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Convective growth of cyclotron harmonic waves on a bounded coaxial electron beam
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Analysis and numerical evaluations are presented for the spatial growth of small-signal modified elec-
tron Bernstein waves that stand radially and propagate axially along a beam-filled coaxial waveguide. It
is shown that these waves, when coupled strongly to fields of an electromagnetic TE» mode in the interi-
or cylindrical waveguide of this configuration, can make possible an amplifier of cyclotron harmonic
waves that would possess several unique properties. In particular, millimeter wavelength amplifiers
based on this interaction would require neither high magnetic fields nor high electron beam voltages, and
thus would not require the bulky superconducting magnets and highly insulated high voltage power sup-
plies usually associated with fast-wave gyro devices. The analysis extends prior work on interactions of
this type, including in the calculations simultaneous contributions from more than one term in the
infinite series dispersion relation. Effects of finite axial beam velocity spread on the gain and bandwidth
characteristics of the interaction are also calculated, thereby accounting for the irreducible velocity
spreads attributable to space charge potential depression on the beam.

PACS number(s): 42.52.+x, 41.75.—i, 52.75.Ms, 52.35.Hr

I. INTRODUCTION

This paper presents results of analysis and numerical
evaluations describing the spatial growth of small-signal
modified electron Bernstein waves [1] that stand radially
and propagate axially along a beam-filled coaxial
waveguide. This arrangement is at the heart of an
amplifier concept that would require neither high elec-
tron beam voltages nor high guide magnetic fields for
operation at millimeter wavelengths [2]. An abbreviated
description for a related amplifier using a beam-filled cy-
lindrical waveguide has been previously published [3].
The beam excitations are labeled "modified" electron
Bernstein waves because they are characterized principal-
ly by short-wavelength beam perturbations directed
across the magnetic field that guides the beam. But the
excitations also possess long-wavelength perturbations
directed along the guide field, a feature not normally as-
sociated with Bernstein waves. The principal objective of
the present work is to explore the linearized version of
this interaction in coaxial geometry where, as shall be
shown below, advantages exist over cylindrical geometry
for a practical amplifying device. In addition, results are
given for the influence on gyroharmonic linear wave
growth from contributions of harmonic terms in the
infinite series dispersion relation that are adjacent to the
harmonic term of interest and from finite axial beam ve-
locity spread.

Nearly 15 years ago, the possibility of exploiting the in-
stability of radially standing Bernstein modes on electron
beams for generating millimeter wave radiation was
demonstrated analytically [4,5] and experimentally [6].
Published experiments showed coherent oscillations up to
62 CxHz at the fourth gyroharmonic, using a 15-kV low
current beam in a quasioptical resonator. Further experi-
ments [7] showed oscillations up to 311 GHz at the
eighth gyroharmonic in a two-cavity quasioptical

configuration. None of the high harmonic results could
be explained without invoking a growth mechanism for
unstable electrostatic modes on the electron beam. Re-
cently, Li and Antonsen [8] have reviewed and extended
the analysis of this mechanism to describe coupling be-
tween electron Bernstein modes and electromagnetic
modes of gyrotron cavities and to investigate degradation
in beam quality that might result from the electrostatic
instability.

In order to produce gyroharmonic amplification of ra-
diation at a wavelength of 1 mm, a guide magnetic field
of strength about 107y /n kG must be employed, where y
is the relativistic energy factor and n is the harmonic in-
dex. But if practical limitations require the device to em-
ploy noncryogenic magnet coils and to be lightweight, it
is apparent that n/y must have a value of at least 10.
Fast-wave gyroharmonic interactions in smooth-wall cir-
cuits utilizing electron beams with harmonic indices n
above 2 or 3 usually demand beam energies of the order
of 100 kV, since harmonic coupling is a strongly relativis-
tic effect that increases as beam energy increases. But
there is ample experimental evidence for the existence of
interactions at very high gyroharIDonics in low energy
laboratory and ionospheric plasmas. For example, Lan-
dauer [9] reported observation of about 40 harmonics in
noise emission from low pressure gas discharges; Craw-
ford, Kino, and Weiss observed about ten harmonic reso-
nances in microwave transmission across a plasma
column [10];and multiple harmonic interactions in ionos-
pheric topside soundings have been reported [11]. No
theory based solely on electromagnetic interactions in
weakly relativistic plasmas has been able to explain these
observations. But, if slow electrostatic waves standing
across the guide magnetic field (counterpropagating elec-
tron Bernstein waves) can be supported by the beam or
plasma and if conditions for excitation of these waves can
be found, then dynamical effects that are essentially rela-
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tivistic can occur for low energy beams and plasmas.
This follows since the ratio of the mean electron gyration
radius to the electrostatic wavelength will not be a quan-
tity much less than unity. Detailed models invoking this
concept have served to explain in detail the plasma obser-
vations [9—11] and the millimeter wave beam oscillations

