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Modulational instability of a broad spectrum of Langmuir waves in unmagnetized plasmas is
considered. The problem of thresholds of the modulational instability is studied in detail. Appli-
cability limits (which are associated with stochastic properties of turbulent plasma waves) of the
theory of weak plasma turbulence are discussed. It it demonstrated that the weak turbulence theory
is appropriate for the description of modulational processes developed only for suKciently wide wave
spectra (and/or sufficiently low levels of plasma turbulence). Instability thresholds found on the
basis of the theory of weak plasma turbulence are compared with those obtained on the basis of
the WKB ansatz, which does not use the random phase approximation. It is demonstrated that
for isotropic three-dimensional as well as for one-dimensional Langmuir wave spectra both these
approaches result in similar instability conditions and it is shown that for some special spectra of
Langmuir waves those are necessary and sufficient (in the mathematical sense) conditions for the
development of the modulational instability. Applicability limits of the WKB approximation for the
description of the modulational processes are considered in detail and compared with those of the
weak turbulence theory.

PACS number(s): 52.35.Fp, 52.35.Mw, 52.35.+z

I. INTRODUCTION

Modulational instability [1—4] leading to amplitude
modulations of a pump monochromatic wave is one of
the fundamental effects perturbing wave propagation. Its
investigation is important for many practical problems
where the coherence of radiation input into plasmas is
essential, such as plasma heating in fusion devices [5] or
inertial confinement fusion schemes [6,7] and proposed
plasma particle accelerators [8], as well as for the inter-
pretation of space and astrophysical data [9,10]. Also,
consideration of the modulational processes is necessary
for a proper description of the transition from weak to
strong turbulence. It is well known that the modula-
tional processes result in the formation of strongly corre-
lated structures (solitonlike, magnetic, etc.) in a plasma
[1—4,10,11].

Presently, the theory of weak plasma turbulence
[12—14] is well elaborated; the key feature that allows
its construction is the so-called random phase approxi-
mation applied to Gaussian distributed quantities [13].
Thus this theory is valid only for systems with developed
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stochasticity [13,14] when wave phases are random, arbi-
trary wave motion can be represented as a linear super-
position of oscillation modes, and the wave packet slowly
changes in time due to the interaction with other pack-
ets and/or plasma particles. However, such an approach
is correct only if the wave amplitudes are suKciently
small. As the amplitudes grow, nonlinear interactions
between different modes in the wave packet become sig-
nificant. In particular, the modulational interaction re-
sults in the amplification of phase correlations between
different modes of the packet and finally the strongly
turbulent state is established with difFerent (compared
to weak turbulence) characteristics. The growth of the
wave phase correlations can result in the appearance of
the coherent structures such as solitons, collapsing wave
packets, etc.

It is well known that the character of the modulational
instability of a broad wave packet significantly differs
from that of a monochromatic pump [15,16] (see also the
recent review [17]). In particular, thresholds of the mod-
ulational instability of the wave packet can appear. We
call here that one monochromatic pump is always mod-
ulationally unstable [1—4]. Suppression of the instability
of the broad wave packet [16,17] as a result of the modu-
lational interaction of different modes in the packet leads
to instability thresholds. In the first approximation, this
can be physically understood when the low- (high-) fre-
quency satellite of one mode has opposite phase to the
high- (low-) frequency satellite of another mode (of the
same packet) and both these satellites have the same fre-
quency. In this case, the satellites can totally disappear
(if they have the same amplitudes) and the instability is
effectively suppressed.
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Historically it is the investigation of broad wave spec-
tra [18,19] that resulted in the first description of the
modulational instability. For example, it has been
demonstrated on the basis of the WKB approximation
[18] that in the three-dimensional (3D) case, the isotropic
spectra of Langmuir oscillations are unstable with respect
to density modulations if

Thus the sufficient condition for the modulational insta-
bility has been established. In (1), no is the nonper-
turbed plasma density, T,~, l is the electron (ion) temper-
ature, k = ~k~, Wi, = 4vrWi, k, Wi, is the spectrum of the
Langmuir waves (W = f Wkdk is the energy density of
plasma oscillations), u„, = (4mnoe /m, ) ~ is the elec-
tron plasma &equency, e and m are the electron charge
and mass, and vz = (T,/m, ) ~ is the electron thermal
speed. Note that the growth rates of the modulational
instability were not obtained in [18].

