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Three-dimensional coupled-mode theory of free-electron lasers in the collective regime
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An analytical three-dimensional model is presented for free-electron lasers (FELs) operating in the
small-signal linear regime. The excitation of radiation and space-charge waves is found by expanding
the total electromagnetic field in terms of transverse eigenmodes in a waveguide of arbitrary cross sec-
tion and solving the evolution of their amplitudes from a set of coupled excitation equations. Coupled-
mode theory is employed to derive dispersion relations for the space-charge waves and for the gain. The
eigenmodes of the FELs ("supermodes") and the gain for each of them are derived after diagonalization
of the coupled-mode system. It is found that for the case of degenerate coupled modes (equal axial wave

numbers), the normal modes satisfy the well known FEL gain dispersion equation with a modified gain
parameter. The gain of the supermode, calculated according to the presented coupled-mode theory, is

higher than the gain of the individual modes if calculated on the basis of a single-mode model. We
demonstrate the formalism by finding the gain of the TEo„and the coupled TE» and TM» modes excit-
ed simultaneously in a rectangular waveguide.

PACS number(s): 41.60.Cr

I. INTRODUCTION

The well known one-dimensional (1D) linear model of a
free-electron laser (FEL) [1—6] assumes a single mode of
the signal field and a finite cross section of the electron
beam. The coupling between the radiation wave and the
beam is proportional to the power ft lling factor, defined as
the ratio between the electron beam cross-section area
and the effective electromagnetic mode area.

It was shown in [7—9] that a variety of FEL schemes
satisfy the same gain-dispersion relation in the small-
signal regime. These papers presented a unified analysis
valid in the cold and warm electron beams, low and high
gain limits, and single-particle (Compton) or collective
(Raman) regimes.

In overmoded waveguides and optical open resonators
it is necessary to use a more elaborate model of FEL in-
teraction, which includes three-dimensional aspects of
the radiation and of the space-charge waves. Several
linear and nonlinear analyses were carried out, expanding
the transverse radiation field in terms of free-space
Hermite-Gaussian modes [10—15]. FEL theories for cir-
cular waveguides also exist [16,17]. A linear model
developed in Refs. [18—20] is based on representation of
the electromagnetic field as a Fourier series of plane
waves for which a matrix dispersion relation is found.
This method is applicable only for cases where the elec-
tromagnetic field is propagating in free space or in rec-
tangular waveguides.

When the FEL is operating in the collective (Raman)
regime [21,22], space-charge forces in the electron-beam
affect the FEL operation. A 1D description of the
space-charge field is inaccurate because of the finite trans-
verse dimensions of the beam and the effect of the con-
ducting waveguide walls. In most of the papers on FELs
in the collective regime [19,23 —27], the space-charge eig-
nenmodes of the electron-beam [28—31] were found

analytically for cases where there was planar, rectangu-
lar, or circular symmetry.

A coupled-mode theory of plasma wave excitation in a
nonradiating structure was published in [32]. In the
present paper we extend the analysis to include excitation
and propagation of solenoidal electromagnetic waves as
well as space-charge waves in FELs operating in the
linear regime. The total electromagnetic (signal and
space-charge) field is expressed as a sum of the transverse
eigenmodes of the empty, arbitrary cross-section
waveguide. Employing the linearized plasma fluid model
[33], we derive a matrix form of the dispersion relation,
from which the evolution of the space-charge density
modulation along the interaction region is found.

A set of coupled gain dispersion equations for the radi-
ation wave is derived. It is shown that in the case that
coupled transverse modes are degenerate in their longitu-
dinal wave number k„ the system can be diagonalized to
find the normal modes ("supermodes") of the FEL and
the gain of each mode. These eigenmodes of the coupled
system are the steady-state transverse modes of the FEL
oscillator if the resonator mirrors do not scatter the
transverse modes to each other or reflect them selective-
ly. The linear 3D coupled-mode analysis given here can
be adopted for a FEL scheme which utilizes a cold elec-
tron beam and a wave guide with arbitrary transverse
geometries.