This paper is organized as follows. Section II describes
the electrostatic fields of a coaxial waveguide containing
a uniform electron beam; both static and oscillatory fields
are discussed: the static (space charge) field can be used
to estimate the axial velocity spread to be expected for a
given beam perveance due to potential depression, while
the oscillatory modes dictate the spectrum of transverse
wave numbers that are to be included in the analysis of
wave dispersion and growth. Section III gives an analysis
of the Harris linearized dispersion relation [12] appropri-
ate to steady-state waves with the aforementioned spec-
trum of real transverse wave numbers, propagating with
possible growth or decay along the coaxial waveguide.
Section IV gives results of numerical evaluations for spa-
tial growth rates for such waves, including contributions
from nearest-neighbor terms in the infinite-series disper-
sion relation and effects due to finite axial velocity spread
on the beam. Section V describes a conceptual device
design for an amplifier showing a possible means of
input-output coupling and mode selectivity. Section VI
contains a summary of the important results of this work
and suggestions for additional study.

n (r, B)=no to be constant and assume the guide magnetic
field to be strong enough to effect laminar confined Aow.
In this case the potential, as given by a solution of Eq. (1),
is

P(r, B)=P(r)
n oe ln(r /R

&
)

(r R,—) —(R2 —R, )

(3)

where the boundary conditions are taken to be
P(R &

) =P(R2)=0. To find the potential depression
—(b,P)„,„, defined as the largest negative value of P(r),
one differentiates Eq. (3) with respect to r and sets the re-
sult equal to zero. This gives the location of the potential
minimum at r =R& [(p—I)/1np]'~, from which it fol-
lows that

(&p)„,„=
2n0eR
& p —1 p —1—1— ln

4c.0 lnp lnp lnp

F(p)=— p —1
p —1 —in@ —(p —1) ln

p lnp lnp

(4)

where p, =Rz/R, . The potential depression for a cylin-
drical beam is (b P),„&=noeR 2/4EO, so that (AP)„,„
=(bP), &F(p, ), where

II. ELECTROSTATIC FIELDS
IN A COAXIAL BEAM-FILLED WAVEGUIDE

We consider an axially uniform coaxial waveguide
bounded by perfectly conducting cylinders with radii R,
and R2, where R2 &R&. For excitations at frequency co

with spatial variations having scale lengths much less
than the free-space wavelength 2m.c/co, the full set of
Maxwell's field equations for the system can be approxi-
mated by Poisson's equation for the electrostatic poten-
tial P(r, B,z, t),

V P(r, B,z, t)= en (r, B,z, t)/eo—
with the corresponding electric field E(r, B,z, t)

VP(r, B,z, t) —Here e is the . magnitude of the electron
charge, Eo is the permittivity of free space, and n (r, B,z, t)
is the electron concentration in the beam, as a function of
time t and cylindrical space coordinates ( r, 8,z). The
beam current is assumed to be small enough to allow
neglect of static self-magnetic fields and E(r, B,z, t) is ob-
viously curl free. For harmonic steady-state excitations,

The quantity F(p), a plot of which is shown in Fig. 1, is
the factor by which the magnitude of the potential
depression for a coaxial beam is lower than that for a cy-
lindrical beam of equal charge density. With R2=4R),
for example, one has F (p) =0.295.

To estimate the magnitude of axial velocity spread
across a gyrating beam caused by potential depression,
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P(r, B,z, t)= g P, (r, B) exp[i(k, ,z cot)] . —
m, s

(2) 0. 1
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In Eq. (2) the double sum is over modes with distinctive
radial (labeled s) and azimuthal (labeled m) eigenvalues
and the radian frequency co is real. Each individual mode
(m, s) has one or more possibly complex axial
wavenumbers k, ,

The static field profile is given for the case m =s =0,
with co =k,00

=0. We assume the beam density

R IR,
FIG. 1. Space charge depression reduction factors F(p) and

H(p) versus R2/R
&

=p' for a coaxial bounded beam. F(p)
(solid curve) is the reduction in potential depression and H(p)
(dashed curve) is the reduction in axial velocity spread for a co-
axial beam, as compared with a cylindrical beam with radius R2
of equal perveance.
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one introduces the ratio of transverse-to-axial velocity
vi/v, =a and the relativistic energy factor
y =1+eV/mc, where V is the voltage through which
the beam has been accelerated. One then has
v, =c [(1—y )/(1+a ) ]' . In terms of the beam
current I =vrnoev, (R z

—R, ), it follows that
1/2

~~z 1 m (1+a )'~ H(p)P
v, 8+co 2e

=7.58 X 10 (1+a )'i H (p)P, (6)

where P=(I/V ~ )[2/(1+y)] ~ A/V ~ is a generalized
beam perveance and H(p)=[pF(p)/(p —1)]. For a cy-
lindrical beam, H(p) =1, so that this quantity is seen to
give the reduction in axial velocity spread that results
when a coaxial beam is used in place of a cylindrical
beam of equal perveance. The factor H(p) is also plotted
in Fig. 1. As an example, if R2 =4R „the reduction fac-
tor H(p) is seen to be 0.315. Thus one advantage of em-
ploying a coaxial rather than a cylindrical beam (of equal
perveance) is the markedly smaller axial velocity spread
for the former that will be caused by beam space charge.