Independently, in Ref. [19] the instability of the "plas-
mon gas, " i.e., packet of random waves, was investigated.
However, instability rates obtained there in fact corre-
spond to the case of a narrow wave packet and basically
coincide with those for a monochromatic pump.

For the one-dimensional situation (pump waves and
modulational perturbations propagate in the same direc-
tions), the growth rates have been obtained in [15,20].
These results were also generalized [21,22] on the case of
three-dimensional perturbations. In studies [15,20—22],
low-frequency plasma motion has been considered.

Recently, a nonlinear formalism allowing us to describe
high-frequency plasma perturbations and to investigate
the modulational instability for the case of broad wave
spectra has been developed [16,17]. One of the most im-
portant results of [16] is the absence of instability thresh-
olds in the case of relatively narrow wave spectra. This
appears to be reasonable because in the limit of a sin-
gle monochromatic pump no instability threshold exists.
However, the results [16] cannot be applied to the case of
broader (in w space) wave packets, in particular when the
instability rate is much less than the characteristic width
of the turbulent spectrum (in k space, the latter con-
dition corresponds to a definite connection between the
characteristic wave numbers of the modulational pertur-
bations and harmonics in the wave spectrum). At the
same time, the case of small rates is the most important
when interested in the instability thresholds.

The modulational instability of broad spectra can (to
some extent) be modeled by the consideration of two
pump waves [17,23—28]. But even in this simplified case
the instability is described with the help of a set which
consists of an infinite number of coupled equations. To
find its solution, one should introduce some simplifying
assumptions (for details see [17,23—28]). Naturally, for
the case of broad wave spectra the situation is more com-
plicated and (as it has been shown in [16,17]) the modula-
tional instability is described by integral equations which
are a generalization of the above set for the instability of
two monochromatic pumps.

Furthermore, each Inode in the broad wave packet can-
not be modulationally unstable independently of other
modes. This is the reason why, for the wave packets, we
in fact have to study the modulational interaction of dif-
ferent modes in order to describe the modulational insta-
bility of the packet as a whole. As a result, for the case of
random modes, their correlations are amplified because
of the modulational interaction; at the same time, the
instability of the broad wave packet is suppressed.

Although it has been realized a sufficiently long time
ago [1,3,4] that the modulational interaction leads to the
amplification of phase correlations and, consequently, to
the transition Rom the state with the developed wave
stochasticity to the strong turbulent state, the exact
proof that the modulational interaction necessarily re-
sults in such a transition has been presented only recently
[29]. In this article, the corresponding range of param-
eters, where the description of plasma processes based
on the theory of weak turbulence is valid, has been es-
tablished. Moreover, it has been demonstrated that the
modulational interaction in the systems with the devel-
oped wave stochasticity results in a rapid decrease of the
latter.

The understanding of the physical nature of the modu-
lational interactions in broad wave packets has been con-
siderably improved recently. However, the problem of the
instability thresholds has not been investigated in detail.
Note that because of the fast increase of phase correla-
tions in the modulational processes, this problem is in
fact closely connected to the transition from weak turbu-
lence to the strongly turbulent state (and, consequently,
with an adequate description of turbulent state of the
plasma) .

In the present article, the thresholds of the modula-
tional instability of Langmuir waves in collisionless un-
magnetized plasma (using recent advances in the theory
of the modulational instability and modulational inter-
actions) are found. Applicability limits of the weak tur-
bulence theory are discussed. All calculations (in the
framework of the weak turbulence theory) are based on
the formalism [16] in which correlation functions of the
modes are introduced and integral equations for modu-
lational perturbations of these functions are found. An-
other approach, which is based on the WKB ansatz (and
does not use random phase approximation), is consid. ered
in detail. Applicability limits of the WEB approximation
are established and compared with those of the weak tur-
bulence theory.