II. MODEL EXPANSION
OF THE ELETROMAGNETIC FIELD

The total time-harmonic electromagnetic field can be
represented in terms of a complete set of eigenfunctions,
which are the mode solutions of the empty medium
[34—36]. The transverse component of the field is written
as a linear superposition of forward (+q) and backward
( —q) transverse modes
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Ei(r)=g [C+ (z)e " +C (z)e " ]8 i(x,y),
q

Hi(r)=g [C+ {z)e " —C (z)e ' ]%' i(x,y) .
q

r stands for the (x,y, z) coordinates, where (x,y) are the
transverse coordinates and z is the longitudinal axis of
propagation. C~(z) is the slowly varying amplitude and
8 i(x,y) and & i{x,y) are complex vectors representing
the transverse electric and magnetic profiles and the po-
larization of mode q. The summations include propaga-
ting and cutoff TE and TM modes, for which k, is the
wave number. (For cutoff modes k, is an imaginary
number with a positive sign coefficient. ) The longitudinal
components E,(r) and H, (r) of the field are derived after
substitution of the expansion into the inhomogeneous,

steady-state Maxwell equations [35], resulting in

E,(r)=g[C+ (z)e *' —C (z)e " ]

X6,(x,y)+ J,(r),jcoc

H, (r)=g [C+ (z)e " +C ~(z)e " ]&~,(x,y) .
(2)

6'~, (x,y) and &,(x,y) are the longitudinal electric and
magnetic field profiles of the TM mode and of the TE
mode, respectively.

Imposing the appropriate boundary conditions, the
Maxwell vector field equations are transformed into sca-
lar differential equations, which describe the evolution of
the slowly varying amplitude of the forward (+q) mode

C+ (z)= — e " f f [Z Ji(r)+zZ*J, (r)] C*(x,y)dx dy
dz + 2Z'4'

q q

and of the backward (
—q) mode

C (z)=+ e " f f [Z Ji(r) —zZ*J,(r)] C ~(x,y)dx dy .
dz 2Z'g (4)

Z is the mode impedance given by ZTz =cop/@, for
TE modes and ZTMq kzq /coE' for TM modes . The nor-
mahzation of the field amplitudes of each mode is done
via that mode's complex Poynting vector power

E~= f f [@~i(x,y)XJV~i(x, y)] z dx dy . (5)

The total power carried in the electromagnetic wave is
given by

P(z)=
q

propagating

—g Im[C+ (z)C (z)]im[$ I,
cut off

Variations in the axial velocity due to the wiggling are
presently ignored. Oscillations of half the wiggler's
period emerge when the electrons pass through a linear
undulator (e.g. , magnetostatic planar wiggler) and cause a
reduction in the gain of the FEL operating at the funda-
mental frequency and lasing at higher odd harmonics.
However, the results can be modified to consider this
effect as pointed out in [9]. The fiuid model employed
here can be extended to include operation at high har-
monics following the analysis presented [37] for single
transverse mode excitation.

Along the interaction region, the momentum modula-
tion develops density bunching in the electron beam. The
total space-charge density of the electron beam is de-
scribed in a linear model by

where P~—:—,
' Re [ $~ ] is the normalized power of the

propagating mode q.
n (r, t) =no(x, y)+Re[n, (r)e (g)

III. EXCITATION OF THE RADIATION FIELD

In a FEL the longitudinal pondermotive force pro-
duces modulation in the axial velocity of electrons. In
the small-signal analysis it is assumed that this perturba-
tion oscillates at a single angular frequency co, =m, —co„
resulting from the "beating" of the signal at frequency co,
with the wiggler at frequency co . (For a magnetostatic
wiggler co =0.) The first-order expansion of the axial ve-
locity of electrons is given by

v, (r, t ) =v,a+ Re[ v„(r)e (7)

It is assumed that there are no energy or angular spreads
in the beam and the electrons all move with the same
average axial velocity v, o (cold beam limit).

