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Energy limit in cyclotron autoresonance acceleration
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A multimegawatt gyroharmonic converter depends critically on the parameters of a spatiotemporally
modulated gyrating electron beam prepared using a cyclotron autoresonance accelerator (CARA). This
paper extends a prior analysis of CARA [B. Hafizi, P. Sprangle, and J. L. Hirshfield, Phys. Rev. E 50,
3077 (1994)] to identify an approximate constant of the motion and, therefore, to give limits to the beam

energy from CARA that can be utilized in a harmonic converter. It is also shown that particles are
strongly phase trapped during acceleration in CARA and thus are insensitive to deviations from exact
autoresonance. This fact could simplify construction of the up-tapered guide magnetic field in the device
and augurs well for production of high-quality multimegawatt beams using CARA.

PACS number(s): 29.17.+w, 29.27.—a, 41.75.—i, 52.75.Ms

I. INTRODUCTION

Considerable effort has been devoted in the past few
years to the study of gyroharmonic conversion [1—4] for
the production of multimegawatt rf power at cm wave-
lengths, where advanced klystrons may not be suitable as
drivers for future linear colliders. Gyroharmonic conver-
sion depends on the efficient acceleration of an electron
beam using a low frequency rf driver (a SLAC klystron at
2.856 GHz, for example), with subsequent highly prefer-
ential generation of power at a harmonic of the driver
(14.28 GHz in experiments underway at Yale University).
Particle simulation studies have shown that the conver-
sion process can have a high transverse efficiency, with
only small portions of the beam power driving competing
modes at frequencies other than the design frequency.
Moreover, the spent beam particles are left, after satura-
tion, nearly all at the same energy and gyration phase;
this suggests that a single-stage depressed collector or
second-stage converter can be used to yield very high
efficiency beam energy utilization.

The above conclusions for the converter assume that a
means exists for efficient production of a high quality spa-
tiotemporally modulated gyrating electron beam. Such a
means appear to be cyclotron autoresonance acceleration
(CARA), wherein gyrating electrons are maintained in

phase synchronism with a rotating TE&& waveguide field

using tapers in magnetic field and/or waveguide radius.
Work to date on this acceleration mechanism [5—7] has
shown that nearly all the applied rf power can be con-
verted to beam kinetic energy when the tapers are ap-
propriately chosen, but that there is an upper limit to the
energy gain that can be imparted to a beam. Studies of
the evolution of beam quality have shown that there is lit-
tle degradation in beam emittance during the CARA pro-
cess, provided one does not work too close to the upper
energy limit of the device [6].

In this paper, it is shown that the maximum limit to
energy in a CARA found empirically in prior work can
be confirmed analytically. This is possible because an ap-

proximate constant of the motion has been identified
from the basic governing equations. When this constant
of the motion is combined with conditions required for
the beam at the entrance to the harmonic converter sec-
tion, a very simple upper limit is found for the energy of a
beam produced by a CARA that is usable in a harmonic
converter. Such a result is helpful in scaling harmonic
converters to power levels that are required in future
linear colliders.

One criticism of CARA that has been expressed [7] is
that maintenance of synchronism between particles and
the rf drive wave requires construction of a magnetic field
taper with very high precision. Otherwise, it has been
suggested, the particles will not remain in resonance, and
beam quality will degenerate. Results of study of this
point are reported here, wherein it is shown that large de-
viations from the exact autoresonant condition can occur,
through deviations in guide magnetic field from the reso-
nant profile, without materially affecting the acceleration
or beam quality. This occurs because particles are
strongly trapped in moving potential buckets that insure
phase synchronism even when the exact autoresonance
condition is violated. This realization should simplify the
practical construction of a CARA for production of high
quality beams needed in harmonic converters.

II. BASIC EQUATIONS
AND MAXIMUM ACCELERATION ENERGY

In this section, we present self-consistent basic equa-
tions that describe the interaction of an electron beam
with the rf field in CARA. An idealized diagram of
CARA is shown in Fig. 1. The dynamic equations follow
from the Lorentz force equation by making some as-
sumptions, and rf pump depletion is included by conser-
vation of energy. From these equations, we will derive an
approximate constant of motion, which leads to the max-
imum acceleration energy that can be reached in an ideal
CARA.