If the beam is produced using convergent How the
above analysis is invalid, since azimuthal particle motions
(as in Brillouin fiow [13])will induce a nonuniform radial
density profile, resulting in an axial velocity spread (even
in the absence of scalloping) that can be smaller than that
given by Eq. (6). However, for purposes of the present
work, the prediction of Eq. (6) will be taken as a conser-
vative upper limit for the axial velocity spread on the
beam.

Eigenfunctions in Eq. (2) for s%0 and m&0 are given
by

, (r, 8)=[A, J (ki, r)+B,Y (ki, r)] cosm8 (7)

and a similar form proportional to sinm8. In Eq. (7) J
and Y are Bessel functions of mth order of the first and
second kinds and A, and 8, are constants. The excita-
tions given by Eq. (7) are oftimes referred to as Gould-
Trivelpiece modes [14]. In a prior discussion of the am-
plifying mechanism for Bernstein modes on cylindrical
beams (where B,=0), the monopole mode (m =0) was
analyzed [3]. For the coaxial case, injection of an input
signal using the TE&& electromagnetic mode within the
cylindrical inner pipe of radius R

&
suggests itself. We as-

sume that coupling between electromagnetic fields within
O~r ~R, and electrostatic fields within R, ~r ~R2 can
be azimuthally selective, through the use of judiciously
placed coupling slots so as to eliminate all oscillatory
fields except for those in Eq. (7) with m =1. This point
will be discussed in Sec. V. The eigenfunction for the
fields within the beam to be analyzed here is thus selected
to be

FIG. 2. Equipotentials for the seventh radial dipole mode for
a uniform beam within coaxial conducting cylinders. Curves
shown are for normalized equipotentials equal to 0.2, 0.4, 0.6,
and 0.8 of the maximum potential (for the inner two lobes); 0.2,
0.4, and 0.6 (next three lobes); and 0.2 and 0.4 (outer two lobes).

An approximate series representation for the allowed ei-
genvalues given by Eq. (9) can be found [15]. For exam-
ple, with R2 =4R &,

k~ R
&
=1.0472s+0. 089 53s ' —0.046 88s +

(10)

P, (r, 8)=[A,J&(ki, r)+B, Y&(k~r)] cos8 (8)

while the eigenvalues k~„ found from setting
P, (R &, 8)=$, (R2, 8) =0, are given by the roots of

J)(ki, R ( ) Y)(ki, R2) =J((ki, R2) Y((ki, R ) ) .

FIG. 3. Equipotentials for the seventh radial dipole mode for
a uniform beam within a single conducting cylinder. Curves
shown are for normalized potentials equal to 0.2, 0.4, 0.6, and
0.8 of the maximum potential (inner lobe); 0.2 and 0.4 (next two
lobes); and 0.2 (outer four lobes) ~
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Equation (10) is accurate to better than one part in 10
fors )7.

Equipotentials for the mode s =7 are depicted in Fig. 2
for the case R2 =4R „where the contours shown are for
potential values in increments of 20%%uo of the maximum
value. (The mode s =7 is chosen for illustration, rather
than a higher-s mode, merely to avoid undue crowding in
Figs. 2 and 3.). For comparison, corresponding equipo-
tentials for the cylindrical case (R i =0) are shown in Fig.
3. The concentration of high electric field (crowding to-
gether of equipotentials) near the axis for the cylindrical
case, where no external access exists, is apparent. In con-
trast, the fields fall off more gently with radius for the co-
axial case and are relatively strong near r =Ri, where
coupling through slots to electromagnetic fields in the
inner waveguide is possible.

The above analysis, based solely on the solutions of
Poisson*s equation for a uniform coaxial electron beam

I

bounded by conducting cylinders, provides a prescription
for finding the discrete spectrum of allowed (real) trans-
verse wave numbers k~, . The corresponding spectrum of
(possibly complex) axial wave numbers k„ for (possibly
growing) waves at frequency co must be determined by ap-
peal to a governing plasma wave dispersion relation.
This is undertaken in the following section.

III. ELECTROSTATIC WAVE DISPERSION
AND GROWTH

For electrostatic waves in a uniform electron plasma
permeated by a uniform guide magnetic field B aligned
along the z axis, wave numbers and frequencies for plane
waves are connected by the infinite series Harris disper-
sion relation [12]

J„(ki,w/yQ) afo afo
dw du g nyQ +k w

mao 0 — „k2(~—nQ —k u/y) aw " au

where fo(u, w) is the distribution function for the beam
electrons that is assumed to be axisymmetric in momen-
tum space, u and w are the electron momentum com-
ponents (divided by the electron rest mass) along and
across B, Q =eB /m y is the relativistic gyrofrequency, J„
is the nth-order Bessel function of the first kind,
y =[1+(u +w )/c ]' is the relativistic energy factor,
k =k~, +k„, and the summation over n indicates that
interactions occur near all harmonics of the electron
gyrofrequency Q. An excitation at frequency m is shown
by Eq. (11) to involve the three indices (s, m, n), corre-
sponding to the spatial parity (radial and azimuthal) of
the wave potential and to the dominant term in the series
in Eq. (11) corresponding to response near the nth
gyroharmonic. But, as will be seen, there are cir-
cumstances where several terms under the sum in Eq. (11)
may make significant contributions to wave growth at a
given frequency ~. This would imply the existence of
several waves of the same frequency, but usually differing
perpendicular (complex) axial wave numbers. The conse-
quences of this state of affairs will be discussed below.