J i(r) = —
—,'en, (r)Vie (9)

Because of the finite extent of the wiggling electron
quiver amplitude, the variation of the electric field in the
transverse dimension has to be taken into account in the
interaction [38]. To find the field distribution at a plane z

where no(x, y) is the dc part of the beam density and
n, (r) is the first-order perturbation of the density modu-
lation oscillating at ~,.

Excitation of the signal wave in the FEL is caused by
the transverse component of the current which is oscillat-
ing at the frequency co, in resonance with the signal field.
For an undepleted pump, the phasor of the current densi-
ty is given in terms of the density modulation wave

n i(r)
and the wiggling transverse velocity V i of the electrons
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along the path of the electrons, we expand the local elec-
tric field profile around the axis of the average electron
trajectory (x„y, ) in a Taylor series:

C«(x (z),y (z) )

=C (x„y, )+(Re{F, e ] V, )Z«(x, y)l„»

(10)

where Fi =j(%i/k v,o) is the amplitude transverse dis-
placement of the wiggling electron trajectory.

The amplitude of the propagating mode q of the signal
field excited in the FEL is found after substitution of
those current products, which are phase matched with
the mode of profile given by (10), into Eq. (3). [Equation
(11) is for the forward mode going in the +z direction.
The excitation equation for backward wave interaction is
expressed by replacing P by P«an—d k,«by —k, .]:

C (z)= e " " 'f f ir, (r)[Vi+zv, o(ri„Vi)] C«(x,y)dx dy .
dz «8

d eg« —j(k, +k )z

X f f8,(r)Vi. C«i(x, y)dx dy, (12)

where

Since for TM modes Vi@,=j(ki«/k, )C i, the excita-
tion equation can be written in the form

yo=(1 —Po)
' is the Lorentz factor and y,o—= (1—P,o)

'~ . The forcing term on the right-hand side of
Eq. (15) consists of the pondermotive field E~,„~(r) and
the longitudinal component of the space-charge field
E sc(r)

Each waveguide mode interacts independently with the
transverse components of electron velocity to produce a
longitudinal pondermotive field

1 for TE modes

k~1—
k, k

for TM modes .

The evolution of the slowly varying mode amplitude
C«(z) of the signal is observed to be associated with the
space-charge density modulation n, (r). The density
modulation is derived from the electron-beam Quid equa-
tions in the following.

IV. THE ELECTRON-BEAM FLUID MODEL

The longitudinal ac part of the current density result-
ing from the density and velocity modulation in the beam
is given by

J„(r)=—e[no(x, y)v„(r)+v, 08', (r)] . (13)

dJ„(r) = —jco„en, (r) .
Qz

(14)

The axial velocity i)'„(r) is found from the relativistic
axial force equation written in its small-signal form

cE . cov„(r)—j i)'„(r)
dz '

"zo

[E,„~(r)+E, (r)] .
XoX omU o

The relation between the space-charge density oscillation
and the velocity modulation is found from the continuity
equation. In confined beams the transverse divergence of
the current density is usually sufficiently small compared
with the longitudinal one (lVi.Jail « IBJ,i/Bz I) Under
this approximation the equation of continuity can be
written

E,„z(r)=g C«(z)A'«~ (x,y)e

where we define 6 (x,y)—:—,
' [Vi«XX i '+4'i *

XRi ] z [8]. The longitudinal space-charge field E s (r)
is a result of the density bunching in the beam and is ex-
cited by the longitudinal current density J„(r) given in
Eq. (13).