Suppose that the CARA employs a rotating TE» mode
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FIG. 1. Diagram of an idealized TE»-mode CARA.

in a cylindrical waveguide. In a cylindrical coordinate
system (r, cp, z ), the rf magnetic fields are given by

k,B„=b,t
' J i (k, r )sin(g —q&),
C

where ui =ypi, u, =yp„1t =8—y, g=zco/c,
y=(1+ui+u, )' is the relativistic factor, p=uic/Qo
is the electron gyration radius, 6={Qo/y —co

+k,cp, ) /(cop, ) is the relative frequency detuning,
bo =Qo/co, and b (g) =ebz( g ) /[2mck, ( g) ] In. the above
equations, the refractive index n is equivalent to the
mode's normalized group velocity v, /c, where
us, =d co/dk„and g stands for the angle between an elec-
tron and the rf field. If /=0, the direction of the electron
motion is opposite to the electric field and the electron is
accelerated most effectively.

Suppose that there is no power reQection in the
waveguide. Conservation of energy then requires that

mc' 1~.f(0)=~.f0+~ho —I
i=1

k,
B = b,t— J, (k, r )cos(y —y),

c cr

B,=b&J, (k, r)cos(y —y),

(2)

(3)

where P,f is the rf pump power, P,+ and Pb0 are, respec-
tively, the initial rf and beam powers, I is the beam
current, and X is the tota1 computational particle num-
ber. Equation (8) relates Eqs. (1)—(3) to Eqs. (5)—(7) with
energy self-consistence through the following equation:

1 dBo(z)
B„„;,(x)=Bo(z)e, —— re„,

2 8z
(4)

and the electron gyration frequency is defined by
Qo= eBo(z) /m, where e is the magnitude of the electron
charge and m is the rest mass.

In velocity space, the variable change between Carte-
sian and cylindrical coordinate systems is given by
P =Picos8, P =Pisin8, and P, =P„where P; (i =x, y, z,
and I) denotes a component of the electron velocity nor-
rnalized to the light speed c in free space. When assump-
tions of zero guiding center spread and zero guiding
center drift are made, the equations of motion of elec-
trons in the CARA were given by Hafizi, Sprangle, and
Hirshfield [6]. In this work, we further assume that the
wave number shift hk is much less than n and the pump
depletion rate I is much less than 1 np„where I a—nd
hk are defined in Ref. [6], and n =k, c /co is the refractive
index. Accordingly, the equations of motion can be fur-
ther simplified to become

du i (1 nP,)—ui db0
=2b(g)J', (k,p) cosP+

2 0

where k, is the wave number, k, is the cutoff wave num-
ber, bz is the amplitude, J, (g) is the first kind of Bessel
function of the first order, Ji(g)—:(d/dg)J, (g), and
y=cot —Jok, dz with co the rf field frequency. The rf
electric fields are related by E„=B~co/k, and
E = B„co/k, . The—applied dc axisymmetric magnetic
field is given by

b.r(0) = 2k, (g) I',t(g)
mc k, (g)coco (v„—1)J,(v»)

' 1/2

2uy
2bJ', (k,p)

0
(10)

dy ui=2bJ'i (k,p) cosf .
uz

where v» = 1.841 is the first root of J i (g) =0. In this cal-
culational model, compared with that in Ref. [6], the
inhuence of the electron beam on the refractive index is
ignored. Pump depletion is directly included in the
coefficient b(g) of Eqs. (5)—(7) through conservation of
energy.

Eqs. (1)—(3), (5)—(7), and (8) are the basic equations
needed in the following analysis and calculation. The
Lorentz force equation, which has six component equa-
tions, here has been simplified into three equations [Eqs.
(5)—(7)]. However, the results from the three and six
equations are almost the same, as shown in Fig. 2 for a
sample electron. For this example, the applied axial mag-
netic field and the waveguide are uniform. Hence this
electron cannot keep synchronous with the rf field, and it
goes back to its initial state after a synchronous oscilla-
tion period (six gyration periods). The close agreement
between the solution of the approximate three-equation
system and the exact six-equation system is apparent.