The use of Eq. (11), derived for plane waves, for excita-
tions as given by Eq. (8) needs to be clarified, since the
fields are not exactly periodic in r. However, as will be

seen below, the range of kj, r=y within which wave
growth is significant is much greater than unity. In this
limit, Ji(y)~(2/y)'~ cos(y —3m/4) and Yi(y)
~(2/y)' sin(y —3m. /4). Thus, for y )&1, it is seen that
assuming the waves to be periodic in r is a reasonable ap-
proximation and application of Eq. (11) to these excita-
tions can be justified.

The strength of wave-particle coupling near harmonic
gyroresonance cu=n A is governed by the Bessel function
J„(x) in Eq. (11), whose magnitude is much smaller than
unity unless its argument x is comparable to its order n.
For conventional fast-wave interactions the argument
x =ki, wlyQ=n (cki, /co)(w /ye) ((n since, except for
highly relativistic electrons, w/yc && 1 and cki, /co is less
than unity. As a result, high gyroharmonic interactions
are often weak. However, for slow electrostatic waves
(equivalent to cki, /co)&1), the high harmonic interac-
tions can be significant even for w/yc && 1. It is this fact
that makes electrostatic waves potent candidates for a
high gyroharmonic amplifier without need for highly rel-
ativistic beam energies.

For the analysis that is to follow, it is convenient to
work from the version of Eq. (11) that results from in-
tegration by parts on both u and w, namely,

1= J dw J du fo(u, w) g 2
Pp1 Cp 0 —oo

~ ~ k

nkj [J„(ki,wlyQ)]'
(co —nQ —k„u/y)

wJ2(k~ w/yQ) (n yQ+ k„u)
y(co —nQ —k„u/y) '

y c
(12)
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where [J„(x)]'=d[J„(x)]/dx. This result can be found
in an early unpublished report by Bers and Speck [16]
and can be obtained by algebraic rearrangement from a
formula published by Chen and Chu [17]. For a cold
electron beam, with fo(u, w)=(N/2m W)5(w —W)5(u
—U), Eq. (12) leads to

A„ A„
k =~ 'co n—Q — + +B (k )zs U 2 4 n zs

7 (co —nQ)

1/2

8' „k nkvd, W[J„]'
(co n—Q k—„U/y )

8"J2
+

y(co nQ— k„—U/y )

(nyQ+k„U)
2C2

(13)

n &e& n

1+P, Q 1 —P,
(16)

where P, = U/yc. The maximum imaginary value of k„
occurs at

since usually A„«4B„. Equation (15) admits complex
conjugate values of k„ for real co in the frequency inter-
val where B„ is negative, namely,

where J„=J„(k~,W/yQ).
A preliminary appraisal of the nature of the roots of

Eq. (13) can be found by assuming that waves associated
with each value of n in the series are decoupled and that
k~, &&k„. Equation (13) for each n is then of the form

(co —n Q —k„U/y )

nQ
CO=

1 —P,

and is given by

[Im(k„)],„=
P 1/2 I P2

'i nJ„(k p )

(kj,pg )

(17)

where

—A„(co nQ ——k„U/y ) —B„(k„)=0, (14)

COpA„= nk~, [J„]',
k W

co~ (n y Q+ k„U)
B„(k„)= [J„] k„—

In practice the coefficients A„and B„(k„)are much
smaller than unity, in which case, Eq. (14) has the ap-
proximate solution

where Pj = W/yc and p = W/yQ. Equation (16) shows
that the frequency interval where gain is associated with
the harmonic term n overlaps that associated with the
term (n+1) when n &(1—P, )/2P, .

It is easy to show that the reduced dispersion relation
Eq. (14) corresponds to convective instability (i.e., spatial
amplification) for waves moving in the same direction as
the beam in the frequency range given by Eq. (16). This
follows [18] since in this range real co corresponds to
complex k„, while real k„corresponds to complex co.

Equation (17) can be recast to give the maximum value
of the power amplification coefticient, namely,

[G,'"'],„=20(log,oe)[Im(k„) ]

I=0.1331af„
yP, ( I —P, )(R q

—R f )

1 /2

dB/cm, (18)

where I is the beam current in amperes, a=Pj /P, is the
velocity ratio, f„=m xa[n J( k~, p) /( k~,p)], and R& and
Rz are measured in cm. Figure 4 shows plots of f„and
the corresponding values of x„=(kj,p), as functions of n.
As an example, for n = 10, one has f„=0.261 and
x„=11.44. Table I shows parameters as predicted by Eq.
(18) for a hypothetical tenth harmonic gyroamplifier with
single-mode operation based on these values. Since
kz, p=11.4 for this example, it is seen that the approxi-
mation is justified that the excitations given by Eq. (8) are
essentially periodic in r. For the cases discussed, the co-
axial inner spacing of 1.8 mm is between 3 and 4 gyration
radii, so that the beam can almost be considered "thick"
in comparison with conventional gyrotron annular
beams. It is assumed that such a thickness is adequate to

support space charge dominated Bernstein modes, but
this point deserves further study.