The moment equations (13)—(16) can be combined with
the expression for the longitudinal electric field
E, (r) =E,(r) given in Eq. (2), resulting in a differential
equation of second order for the density bunching:

co (x,y) —co,
n, (r) —2j n, (r)+ n, (r)

gz u, o dz Uzo

co»(x,y) e~=j —g (k,«+k )C«(z)6 t (x,y)
vzo q

+j(k +k )zXe

+g k„V,(z)Ã;, (x,y)
l

co»(x,y) =(e /yoy, acorn )no(x, y) and V, (z) is the fast
varying amplitude of mode i excited by the longitudinal
current density J„(r),given by

V, (z)—:C+;(z)e " +C;(z)e
(15)

and satisfies the excitation equation
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d2
V;(z)+k„V,(z) =jco,e f f n, (r)4',*,(x,y)dxdy .

V. DISPERSION OF THE SPACE-CHARGE WAVES
EXCITED IN THE FEL

The evolution of the density modulation in the electron
beam along the interaction region is given by Eq. (17) and
the set of equations (18). The FEL interaction is fully de-
scribed by taking into account also the excitation of the
signal field, given in Eq. (12).

The dispersion equation for the density modulation in
the beam is found by a Laplace transformation in the z
variable of the FEL equations. Assuming that there
are no prebunching eff'ects, i.e., Ri(z =0)=8', &(z =0)
=Esc(z =0)=0, the amplitudes V;(s) from Eq. (18) are
substituted into Eq. (17):

I co,
s J

VzO

(x y) ~ (x y) k~. f f n i(s, x,y)Ã;, (x,y)dxdy

l6;, (x,y)l dxdy

e() co'(x, y)=j— g(k, +k )C [s —j(k, +k )]8~ (x,y) .
q (19)

The electric field profile functions 6;,(x,y) of the longi-
tudinal component of the TM modes including cutoff
modes are a complete set of orthogonal functions that
can be used to expand the density bunching in a linear
combination

The signal field whose modal expansion amplitudes at the
entrance to the interaction region are C (0) generates
modulation in the space-charge density of the beam. The
parameter

n, (s,x,y) =g A;(s) 6';, (x,y) . (20)
l lg 8

Introducing this expansion into Eq. (19) and multiplying
both sides by 8,*,(x,y) gives

r

s —j '
A, ,(s)+g A, (s)8;.;(s)

VzO I

=j—g(k, +k )C [s —j(k, +k )]
e

co (x,y)
X 2 q X~+

VzO

X 6,*',(x,y)dx dy,
where

k
8;.;(s)= 1+

S2

(21)

co&
(x,y )f f C,,(x,y)6',*,(x,y)dx dy
Vzo

f f I@;,(x,y)l'dx dy

By taking the expression of the slowly varying ampli-
tudes P~ (s) for the electromagnetic modes of the signal
wave from Eq. (12) and substituting into Eq. (21) a set of
algebraic equations for the expansion coefficients A;(s) of
the density modulation is derived:

With no signal wave injected into the system [i.e.,
Cq(0)=0], the above system reduces to a homogeneous
set from which the propagation constants P=Im[s j of
the plasma waves can be found [32]. Since these waves
propagate with a velocity that is nearly equal to that of
the beam, the matrix 6' '(s) can be approximated by sub-
stituting s=j(co„/U, o). The matrix elements are given
then by the constants

g2
Pl

k~,1+ r.cP.o k
L

2

co„(x,y)
X f f " 6 t (x,y)A';.,(x,y)dx dy

VzO

X f f 8;,(x,y)Vi 8 iq(x, y)dx dy

expresses the coupling between the plasma modes in the
beam and the electromagnetic modes of the signal.

The inhomogeneous set of equations (22) for the
coefficients A;(s) can be presented in a compact matrix
form

2

s J I+e,"'(s) —jy g, A (s)=y C, (0)I
zo q q

(23)

CO;
s s j

"zo

'2

A;.(s)+g A,.(s)8;., (s)

—jg g A;(s)6;;~ =g C (z =0) .
q i

(22)

co~(x,y)f f 6;,(x,y)8,*',(x,y)dx dy
VzO

f f lÃ,', (x,y)l'dx dy

where k, =~,/&.
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VI. COUPLED-MODE
GAIN-DISPERSION EQUATION

=j+Q .C .(z)e
q'