From Eqs. (5) and (6), we obtain

ug (1—nP, )

dg bo

Qu uj u~ db0
=2b(g)J', (k,p) n cosf

u 2u bo d

{1—nP, ) ck,=b, —2b(g)Ji(k, p)
z uikcp

sing,

(6)

(7)

Substituting Eq. (11) into Eq. (10) yields

ui y(1 nP, ) dy——2
bo bo

We assume that in an ideal CARA the synchronous con-
dition
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FIG. 2. Comparison between the results from three equations
and six equations, respectively. For a sample electron, the ap-
plied axial magnetic field and the waveguide are uniform. Solid
line: three equations, and dashed line: six equations.

no
co k, c/3, —— =0 or bo =y(1 n/3, )—(13)

is maintained. From this we obtain a constant of motion
for synchronous particles,

2
Qy —2y =const .
bo

(14)

It should be noted that this is not an exact constant of
motion because it neglects refractive effects of the beam,
and higher order terms for nonsynchronous particles in
the exact equations that arise from pump depletion. Fur-
thermore, a magnetic field must satisfy V B=O and
V XB=0, but the one required to maintain Eq. (13) may
not. Moreover, different electrons with different initial
conditions may have different required resonant fields.
However, simulations indicate that the left-hand side of
Eq. (14) changes very little when the applied magnetic
field is close to that for the average particle. A constant
of motion of this form has been derived for cyclotron res-
onance masers [8], and was employed in the context of
microwave heating of plasmas without pump depletion
taken into account [9,10].

For an ideal single-momentum electron beam, the ini-
tial transverse velocity should be zero. In such a case,
Eq. (14) becomes

=1 [&i(yi —yo)+D'"] (yt&yo, /3. t&o),
y1

(17)

where D = (yo —1)—(1 n, )(y—, —yo) . From D & 0, we
obtain

yo —y1 —y1 max &

where the maximum acceleration energy is given by

(18)

1 6

12

10

8
c

an ideal TE11-mode CARA, as shown in Fig. 1.
Equation (16) gives the complete dependence of y, on

P, &
at the exit of a CARA with output waveguide refrac-

tive index n1 and initial beam energy yo, no matter how
the magnetic field or waveguide radius are tapered for
synchronism, and no matter how much rf power is used.
Equation (16) can be used to estimate CARA parameters
without solving differential equations. As a comparison,
we calculated Eq. (16) using the parameters yo=1. 1957
(100 kV) and n& =0.7677, 0.9373, and 0.9979, which
were examples taken in Ref. [6]. As shown in Fig. 3, the
maximum relativistic factors are, respectively, 2.22, 3.08,
and 11.32, very close to the results 2.17, 2.96, and 10.78
found in Ref. [6]. It should be noted that the maximum
y=2. 17 case of Ref. [6] corresponds to about 80%%uo ex-
traction of rf power, so that the pump is significantly dep-
leted.

From Fig. 3, we can find that for a given y, (except for
the maximum y, ) there are two values of P„on each
curve. The right branch of a curve is for a beam with an
initial energy of yo and zero-initial transverse velocity,
while the left branch is for another initially modulated
beam with an initial energy of yo+(yo —1)' and zero-
initial axial velocity, which is of less practical interest. In
fact, if we use the initial energy yo+(yo —1)' and zero-
initial axial velocity to insert into Eq. (14), then we re-
trieve Eq. (15). The two beams have the same maximum
acceleration energy.

An alternative expression for Eq. (16) is given by

2
Qg =2(y —yo»

0
(15)

where yo is the beam s initial relativistic factor. Substi-
tuting Eq. (13) into Eq. (15), we obtain

0 I I I I

0 0.2 0.4 0.6 0.8

yo(1 n, P„)+[yo( 1 n,—P„) —(1 2n, P—„+P—„]'
y1

1 —2n tP„+P„
(yt &yo), (16)

where yt, P, t, and n& denote the output parameters for

FIG. 3. Dependence of outgoing-beam relativistic factor y,
on normalized axial velocity P„ for different refractive index n, .
The initial beam energy is 100 kV (yo=1. 1957). yl „=2.22
for nl =0.7677 yl =3.08 for nl =0.9373 yl = 11.32 for
n

&

=0.9979, and y 1,„=+ ~ for n, = 1.
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7 (a)
though Eq. (16) establishes all possible dependences of ac-
celeration energy on axial velocity for the CARA, not all
the electron beams with the parameters given by the
equation can be used to generate coherent harmonic radi-
ation in a converter. In this section, we will derive a cri-
terion that a beam from a CARA has to satisfy for the
converter, and give some typical parameters for the Yale
CARA.