II. EQUATIONS FOR MODULATIONAL
INSTABILITY

Here we brie8y reproduce the main points of the
derivation of equations describing the modulational in-
stability of turbulent spectra [16]. In our consideration,
we study random fields in the case of sufBciently weak
nonlinearity

(2)

We separate random (turbulent) and regular components
of the electric field E and the electron distribution func-
tion f:
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E = E"s+bE, f = 4 +hf.

From the definition of the components we have

(bE) =o (E) =E"' (b&) =o (f) =@ (4)

bE+ = bE+( ) + b' E+, (5)

where the angular brackets ( ) denote averaging over a
statistical ensemble.

Following the standard procedure [12] of averaging the
kinetic equation over a statistical ensemble, we obtain
separate equations for the random and regular quan-
tities. Furthermore, we distinguish (see [1,16,17]) the
positive- and negative-&equency harmonics E and E
of the electric field. Taking into account interactions via
low-frequency "virtual" (beat) fields E" and keeping in
mind that the condition of the frequency synchronism
should be fulfilled, we can thus obtain equations for the
low-&equency virtual fields and for the high-frequency
wave fields.

Now we have to stress one important point. It is well
known that random fields can excite regular virtual fields
[15]. Although for homogeneous and isotropic turbulence
these regular fields are zero, in the presence of inhomoge-
neous collective perturbations the nonzero striction force
arises, which creates the regular perturbations of the con-
centration bn and, consequently, leads to the generation
of the regular low-&equency electric fields. Thus, as the
modulational instability grows, the low-frequency and
large-scale regular fields develop [15]; this is the char-
acteristic feature of the turbulent self-organization (note
that the nonlinear interaction of the regular fields is also
essential in these processes).

We assume that the (nonlinear) spectrum of the weak
turbulence bE( ) is the solution of the corresponding un-
perturbed (nonlinear) equation and that the total turbu-
lence field is given by [16,17]

where b'E is the modulational perturbation of the tur-
bulent electric field bE( ).

In the first approximation the random fields are sta-
tionary and homogeneous, i.e. , for Fourier components

1

(2ir) 4 A(r, t) exp(iwt —ik r)drdt

we have [12,16,17]

(bEk bEk ) = —IE( ) l„b(k+ k )8( + )

+(0)G„„,=(bE „„,E „).
Equations for these functions are given by [16,17]

(note that correlator of two positive-frequency random
fields equals zero). The minus sign on the right-hand
side (rhs) of Eq. (7) appears because of the definition
of the longitudinal field Ek = (k/I")Ek. Furthermore,
the high-frequency regular field does not couple with the
low-&equency perturbations. Thus, if the high-frequency
regular field is initially equal to zero, then it will be equal
to zero at any other moment.

The modulational perturbations are low- &equency
ones, so they weakly shift the frequencies of the ini-
tial pump wave packet. This means that correlations
equal zero for the components of the same frequency sign
even in the presence of modulational perturbations. Fur-
thermore, although modulational perturbations are cor-
related, their correlation to the initial random field can-
not be strong because the random character of the pump
field is determined independently by initial conditions of
the random pumping. Finally, in the linear approxima-
tion, only linear perturbations b'E are included in the
corresponding nonlinear equations.

Now we introduce the following correlation functions:

+ (o) 2 [(k + k') . k] [(ki + k') ki] +
Ikl Iki

I
Ik + k'I lki + k'I

[(k+ k') (ki + k')][k ki]
lkllkillk+ k'llki + k'I

[(k+ k') k][(k, —k') . ki]
1 illk+ l

[(k + k') . ki] [(ki —k') k]

and

(o) 2 [(k —k') k][(ki —k') . ki]
(e —k+k' + s k+k') k, k' —

I Ik
Ikl lk I lk kil Ik k

I

k k, k'

[(k —k') (ki —k')] [k ki]
1 i Ill

—1"
I lki —1"

I

[(k —k') k] [(ki + k') ki]
lkllkillk —k'llki + k'I

[(k —k') . ki] [(ki + k') . k]
(10)
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In (9) and (10), the factors n are defined by

1 k2v2
lf kVTi (( 4) ~~ 1CVT~)

4vrnpTe ~2 —~2v0'k= S 1
lf 4) (~ lcv~i~

4vrnp(T, + T;)

where v, = (T,/m;) r is the speed of collisionless ion
sound and vz, ——(T;/m;) ~ is the ion thermal velocity.