(24)

Here we use the following parameter rotation: (i) the de-
tuning parameter 8 —=co, /U, 0

—(k, +k ); (ii) the re-
duced space-charge parameter 0 „=r 0, where
8&:co& /U 0

=n0e /7 1 m epU p is the space-charge pa-
rameter of a uniformly distributed electron-beam used in
a 1D model and r is the plasma frequency reduction fac-
tor (which can be calculated using the coupled-mode ap-
proach described in [32]); (iii) the gain parameter

Qqq
—=vqq 8&, where the coupling parameter is given by

8
q

(k, +k )

X f ff(x,y)C~~. (x,y)%'i Ãiq(x, y)dxdy, (25)

K
qq

where f (x,y) is the electron-beam profile. (In the case of
a strong planar wiggler, the gain parameter should be
modified by multiplying Q, by the factor
[JJ]=[JD(a)—Ji(a)], where JD,J, are the zero- and
first-order Bessel functions, respectively, and
a =—(a„/8y P,0k )co, /v, 0, where a =eB /mck [9])
and (iv) b,k, ~—:k, —k,

The gain dispersion equation results from a Laplace
transformation in the z variable of the FEL interaction
equations. Assuming that there are no initial conditions
associated with prebunching of the electron beam, one
can derive the gain-dispersion equation for the qth propa-
gating waveguide mode of the signal:

8 (s)=G (s)C (z=0)+ g G .(s)C .(s+jb,k, , ) .
q'Wq

(26)
G (s) is the well known single-mode gain dispersion rela-
tion developed previously in [7,8]:

(s —j8 ) +8~„
Gqq(s) =

s [(s —j8 ) +8~„]—jQqq
(27)

This term describes the amplitude growth of mode q due
to self-excitation. The mutual interaction between this

The space-charge density modulation (20) in the beam
excites the electromagnetic modes of the signal according
to (12). Calculation of the gain requires one to first solve
for the expansion coefficients A;(s) of the density modu-
lation. An alternative way is to assume an interaction
with a single plasma mode (usually the fundamental one),
calculate the plasma frequency reduction factor of this
mode, and then modify the FEL interaction equations to
take into account the 3D collective effects. Following
this latter approach (which is common in electron-tube
analysis [26,30]), we derive a set of coupled differential
equations for the slowly varying amplitude of the trans-
verse modes excited in the FEL:
d3 d2

C (z) —2j8 Cq(z)+(8 „—8 ) C (z)dz'

mode and other (q'Aq) waveguide modes is expressed by

Gqq. (s) = jQqq

s [(s J8, )'+ 8,', ]—JQ„
(28)

The modes that need to be taken into account in the
gain calculation are those that are nearly phase matched
to each other and interact efhciently with the electron
beam. These modes can be identified by inspection of
their single-mode gain curves and observation of overlap
at some frequencies. In the case of a finite set of modes
that exhibit gain or less at the same frequency, the
coupled-mode dispersion equations (26) can be presented
in a compact matrix form

C(s)=I (s)C(z=O) . (29)

The growth of waveguide mode amplitudes can now be
expressed in terms of their initial values C(z =0) at the
entrance to the interaction region and the gain dispersion
matrix I (s).

It should be noted that the waveguide modes are not in
general the normal modes of the FEL system. Namely, if
one starts with a certain transverse mode at z =0, it cou-
ples to other modes and does not keep its transverse elec-
tromagnetic field profile along the interaction length.
One can seek a new set of independent modes that are
eigenmodes of the FEL system and, except for magni-
tudes and phases, their field profile does not depend on
the propagation coordinate z.

VII. THE FEL SUPERMODES

C(z) = TU(z) (31)

This transformation, together with Eq. (30), is used «
derive a new set of differential equations for the slowly
varying amplitudes U,.(z):

We now consider the case of coupled waveguide modes
which are degenerate in their longitudinal wave number

kzq This is especia 11y app 1icab 1e in a FEL using a rec-
tangular waveguide where a number of excited waveguide
modes may be phase matched to each other and have the
same detuning parameter 0. The coupled differential
equations (24) can then be written in a simple matrix
form

d d 2 2 d
dz 3 dz 2 ~' dz

C(z) —2j8 C(z)+(8 „—8 ) C(z)=QC(z) .