As mentioned previously, the beam from a CARA
satisfies the synchronous condition

0

0 25

0.5 0.6 0.7 0.8 0.9 1
QO1

co —k„cP„— =0 or Qo, =coy&(l n, P„—) .
Vl

(29)

(b)
0.2

E

0.15
c
l5

K
0.05

0.8

ra
0.6 Xl

04 XI

0.2

Here and below, a quantity with the subscript 1 refers to
the CARA exit. From the above we obtain the required
resonant magnetic field

ma„= ~ri(1 —niP, i) . (30)

The ratio of transverse velocity to axial velocity at the
CARA exit is given by

0 I I I

0,5 0.6 0.7 0.8 0.9

Refractive Index n

I I I I 0
1

CX1
=

P.)

1/2
1

P,&—
71

(31)

FIG. 5. Dependence of (a) acceleration energy y, and (b)
waveguide radius R„, gyration radius p, and empty-waveguide
relative electric field amplitude E{R )/E(R o) on refractive in-
dex n for a tapered waveguide-radius CARA with initial radius

R 0= 3.81 cm and yo = 1.1957 (100 kV).
leo —k,2cP,~—

I QO2 =0 or Qo2=cor2(1 —n2P, 2), (32)

To generate coherent harmonic output, the beam at the
entrance to the harmonic converter section has to fulfill
both the synchronous and the grazing conditions [1]:

y2
V1 max VO+ 1

1 —n,

(tapering the waveguide radius) . (28)

Comparing Eqs. (19) and (28), we see that for given yo
and n1 the tapered magnetic-field CARA has a larger
maximum acceleration energy.

Figure 5 shows dependence of acceleration energy
y, waveguide radius R, gyration radius p, and
empty-waveguide relative electric field amplitude
E(R )/E(R o) on refractive index n for a tapered
waveguide-radius CARA with initial radius R o=3.81
cm and ro=1. 1957 (100 kV). From it we find that the
waveguide radius greatly increases for large acceleration
energy, which leads to rapid decrease in acceleration gra-
dient. For example, when y is accelerated to 4.0 from
2.0, R increases to 18.8 cm from 7.6 cm, and
E(R )/E(R o) decreases to 15.7% from 40.5%. It is in-
teresting, however, to note that the gyration radius is al-
ways smaller than the waveguide radius in the tapered
waveguide-radius CARA.

III. SOME BASIC PARAMETERS
FOR A HARMONIC CONVERTER

The gyroharmonic converter utilizes a spatiotemporal-
ly modulated electron beam prepared by a CARA. Al-

n2 Pz2 (grazing condition) (33)

O2

QO1

1 2P,2—
V1

1
P.)—

71

(34)

Comparing Eqs. (29), and (32)—(34), we obtain
2 1/2r Ai«. i

—ni)+nip. i
P.2=

2
,P„(P„—n, )+1

Substituting Eq. (15) into Eq. (35), we obtain

r i(2ro —ri) —1
P.p=

ri(2ro r i)

(35)

where I is the harmonic index. In the above equations
and below, a quantity with the subscript 2 refers to the
harmonic converter section entrance. Equation (33)
signifies that the empty-waveguide dispersion curve is
tangent to the line described by Eq. (32).

To realize a transition from the CARA exit to the har-
monic converter section entrance, an rf absorbing drift
tube is inserted (see Fig. 10). In the drift tube, there is
no rf field and y1=y2, but the magnetic field taper con-
tinues. From Eq. (12), we know that u ~/bo is also a con-
stant (adiabatic invariant) so that we have
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A necessary condition that there exists a solution to
Eq. (35) or Eq. (36) is that the inequality

r

0.8 I
I

I I I I ~ I
I

I I I I

1P„&n, 1—
71

or Y,(2Yp —Y, ) &1 (37) 0.6

must hold. From this it follows that only when an elec-
tron beam out of a CARA satisfies the above condition,
the beam may satisfy both the synchronous and grazing
conditions for harmonic radiation after it passes the drift
tube. This condition puts a limit to the usable accelera-
tion energy of a beam from the CARA. From Eq. (37),
we can directly obtain the usable acceleration energy
upper limit

