of our model (see Fig. 4). For example, if
we use the peak power P, =7.2 for the BPM calculations
and P, =7.6 for our model, we arrive at very similar re-
sults for the switching curves of Fig. 10.

We may conclude that the variational approach has its
particular merits in describing phase-controlled switching
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