The parameters of Table I are not intended as the basis
for a device design, but rather to demonstrate that the
small-signal gain levels that can be estimated for an
amplifier operating near 300 GHz with relatively low
values of operating voltage, current, and magnetic field
are significant enough to warrant a detailed numerical
analysis. Such an analysis is presented in the next section
of this paper.

IV. NUMERICAL EXAMPLES

In this section of the paper, selected examples are
chosen for numerical evaluation of the spatial growth
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FIG. 4. Maximum growth factor f„(n) and x,„(n) versus
harmonic index n.

FIG. 5. Re(k, ) (straight line) and Im(k, ) (curve) versus co/Q
near the fifth harmonic for s =13, for a 30-kV, 8-A beam with
a =2.0.

rates as given by the roots of Eq. (13) for a cold beam and
Eq. (12) for a beam with finite axial velocity spread.
Most solutions that are given assume that terms under
the summation signs in each equation decouple from one
another. This assumption is tested in two examples by
solving for roots when nearest-neighbor terms to the
dominant term are also included. Solutions are shown
for a specified value of k~, in each case as well, assuming
that a means exists for coupling to only one radial beam
mode. A possible means for effecting this selective cou-
pling is described in Sec. V.

Results for the first example as shown in Figs. 5 —10 are
for a fifth harmonic amplifier. In this case a 30-kV, 8-A
beam with a=2.0 is chosen. For a cold beam, Fig. 5
shows the solutions found from the n =5 term of Eq. (13)
for the real and imaginary parts of k„as functions of
co/Q. In this figure, results are shown for the 13th radial
mode, which is the mode that has the peak gain. The
peak value for Im(k, ) of 14.9 m ' (1.3 dB/cm) agrees to
better than 2 parts in 10 with the value predicted by Eq.
(17). These values indicate that a fifth harmonic, 140-
GHz amplifier could be built requiring a magnetic field of

only 10.58 kCx. Figure 6 shows solutions for Im(k, ) for
radial modes between the 9th and 18th, so that the rela-
tive gain values for each of these can be compared. It is
seen that seven modes (s =9, 10, ll, 12, 14, 15, and 16)
have peak gain values greater than half that for the
fastest growing mode s =13. Figure 7 shows solutions
from the n =4, 5, and 6 terms in Eq. (13) for s =13, eval-
uated from taking one term at a time from under the
summation and from taking three terms. The solutions
in this case are seen to be virtually identical, even where
gain spectra from the fifth and sixth terms overlap. Fig-
ure 8 shows the gain spectra obtained from finding roots
for the first eight terms under the summation for s = 13,
taken one term at a time. The result shows that gain is
obtained continuously in frequency over a considerable
bandwidth. The relative magnitudes of the gain arising
from different n values is a function of radial mode index
s; for a higher value of s, the peak gain occurs for higher
n. Clearly it will be necessary to devise a means of select-
ing a given s value so as to optimize the gain spectrum for
a given application.

TABLE I. Parameters for a hypothetical tenth harmonic amplifier, at five diferent values of B, cor-
responding to excitations of the five radial eigenvalues 10~ s ~ 15 as listed, at the five center frequencies
also as listed. The small-signal peak gain value of 2.16 dB/cm predicted by Eq. (18) is the same for all
five cases.

beam voltage
beam current I
velocity ratio a
inner coax radius R

&

outer coax radius R&
harmonic index n

radial eigenvalue k~, R &

magnetic field B (kG)
gyration radius pg (mm)
center frequency (GHz)
peak small-signal gain

30 kv
8.0 A

2.0
0.06 cm
0.24 cm

10
10.48, 11.53, 12.57, 13.62, 14.67, 15.71

8.09, 8.90, 9.71, 10.52, 11.33, 12.13
0.65, 0.60, 0.55, 0.50, 0.47, 0.44

214, 235, 257, 278, 299, 321
2.16 dB/cm
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FIG. 6. Im(k, ) versus co/0 near the fifth harmonic for
several values of radial mode number s, for a 30-kV, 8-A beam
with a=2.0. From the bottom up, s =18, 17, 9, 16, 10, 15, 11,
14, 12, and 13.

FIG. 8. Gain spectrum Im(k, ) for the first eight terms of the
dispersion relation, taken one term at a time, for the same beam
as in Figs. 5 —7.