CCL

'U

CI 04

0.2

1.2 1.4 1.6 1.8

I I I I I I I I I

2 1/2
Ylttmit Yo+(Yo (38)

(39)

which corresponds to a usable acceleration voltage limit,
1/2

2mc~», = ~o+ ~o l+
eVo

FIG. 7. Dependence of axial velocities P„and P,z (=nz) on
Y, . Yo= 1.1957 and n, =0.79585. p, z decreases rapidly with Yt
approaching the usable acceleration energy limit, but P„does
not change very much. At Yt= 1.7782, p,&=0.2878.

with Vo the beam's initial voltage. For Vo=(100, 250,
500 kV), V, I;;,=(435, 814, 1372 kV). Similarly, we can
obtain

14

12

Box
e 2fo

and exp=
2(Yt 'Yo)

r tl:Yt(2Yo —Yt) —I]

(40)

10

'U
C
CO

6

Inequality (37) is a criterion which an electron beam
from the CARA has to meet for a converter, and Eq. (38)
shows the usable acceleration energy limit of the beam.
Equations (30), (31), (36), and (40) give dependence of
Bp„at, P z Bpz and az on YI. It should be noted that
the refractive index n

&
does not appear in expressions for

P z Bpz and az. From these formulas we can make a
rough estimation of these basic parameters.

Following is a numerical example that applies to the
Yale CARA. Therefore, let us take Yp= 1.1957 (100 kV)
and n& =0.79585 at 2.856 GHz. As shown in Fig. 6, the

I I » I & i i I

1.4 1.6 1.8

FIG. 8. Dependence of velocity ratios al and a& on yi.
yp=1. 1957 and n& =0.795 85. a& increases steeply with yi ap-
proaching the usable acceleration energy limit At yi =1.7782,
a& =1.0460, and u&=2. 6932.
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FIG. 6. Dependence of outgoing-beam normalized energy y,
on normalized axial velocity P, t. Yp= 1.1957 and n, =0.79585.
Only the part of curve yl below the dashed line for yl =1.8512
is usable for a converter. At p„=0.5714, Y, = 1.7782.

FIG. 9. DePendence of axial magnetic fields Bpl and Bp& on
yi. yp=1. 1957 and nl =0.79585. Bpp increases faster with yi
than Bpi. At y l

= 1 ~ 7782 Bpl =0.0989 T and Bpp =0 1664 T.
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dashed line y, =yo+(yo —I)'~ =1.8512 and curve y,
[from Eq. (16)] has two intersection points, with one of
them at P„=O. The line divides the curve into two parts,
and only the part below the line is usable for a converter.
Figure 7 shows dependence P„and P,2 on y„Fig. 8
shows dependence of a& and o.2 on y„and Fig. 9 shows
dependence of Bo& and BO2 on y, . From these figures we
find that a larger acceleration energy y& results in a
smaller axial velocity P,2 and a larger velocity ratio a2,
although P„does not change very much. The required
magnetic field Boz also increases with the acceleration
energy. For example, taking P„=0.5714, we have

y, = 1.7782 from Fig. 6; P,z
=0.2878 from Fig. 7;

a, =1.0460 and F2=2.6932 from Fig. 8; Bo, =0.0989 T
and Bo2 =0.1664 from Fig. 9.

IV. SIMULATION ANALYSIS

VO rxO 1 Pzl

CARA Drift tube
I

I

Applied resonant magnetic field Transition field

In this section, we will present simulation results on a
CARA for the Yale gyroresonance harmonic converter.
The CA@.A combines tapering a waveguide and tapering
a magnetic field to keep the synchronous condition
satisfied, as shown in Fig. 10. A 100-kV, 30-A, single-
momentum electron beam is passed through the CARA
driven at 2.856 GHz with an rf power of 10 MW. After
the CARA, there is a drift tube to allow the beam to
fulfill both the synchronous and grazing conditions as
stated previously. The basic equations in this simulation
are given in Sec. II. To save computer time, we use only
five computational particles with an initial velocity ratio
of ac=0.0036 (u,0=0.6555) to simulate the beam, and
the five particles are uniformly initialized in g from—3m/2 to m/2.