(30)

Mode coupling is expressed by matrix Q, which consists
of gain parameters Q ~ defined previously.

The derivation of FEL normal modes is a problem of
finding the eigensolutions of coupled differential equa-
tions [39,40]. In every plane along the waveguide, any
normal mode of the FEL system can be written as a su-
perposition of the waveguide modes. The two representa-
tions can be related at every plane through a linear ma-
trix transformation
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2 2 d
U(z) —2j8 U(z)+(8~„—8 ) U(z)

dz dz2 dz

=T 'QTU(z) . (32)

than each waveguide mode gain if calculated from a
single-mode gain analysis.

IX. NUMERICAL RESULTS

VE; (s)
A;(s) =

U;(z =0)
(s —j8) +8 „

s [(s —j8) +8~„]—jA.;
(33)

The dispersion relation (33) for the FEL normal modes
resembles the single-mode gain dispersion equation (27),
except for the gain parameters k;, which are the eigenval-
ues of matrix Q.

VIII. T%'Q-MODE COUPLING

We shall demonstrate the coupled-mode formalism de-
scribed in the preceding section with an example of a
waveguide FEL in which only two degenerate modes are
excited. In this case the set (30) consists of two equations
which are coupled through a 2X2 gain parameter matrix
Q, and two supermodes need to be identified. The eigen-
values of the matrix Q are found first from a quadratic
determinantal equation

~1,2 2 [Q 1 1 + Q22 —+(Q 1 1 Q22 ) +4Q12Q21 ] (34)

These are the FEL normal mode gain parameters needed
in Eq. (33) to express their gain dispersion relation.

The relation between the slowly varying amplitudes of
the waveguide modes and the FEL normal modes is ex-
pressed by the transformation T, which contains the
eigenvectors of Q in its columns:

Qi2 U, (z)

C2(z) A. ,
—Q„ (35)

~z —
Q22

U2(z)

Note that one of the eigenvector elements is determined
arbitrarily.

For the special case of coupled waveguide modes that
have nearly the same transverse profiles and polarizations
at the position of the electron beam (for example, when
the electron-beam cross section is much smaller than the
transverse dimensions of the modes), it can be easily
shown from (25) that Q»gz2=Q, 2Q2, . The resulting ei-

genvalues in this case are found to be X, =Q» +Q22 and
A,2=0. One of the supermodes has a gain that is higher

If the similarity transformation T 'QT produces a di-
agonal matrix on the right-hand side oTEq. (32), then it
becomes a complete set of uncoupled equations and U,.(z)
is the slowly varying amplitude of the ith FEL super-
mode. The diagonal matrix elements are the eigenvalues
A, ; of the gain parameter matrix Q and fulfill the algebraic
equation

~ Q —AI
~
=0. The column vectors t; in the ma-

trix T are tTie eigenvectors resulting form Qt, =A, , t, .
The dispersion relation for the slowly varying ampli-

tudes of the normal mode i is found after a Laplace trans-
formation of Eq. (32). If there is no prebunching of the
electron beam, the initial conditions at the entrance of
the FEL interaction region are d U;(z =0)/dz
=dU;(z =0)/dz=0, the gain dispersion relation is found
directly:

8---------------------------------1.

6------------------------------l.

0 8----

06.
4-----------------------0.

2------------------------0.

0
40 60 80 100 120 140

Frequency [ GHZ ]
160 180

FICx. 1. Small-signal gain curves of the Israeli Tandem free-
electron maser.