Figure 9 shows the effect of axial velocity spread on
gain for s =13. In this case, Eq. (12) has been evaluated
(using the n =5 term alone) for a distribution of axial ve-
locities given by the flat-top function

is not affected by velocity spread. ) To examine the sensi-
tivity of the gain dependence on velocity spread to the
form of the distribution function, a second distribution
was also used in evaluating Eq. (12), namely, the Maxwel-
lian distribution

1 huf(u)= H u —uo+au ' 2
Au—H u —u 0

(19)
f (u)== 2

Au

ln2
1/2

exp ' —41n2
uo

Au

'2

(20)

where H(x)=1 for x )0, H(x)=0 for x (0, and b, u is
the full width at half maximum off (u). The gain curves
in Fig. 9 are seen to narrow with increasing axial velocity
spread, since the growth for larger values of k, is more
severely affected than for smaller k, . (Growth for zero k,

where again hu is the full width at half maximum for
f (u). The results, shown in Fig. 10 for hu luo=4%, are
seen to be essentially the same as for the distribution
given by Eq. (19). From the curves shown in Fig. 9, it
appears that velocity spread values of less than about 5%

20 f I I
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I 1 I I
i

I 1 I I
[

I 1 I I
(

I I I I
i

I I I I 20 I I 1
[

I I I I
J

I I I I
J
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10N 10

I0 I s s s I I..» i i I I i t s I s. ~

3 3.5 4 4.5 5 5.5 6 6.5 7 4.5 5 5.5

FIG. 7. Comparison for Im(k, ) between one-term (solid
curves) and three-term (dots) solutions of the dispersion relation
for s = 13 for the same beam as in Figs. 5 and 6.

FIG. 9. Effect of velocity spread on gain curve for the fifth
harmonic term. From the wide to the narrow curves, values of
hu /u are 0, 2.0%, 4.0%, 6.0%%uo, and 8.0%, respectively.
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FIG. 10. Comparison of gain curve for Au /si of 4.0%, using
a uniform distribution [Eq. (19), solid curve] and a Cxaussian dis-
tribution [Eq. (20), dashed curve] of equal full width at half
maximum velocities.
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are needed in order to preserve significant bandwidth in a
fifth harmonic device.

Figures 11—13 are for tenth harmonic operation using
the same structure as in the example given in Table I,
with R2=4R& =0.240 cm. Figure 11 shows evaluations
of (a) Im(k, ) and (b) Re(k, ) from Eq. (13) for the terms
n =9, 10, and 11 for a 10-kV, 2-A beam having a=3.0.
From the curves for Re(k, ) shown in Fig. 11(b) one sees
that, generally, phase matching [i.e., specification of both
co/0 and Re(k, )] selects a gain curve corresponding to
only a single n term. The condition for phase matching
can be made quantitative by equating Re(k, ) as found
from Eq. (15) to its value for the TE» mode of the interi-
or cylindrical waveguide, namely, [(co/c) —(1.841/
R

& ) ]'~ . Frequencies where this matching can occur are
thus given by solutions of the quadratic equation

l. 841cP,
(1—P )

—2 +1+ =0,
nQ nQ nQR )

(21)

1 10
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10 12

FIG. 11. (a) Irn(k, ) and (b) Re(k, ) versus co/0 near the tenth
harmonic, where the evaluations are taken from only one term
of the dispersion relation. For beam parameters, see Table II.

where p, = U/cy. The last term on the right-hand side
of Eq. (21) can be written (1.841/na) (p/R & ), which for
n =10 and a=3.0 becomes 3.766X10 (p/R, ) . Since,
for tenth harmonic operation, the optimum eigenvalue of
k~R &

is 14.67 (14th radial mode) and since, from Fig. 4,
the gain has its peak value for k~p=11.44, one finds
p/R

&
=0.780. The last term in Eq. (21) is thus seen to

reduce to a numerical factor 2.29X10 . As a result,
one sees from Eq. (21) that the two values of co/n A where
exact phase matching occur are determined only by P, .
For a 10-kV beam having o.=3.0, the n =10 solutions of
Eq. (21) are co=9.65& and (0.4311. The low frequency
root corresponds to a wave with negative k„ i.e., one
traveling in the negative z direction, while the high fre-
quency root corresponds to a wave traveling in the posi-
tive z direction. Table II summarize» the results for this
model tenth harmonic gyroampl ifier.

beam voltage
beam current I
beam perveance
velocity ratio a
inner coax radius Ri
outer coax radius R2
harmonic index n

radial mode index s
magnetic field B
axial velocity spread
small signal gain G
center frequency

10 kv
2 A

2X10 A V
3

0.06 cm
0.24 crn

10
14

6.87 kG
1.51%%uo

2.53 dB/cm
188.6 GHz

TABLE II. Parameters for a hypothetical tenth harmonic
amplifier, when phase matching exists between the growing
beam mode (s = 14) and the copropagating TE» mode in the in-
terior waveguide. The axial velocity spread value is calculated
from Eq. (6).
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ample suggests that evaluations taken one term at a time
could introduce measurable error. (This observation may
extend to other high harmonic gyrointeractions as well. )

Figure 13 shows the effect of axial velocity spread on
the gain spectrum calculated from the n = 10 term of the
dispersion relation alone. The curves shown are for
b, u /u =0, 1.0%, 3.0%, and 5.0% in sequence, with zero
velocity spread having the widest bandwidth, as in Fig.
9. But, in this case, the narrowing is seen to be greater at
smaller velocity spread values than for the fifth harmonic
example shown in Fig. 9. For tenth harmonic operation,
one can surmise that velocity spread values of less than
about 2% should be tolerable.