Integral equations (9) and (10) are a generalization
(for the case of random wave spectra) of the set of two
equations for the modulational perturbations of a sin-
gle monochromatic pump. In the case of two (or many)
pump waves the analogous set consists of an infinite num-
ber of coupled equations.

To conclude this section, we note that equations for the
modulational instability of random fields can be found
using another method [12,15,19—22]. In this consider-
ation, the low-&equency perturbations E( ) of the sta-
tionary turbulent Geld E& ) are introduced. All functions
(4, bf, E, bE) are expanded in powers of El~l and only
terms linear on E( ) are considered. Thus two sets of
equations for the stationary turbulent state (0) and its
perturbation (1) are derived. Then the integrals of the
collisions of plasma electrons with turbulent oscillations
are calculated. These integrals are present on the rhs of
the kinetic equation for the low-&equency perturbation
4l~l of (regular) the distribution function. A correspond-
ing technique, which uses basically the same assumptions
as above [in particular, correlations functions similar to
(8) are introduced], was developed in [12]. Finally, a set
of equations analogous to (9) and (10) can be derived.

III. INSTABILITY THR, ESHOLDS

eying G+„~, = ~E+( )~~o.g j (G~ „, + G~ „,) dk, p4)

+g Gr, r,
= IE+(p) 2

Gq q, + G~+ q, dkg.

From Eqs. (14) and (15) for the case ~w'~ )) k'vz;
we find the following dispersion equation for the modula-
tional perturbations (note that we again use k' « k, kq):

(k')'v,' ~„. (, 0 i Wk
(k') v —(wr) wr —k' . vg k ( Bk) 4npT, '

(16)

where vz ——kv&, /uz, is the group velocity of the Lang-
muir wave packet.

For isotropic 3D turbulence and relatively small &e-
quencies such that the inequality

where k,h is the characteristic wave vector of the wave
packet and r~, = vz, /u„, is the electron Debye length.

The wave number k~ plays a very important role in the
weak turbulence theory [12]. In particular, this is the
characteristic wave number of differential spectral flow
of the Langmuir waves' turbulent energy to the region of
small wave vectors. Thus inequality (13) means that for
Langmuir waves which are concentrated in the inertial
region, the nonlinear &equency shift due to the modula-
tional interactions (i.e. , due to terms with s'+&+&, , ny
and ny y, ~r, ~) is small (see also [1]). In this case, we ob-
tain, from (9) and (10),

k'vz, « iw'i « k'vg (17)
Using the results of [16], we can significantly simplify

the basic set of Eqs. (9) and (10). Indeed, because there
is no threshold of the instability in the case of large mod-
ulation wave numbers (k' = ~k'~ k ~g )) k, kq, k —kq),
below we neglect k' compared with k, kq, and k —kq (i.e. ,
the wave vector of the modulated perturbations is sup-
posed to be smaller than the difference in wave vectors
of neighboring modes in the wave packet).

We estimate the relative contribution from terms con-
taining the function Q.y I„with that &om terms contain-
ing the function err, i. From (11) we see that a as a func-
tion of k rapidly decreases when ~u~ )) kv, . At the same
time, since we are interested in finding thresholds of the
instability, we can assume ~w'~ && k'v„which leads to the
maximum possible values of the function Q.g. Therefore,
if the latter inequality takes place and

holds, we obtain

which gives the instability criterion comparable to (1).
However, we stress that Eq. (18) is correct under condi-
tion (17) only.