Figure 1 displays an example of coupled-mode gain
curve calculations corresponding to the parameters of the
Israeli electrostatic accelerator free-electron maser
(FEM) [41], designed to lase at millimeter and sub-
millimeter wavelengths. The FEM is based on a 2—6
MeV Tandem Van de GraafF accelerator for a 1-A elec-
tron beam and utilizes a magnetostatic planar wiggler
with N =20 periods of A, =4.4 cm. The rf cavity con-
sidered in the calculations is an overmoded 1.5 X 1.5 cm
rectangular waveguide.

The modes found to be within the frequency range of
operation of the FEM providing gain are the TEp„TEz„
and TMz, modes. Since the TEz, and TMz, modes are
degenerate in their longitudinal wave number k, z&, both
can be excited simultaneously and they will have the
same frequency. These modes are coupled by the
electron-beam of finite cross section and it is thus neces-
sary to use coupled-mode theory to find the mutual gain
accurately. Other, nonsynchronous, modes will not par-
ticipate in the interaction with the electron-beam and
need not be taken into account in the coupled-mode
equations.

Figure 1 illustrates the gain curves of the TE01 TE21,
and TMz, waveguide modes as a function of the operat-
ing frequency. A distinction is made between the results
obtained from single-mode gain calculations (dashed
lines) and the more accurate multimode analysis (solid
line). Coupled-mode theory was used to calculate the
gain parameter of the supermode of the degenerate TEz1
and TMz, modes. The supermode of the planar wiggler
FEL is basically the linearly polarized mode LPz, of the
rectangular waveguide, whose small-signal gain is ob-
served to be higher than each of the separate modes cal-
culated from a single-mode model.

We have also performed gain calculations of the (Elec-
tron Laser Facility) (ELF) experiment carried out at the
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60

50-

40-

20-

coupled-mode theory (solid line) with the ELF experi-
mental results (filled triangles). The results obtained from
the theory and those measured when the ELF amplifier
operated in the linear regime are found to be in good
agreement. The calculated growth rate is close to the
rate measured in the experiment (a linear fit of the experi-
mental results in the small-signal regime appears as a
dashed line).

10-

0
0 0.5 1.5

z [m]
2.5

FIG. 2. Comparison of the coupled-mode growth rate calcu-
lation with data from the ELF experiments at LLNL.

Lawrence Livermore National Laboratory —Lawrence
Berkeley Laboratory, University of California (LLNL-
LBL) [42,43]. The ELF utilizes a 3 —3.6-MeV, 850-A
pulsed electron beam, passing through a linearly polar-
ized electromagnetic wiggler with a period of A, =9.8
cm. The rf cavity was an oversized 10X3 cm rectangu-
lar waveguide. Since the parameters of the ELF experi-
ment are such that the resonant frequency of the degen-
erate TE2& and TM2, modes is suKciently close to the res-
onant frequency of the fundamental TE0& mode, strong
coupling between these modes to the electron beam was
expected at 34.6 GHz. Experiments showed that the
TE2, and TM2, modes have power levels comparable to
the fundamental mode. The ELF experiment operated in
the high gain space-charge dominated regime where ex-
ponential growth rate was measured.

In Fig. 2 we make a comparison of the theoretical
small-signal gain calculations carried out employing the

X. CONCLUSIONS

This paper presents a coupled-mode approach for
analysis of FEL operation, which takes into account 3D
efFects of the radiation field and space-charge field. The
total electromagnetic field is expanded in terms of the
eigenmodes of the waveguide. We derived matrix disper-
sion relations for the space-charge field and for the signal
wave excited in the FEL. From the solution of the cou-
pled gain dispersion equations we attain the small-signal
gain curves.

Diagonalization of the coupled modes system yields
the eigenmode solutions (supermodes) of the FEL. It is
found that the supermode gain obtained for degenerate
modes is higher than the gain of the separate modes when
calculated in a model where coupling is neglected.

The presented model provides a description of FEL in-
teraction for any kind of symmetry of electron beam and
waveguide cross section and can be used to calculate the
small-signal gain of FELs operating in the Compton or
Raman regimes.
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