V. CONCEPTUAL DEVICE CONFIGURATION

FIG. 12. Comparison for Im(k, ) between one-term solutions
(solid curves) and three-term solutions (dashed lines) of the
dispersion relation for s =14 for a 30-kV, 8-A beam with
a =2.0.
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FIG. 13. Effects of axial velocity spread on gain spectrum
near the tenth harmonic for a 30-kV, 8-A beam with a=2.0.
The outer curve is for zero velocity spread, while the inner
curves are for Au /u = 1.0%%uo, 3.0~o, and 5.0%%uo, respectively.

Figure 12 compares results for the gain spectrum cal-
culated from the n =9, 10, and 11 terms of the dispersion
relation [Eq. (13)] taken one term at a time (solid lines)
and taken together (dashed lines). For this example and
that depicted in Fig. 13, the beam voltage is increased to
30 kV to increase the overlap between the gain curves.
Other parameters for these examples are a=2.0, I =82,
8 =11.3 kG, and s =14. As compared with results near
the fifth harmonic (Fig. 7) where overlap between neigh-
boring terms is nearly absent, one sees in Fig. 12 a dis-
tinct difference between solutions obtained from one term
and from three terms of Eq. (13). With a significant
overlap of gain curves at the higher harmonics, this ex-

The theory and numerical results presented above sug-
gest that a millimeter-wave amplifier could, in principle,
be built based on the gyroharmonic convective instability
for electrostatic waves on a coaxial electron beam. The
parameters given in Table II for a hypothetical tenth har-
monic 189-GHz amplifier are indeed remarkable, as re-
gards the low voltage, current, and magnetic field re-
quired, in comparison with proposed fast-wave
gyroamplifiers [19]. But several irksome problems that
arise from the nature of the rich spectrum of electrostatic
modes that the beam can support need to be discussed.
In this brief section of the paper, these problems will be
reviewed and a device configuration that could mitigate
against them will be presented.

The eigenfunctions for small-signal disturbances on the
beam are given by Eq. (7). The analysis presented in this
paper was for the dipole mode, corresponding to m =1.
Clearly, a parallel analysis can be carried out for any
value of m, corresponding to higher-order multipole
modes. For these, convective instability at the gyrohar-
monics occurs as well, with a spectrum of k~, given by
solution of an equation similar to Eq. (9), but with J and

in place of J& and Y„ this spectrum will be different
from that for the dipole mode. But even if only the di-
pole mode is excited, it has been shown that significant
growth exists for a range of s-values. In the example
shown in Fig. 6, peak gain values greater than half that
for the peak mode with s =13 are exhibited for eight
different radial modes at the same frequency. These
modes can have axial wave numbers k„ that are nearly
the same, so it would be possible to avoid serious destruc-
tive phase interference between the modes. But, if the in-
put signal is shared between the design mode (s = 13, say)
and other modes with lesser growth, the overall gain of
the amplifier will be diminished from the value anticipat-
ed for m =1, s =13 alone. Moreover, if the input signal
is coupled partially to modes that are not growing, an in-
put coupling loss will result to further diminish the
overall gain of the amplifier. As a result, a practical
gyroamplifier configuration will have to include means to
suppress modes with undesired values of m and s.

One possible device configuration that could mitigate
against the problems described in the preceding para-
graph is shown schematically in Fig. 14. Only the output
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Electron
Beam

Electron
Beam

FIG. 14. Conceptual device design, showing the region near
output coupler with coaxial vane structure intended to suppress
unwanted radial modes. Coupling holes between interior TE»
waveguide and coaxial region are spaced azimuthally by 180
and axially by one-quarter guide wavelength to allow preferen-
tial coupling to the dipole mode with phase matching between
the electrostatic and electromagnetic waves.

end of the interaction region is shown in the figure; a
similar input end would be some distance off the figure to
the left. The central cylindrical axial pipe is the elec-
tromagnetic waveguide, designed to propagate only the
lowest TE» mode. Coupling holes separated in azimuth
by 180' allow the radial electric field with polarization
directed between the holes to penetrate into the coaxial
region containing the electron beam, thereby preferential-
ly exciting the dipole mode in the beam. The coupling
holes are spaced axially by one-quarter guide wavelength
in both the cylindrical and coaxial waveguides, ensuring
phase matching along the coupling region preferentially
for the dipole mode. Even-m multipole modes would
have opposite polarity at points differing in azimuth by
180' and thereby should not be excited with a field such
as the TE». At each end of the coaxial waveguide, a nest
of cylindrical vanes could be inserted; seven such vanes
are shown in Fig. 14. These vanes would be positioned at
some or all of the potential nodes for the design mode
and therefore provide an axial boundary condition at the
input and output locations that does not short out any of
the electric field lines of the design mode. The vanes
would, however, cut electric field lines of competing radi-
al modes, whose potential nodes would be at other radii,
and thus could serve to suppress these modes. One tech-
nical issue that arises in the implementation of this mode
suppression strategy is the relatively small physical scale:
for the example given in Table II, the vanes need to be
fitted into an annulus of radial gap equal to 0.18 cm.
This could pose a challenge, especially at the collector
end of the device, where the beam power is absorbed. An
alternate scheme (not shown in the figure) could involve
the inverse boundary structure, namely, a set of nested
cylinders, with gaps located at radii where the desired
mode's axial electric field is zero. In any case, it is clear
that some form of mode suppression should be employed
at the input and output couplers to allow energy to Row
only into and out of the desired beam mode.