Now we consider the case of smaller rates, namely,

ice'i « k'vz;. (19)

Again, we suppose that 3D turbulence is isotropic. After
integration over angles in (16), we find

ice —cubi )) ik —kgiv„ (12)
(~r)~ —9k2(k')2v~z, v~2, 4np(T, + T;)

(20)
the terms containing err, r„on the rhs of Eqs. (9) and
(10) can be neglected. Inequality (12) leads to the con-
dition

Prom this equation, we can clearly see that if

~~'] & 3k'k „n~,r~„

&ch )) &r = 1 mp

3pQe mi
(13) where k „ is the maximum wave number of the spec-

trum WI„ the instability is possible with the rate
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3'
4np(T. + T, )

- 1/2

(22)
Thus we can conclude that isotropic I angmuir turbulence
with a "Hat" spectrum (25) has the following threshold
of the modulational instability:

Here W = jdkW1, is the energy density of the Lang-
muir turbulence. Inequality (21) leads to the following
condition on the instability development: T T

= 12kminkmax~De'
Ap Te + T~ j thr

(33)

(T +T) max De

At the same time, from (20), we see that if

(24)

the instability is absent.
To find a concrete level of wave turbulence that does

not satisfy (23), but under which the modulational insta-
bility is still possible, we assume (for simplicity) that

Wgdk

12k2rD2, npT, ) (34)

We call here that the only restriction on the possible
minimum wave number of the spectrum comes from our
assumption k' (( k

Now we consider the one-dimensional case. First of all,
we note that under condition (17) we now have instead
of (18) the equation

W
if k;„&k&k (25)

+T) max De' (26)

Then, from Eq. (20) we can conclude that instability is
absent if

T )
minrDe' (27)

where TV =const and R'A, ——0 for all other wave numbers.
Also, we suppose that an inequality opposite (23) takes
place, namely,

The di8'erence in sign is due to another phase volume
of integration in k space. From (34), we see that under
condition (17) the modulational instability is impossible.
When condition (19) holds, we find instead of (20)

1 = —3(k') vT,
dk

((u' —3kk'vT, rD.)' 4np(T. + T, )

(35)

Again, under conditions (21) and (24) we have the same
results as in the 3D case.

For spectrum (22) we can integrate (35) to find

Furthermore, for the energy level

Ap Te + Ti
(28)

(w —3k'k;„vT, rD, ) ((u —3k'k „vT,rD, )3, 22 W= ——(k) v,

we have, from (20), the dispersion equation This equation has the solution

(~') 1— 1 TV

12k „AkrD, np(T, + T, )

'4Ak np(T, + T, )
(29)

3 /k vTe (kmin + kmax)rDe
2

(Ak)2rD2, — (37)

In this case the modulational instability is possible when

(
& 12k „AkrD„2

np Te+Q~

We see that if

) 3(Ak) rD = 3k rD )
np Te + Tg

(38)

3k kmin'UTe+De & ~ & 3k kmaxUTe&Dey (31)

which has been made to obtain (29), we obtain that the
instability holds if

& 12k .„AkrD.
np Te+T,.

= 12k rD, .

which approximately coincides with (26). Finally, from
the assumption

the instability is possible. For all other levels of turbu-
lence Eq. (37) has no imaginary solutions.

Thus we conclude that the modulational instability of
the broad Langmuir wave packet is strongly suppressed
in the one-dimensional case (compared with the instabil-
ity of the isotropic 3D spectrum). We call that for the
monochromatic pump wave, its modulational instability
is also more efficient in the 3D case, leading to the possi-
bility of Langmuir wave collapse [31]. The same behavior
has been observed for narrow wave packets [16,17]. Thus
this is common feature of the modulational processes that
are mostly effective in 3D situations.
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IV. PHASE CORRELATIONS

, ./4
(&z ) (39)

Here w„= ¹ is the recurrence time of correlation of
a plasma particle with a wave packet (with the spectral
width Ak), N( b, kL/27r) is the number of modes in
the wave packet, L is the characteristic plasma length
(which can be considered as the characteristic inhomo-
geneity scale),

Jvg —v~/Ak

is the autocorrelation time within which the correlation
of a plasma particle with a wave packet (with the spectral
width Ak) is violated, vgl~l is the group (phase) velocity
of waves in the packet, and

(k,„D) (41)

is the time of the irreversible decay of the correlations
(i.e. , of exponential divergence of trajectories and their
subsequent mixing in the phase space). The time re is
of the order of the inverse Kolinogorov entropy [13,14].
Finally, in (41) D is the quasilinear diffusion coefficient.
For the Langmuir waves (under the above assumption
k,h Ak) we have

W
D ~ 4d&eVT

Ap Te
(42)

Here we consider the limits imposed by the assump-
tions of weak turbulence theory (see also [29]). For sim-

plicity, we investigate wave spectra with Lk k,h, where
Ak is the spectral width.