In the 50.9-cm long CARA, there are three sections of
waveguide. The first has a radius of 3.81 cm and a length
of 11.53 cm, and the third has a radius of 5.08 cm and a
length of 19.05 cm, and they are uniform. The second is
tapered with a length of 20.32 cm.

First, we will simulate an electron beam passing
through the CARA with an exact resonant magnetic field
and through the drift tube with a transition magnetic
field in order to examine the evolution of the beam. Then
we will use a perturbed field, through deviations in the
guide field from the resonant profile, to simulate the same
beam and to observe how the perturbation affects the ac-
celeration.

A. CARA with an exact resonant magnetic Seld

0.25

1.5
V
Qc
EO

A 1
CCL
V

A
CQ.
V 05

B
/

0.2

El
0.15

0.1

From Eq. (13) we see that an exact resonant magnetic
field is dependent on the energy and axial velocity of indi-
vidual moving electrons. The exact fields for different
electrons are not completely the same because they have
different initial conditions. In this simulation, we take an
"exact" resonant magnetic field for all electrons in such a
way that the synchronous condition is maintained for the
first computational particle.

Figure 11 shows averaged transverse and axial veloci-
ties, and energy vs axial distance, where ( ) signifies the
ensemble average. The transverse velocity (Pz) and en-

ergy ( y ) increase with the axial distance z while the axi-
al velocity (P, ) does not change very much during the
acceleration (from z =0 to 0.509 m). The resonant mag-
netic field Bo gradually increases in the uniform
waveguide and decreases a bit in the tapered waveguide.
In the drift tube (from z =0.509 to 0.712 m), Bo rapidly
increases with axial distance, which results in consider-
able decrease in (P, ) and increase in (P~) with (y)
kept unchanged. At the CARA exit, (P, ) =0.5714,
( y ) = l.7766 (397 kV), and Bo =0 0988 T. ; after the drift
tube, (P, ) =0.2923, and Bc=0.1658 T. These results
are very close to the ones obtained analytically in Sec.
III. The CARA efficiency is 89.05% for this example.

Figure 12 shows rms spread in P~, P„and y. The Pj
spread has an abrupt peak nearly at start that can be ex-
plained as follows. At the CARA entrance, the beam of
electrons does not have any velocity spread but a small
transverse velocity. These electrons are in all directions,
and some are accelerated and some are decelerated as
soon as they go into the CARA, which results in a large
increase in P~ spread. However, all the electrons are
forced to rapidly turn to the direction opposite to the rf
field, and their transverse velocities get closer to their
average when they are effectively accelerated. Accord-
ingly, the pj spread begins to decrease. From this we can
see that Pt and y spreads during the acceleration result

5.08 atl

To converter
section 0

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z (m)

0.05

Applied resonant magnetic field Transition field
I

I I11.53 cm 20.32 cm 19.05 cm 20.32 cm

FIG. 10. CARA with a drift tube as used in simulations. The
drift tube is used to transit the beam from CARA to the har-
monic converter section.

FIG. 11. Dependence of (p~), (p, ), (y), and exact reso-
nant magnetic field B& on axial distance z in the CARA (from
z =0 to 0.509 m) and in the drift tube (from z =0.509 to 0.712
m). At the CARA exist, (P, ) =0.5714, (y) =1.7766, and
Bo =0.0988 T. After the drift tube, (P, ) =0.2923, Bo =0.1658
T.



51 ENERGY LIMIT IN CYCLOTRON AUTORESONANCE ACCELERATION 2463

0 0015 I
I

'
I

'
I

'
I

'
I

'
I

'
I

'
I

0.105 I
'

I
'

I
'

I
'

I

0.1

C
0.001

CCL

CQ

C

co 0.0005—
CL

CO

0.095

Cl
0.09

CS

gg 0.085

0.08

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z (m)

0.075
-0.1

I i I i I i I i I s I g

0 0.1 0.2 0.3 0.4 0.5

z (m)

0.6

FIG. 12. Dependence of rms spread in Pi, P„and y on axial
distance z. The y spread and Pi spread result mainly from the
beam's initial transverse velocity.