Mode selection notwithstanding, another quirk of this
interaction surrounds its behavior for waves traveling
counter to the direction of beam fiow. (These will be
termed "backward waves" for purposes of this discus-
sion. ) For specificity, reference will be made to Fig. 11.
One sees, at co/0=9. 5, for instance, that the backward
wave associated with the n = 10 term of the dispersion re-
lation has nearly the same spatial growth rate as does the
forward wave associated with the n =9 term. A similar
phenomenon is seen at co/0=10. 5 involving the back-
ward wave from n =11 and the forward wave from
n = 10. This effect can occur whenever n ~ (1—p, )/2p„
as was shown from Eq. (16). Whenever the gain curves
from adjacent n values overlap, growth will occur for
waves traveling both with, and counter to, the direction
of beam How. This increases the round-trip gain for a
wave reAected from the far end of the amplifying region
in the device and sets a more stringent requirement for
impedance matching at the input coupler to avoid oscilla-
tions. (Oscillations can occur if the round-trip gain
minus the circuit losses exceed the reAection coefficient at
the input coupler. ) Only at frequencies equal to half-
integer harmonics will the forward and backward waves
have equal magnitude axial wave numbers. The result of
having gain for co- and countertraveling waves can be an
advantage, in that a single-coupler reAection amplifier
can be conceived of with larger gain than otherwise possi-
ble. But, as described above, increased precautions may
have to be exercised to avoid undesirable oscillations.

VI. CONCLUSIONS

Analysis and numerical results have been presented for
the growth of small amplitude waves on a coaxial elec-
tron beam Aowing between conducting cylinders in a uni-
form guide magnetic field. This configuration has been
shown to make possible a gyroharmonic millimeter-wave
amplifier that would not require high beam voltages or
high magnetic fields. Coaxial geometry has been shown
to embody at least two important virtues. These are (a)
lower potential depression than for a cylindrical beam of
equal perveance, and thus lower irreducible axial velocity
spread, and (b) access to the beam fields for coupling at
an interior surface. For beam perveance of 2X10
A V ~ or below, axial velocity spread [1.5%, as calcu-
lated from Eq. (6) for a=3 and Rz=4R, ] has been
shown to not seriously affect the small-signal gain. The
interior access permits coupling to the radial electrostatic
fields at the interior beam edge through periodic holes
that allow phase matching to TE» lowest mode elec-
tromagnetic fields of input and output couplers.

It has been shown that the beam can support spatially
growing waves with short radial scale lengths, so that
strong wave-particle coupling exists at high gyroharmon-
ics even for a low voltage beam. In an example cited for
a tenth harmonic amplifier at 188.6 6Hz, use of a 10-kV,
2-A beam in a 6.86-kG magnetic field was shown to lead
to a small-signal growth rate of 2.53 dB/cm. A 25-dB
amplifier would be of the order of 10 cm long if gain is
supported in a single pass or only about 5 cm long if
round-trip gain can be achieved, neglecting input cou-
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7 sat

and

pling loss. If an efficiency of 5% could be realized with
this device, it would result in an extremely compact
kilowatt-level amplifier with operating parameters that
are much more modest than other devices currently un-
der development. For analysis of high harmonic gain,
where overlap between adjacent terms occurs, it has been
shown to be necessary to evaluate the dispersion relation
including terms neighboring the term closest to the har-
monic of interest if errors are to be avoided.

The analysis presented in this paper has invoked linear-
ization procedures that do not allow a strict conclusion to
be drawn on the nonlinear saturation level for the in-
teraction. However, an estimate of the saturation level
can be found by reference to Eq. (17), where the linear-
ized spatial amplification rate is seen to be essentially
proportional to J„(k~,ps ), since P, is nearly constant and

y =1 changes but slightly. As the beam particles give up
transverse momentum to the fields, ps=cga/0 will de-
crease. We can estimate the condition for saturation by
identifying the value (yPt), &2, which causes J„(k~,ps) to
fall to half its initial value. Thus we approximate

1/2
1 + (ypJ ),~2

(&2)
1 —P,

where g is the efticiency at saturation and yo is the initial
energy factor. Applying this approximate analysis to the
tenth harmonic examples given in Tables I and II, where
(yp~)»2/(yp~c) =0.793, gives ri to be 29 7%. and 33.3%,
respectively, corresponding to power outputs of 71 and
6.7 kW for the two hypothetical devices.

Several important issues unique to the electrostatic
gyroharmonic mode of amplification on the beam require
additional study. These center on means of suppressing
undesired azimuthal and radial modes that, if excited,
would probably lead to a diminution in device gain. One
configuration that could mitigate against the undesired
modes has been suggested in this paper. The assumption
invoked that the infinite medium dispersion relation ap-
plies for a beam of thickness 3 —4 gyroradii needs to be
evaluated. Additionally, it is essential to explore non-
linear aspects of the interaction systematically, both for
understanding of physics issues that may arise when more
than one mode is excited and for obtaining accurate
values of device efBciency and saturated gain.
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