FIG. 14. Dependence of perturbed field Bo~ and exact reso-
nant field Bo on axial distance z. Solid line: 5% perturbation of
the exact resonant field, and dashed line: exact resonant field.

mainly from the beam's initial transverse velocity. In the
drift tube, the P, spread has a considerable increase be-
cause of y spread.

Figure 13 shows dependence of t(i spread on axial dis-
tance. The five particles with an initial spread of 2m are
strongly phase trapped as soon as they go into the
CARA. The first two particles stay at /=2m. and the last
three stay at / =0 with an extremely small g spread (less
than 0.03 rad). In the drift tube, the g spread keeps al-
most unchanged although f changes to fit the harmonic
converter section.

B. CARA with a perturbed magnetic 6eld

To study deviations in the guide field from the exact
resonant profile, we use the perturbed magnetic field

Bo~(z)=[1+a sin(2~z/A~)]Bc(z), where o. =5% is the
perturbation coefticient, A, =5 cm is the perturbation
period, and Bo(z) denotes the exact resonant field, as

shown in Fig. 14. Using this perturbed field, we have
simulated the same electron beam passing through the
CARA as in Sec. IV A.

Figure 15 shows dependence of relative frequency de-
tuning 6 on axial distance z. For an exact resonant field,
the maximum detuning is only about 0.1%, but for the
perturbed field the maximum detuning increases up to
about 6%. The perturbed field causes large deviations in
the relative frequency detuning from the exact synchro-
nous condition. However, the g spread does not increase
except for a little bumping (within +0.04 rad), as shown
in Fig. 16. Simulations indicate that the bumping magni-
tude increases with increase in the perturbation period.
From Fig. 17, we find that the average transverse velocity
(Pi) and axial velocity (P, ) also have some ripples, but
the energy (y ) does not have any observable variations.
At the CARA exit, (y) =1.7755, only 0.06% less than
that in the exact resonant field case. This is because the
electrons are so strongly trapped that the acceleration is
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FIG. 13. Dependence of 1t on z for five computational parti-
cles, which are initially located at g/~= —1.5, —1.1, —0.7,
—0.3, and 0.1. These particles are immediately phase trapped
with an extremely small spread after they go into the CARA.

FIG. 15. Dependence of relative frequency detuning 6 on ax-
ial distance z for five computational particles. Solid line: per-
turbed field, and dashed line: exact resonant field. 6 „is only
about 0.1% for the exact resonant field, and 5,„ increases up to
about 6%%uo for the perturbed field.
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FIG. 16. Dependence of t( on z for five particles in a per-
turbed magnetic field. The 1( spread does not increase, com-
pared with in the exact resonant field case, except for a little
bumping.

not affected materially. Exploring this trapping
phenomenon with other perturbation periods shows simi-
lar results, and no unusual resonance effect when A, is
close to the equilibrium orbit period.

V. CONCLUSIONS

In this paper, based on a prior work [6], we have made
an analytic study and computer simulation of CARA. In
summary, we can draw the following conclusions:

(i) An approximate constant of the motion u f /bo —2y
has been identified for an idealized TE»-mode CARA.
This constant has been previously applied to cyclotron
resonance masers [8] and plasma heating [9,10]. In the
case without an rf field, this constant of motion becomes
the ordinary first adiabatic invariant.

(ii) An analytical expression for maximum acceleration
energy in the CARA, y, ,„=yo+[(y,i —1)l(I n, )]'~—

FIG. 17. Dependence of (Pi), (P, ), ( y) on axial distance z
in the CARA with a perturbed magnetic field. At the CARA
exit, ( y ) =1.7755, only 0.06%%uo less than that in the exact reso-
nant field case.

has been derived. The maximum acceleration energy de-
pends only on the initial energy of an injected electron
beam and the output waveguide refractive index.

(iii) There is a usable CARA upper energy limit
for a gyroharmonic converter, given by y»;;,
=yo+(yo —I)'~ . To fit the harmonic converter section,
the energy of an electron beam prepared by the CARA
must be less than the energy limit.

(iv) Simulations indicate that an electron beam is rapid-
ly and strongly phase trapped in the CARA interaction.
Even up to 6% of deviation in the relative frequency de-
tuning from the exact synchronous condition does not
materially affect the acceleration.
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