The main assumption of the weak turbulence theory
is that the so-called stochasticity parameter has to be
sufficiently large [13]:

If modulational instability develops in the system, then
I can be estimated as the characteristic length of plasma
density modulations:

1g~l,
kmod

(46)

where k d is the characteristic wave vector of the modu-
lational perturbations. From inequality (43) we see that
the description of the modulational interactions based
on the random phase approximation is valid only for the
modulational wave vectors

ad & keir kch(kchrDe) 2/, ( w l"
(no&e)

(47)

Note that the rhs of this inequality is always less than
k.h: k e « k.h.

Thus, for the modulational instability developed, the
wave numbers of modulated perturbations should be sig-
nificantly smaller than the spectral width (and/or char-
acteristic wave vector of the packet); see inequality (47).
In fact, the latter condition means that the increase of
correlations of different modes in the wave packet will
be small only in the case when the effective number
N, fr k,aL/2a k,g/k g of modes (which modula-
tionally interact with each other) does exceed unity. In
other words, inequality (47) gives us the condition when
instead of the modulational interaction of many modes
in the wave packet we have the modulational instability
of every separate mode. Only in the case (47) does the
system's stochasticity have a level which justifies the use
of the random phase approximation and, consequently,
the weak turbulence theory.

Condition (43) allows us to determine the limits on the
energy density of Langmuir oscillations and their spectral
width Lk when the description of the modulational in-
stability on the basis of the theory of weak turbulence is
still correct. The characteristic length of the wave vector
of modulational perturbations k d is of order [1—4,30]

The inequality (39) can be rewritten to the forin [29]
Ap Te

1„2 2
mod~De (48)

1/4

(k,hL) / (k,hrD, )'/
i i

&) 1,
( rioTe )

(43)

VZ e npTe3
PD (44)

In this case, we have from (43) the following limit on
energy level of Langmuir turbulence:

«(k.hrD. )'/' - (ZkrD. )'/'.
Te (45)

where rD, = vT, /u~, is the Debye length. Inequality
(43) can be fulfilled only if k,hL )) 1 since for Langmuir
waves we always have k,hrD, & 1 as well as W « npT,
the latter because of (2).

For weakly turbulent processes, the length of the
plasma inhomogeneity L in inequality (43) can be es-
timated &om the quasilinear equation as

Substituting k q 1/I from Eq. (48) into inequality
(43), we find that the description of the modulational
interaction on the basis of the theory of weak plasma
turbulence is valid only for very wide spectra or for very
low turbulent levels in a plasma

« (k,hrD, )' (AkrD, )' .
pre

(49)

In real plasma processes, this inequality can easily be
violated.

All of the above considerations have been made for
Langmuir turbulent spectra from the inertial region, i.e.,
when inequality (13) takes place. However, it is well
known that other weak turbulence processes that take
place for these wave numbers, in particular induced scat-
tering on ions [12], lead to the spectral flow of turbulent
energy in the domain of small wave vectors (this is the
so-called energy-containing region) when an inequality
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opposite (13) takes place. In this case we have, from (45)
(the spectral width can be estimated as kT ),

W (t'

npTe ( mi ) (50)

More severe restrictions on the level of turbulence come
from Eq. (49)

k, (z) = ( id —ld"' —kq
3VT )

b(u2 —b(u2, ~
k.'+

)
where k, is the value of the function k, (z) for bn = 0.

In the WEB approximation the quantity
W fm, )((

npT, (m, ) gk;(z)dz = k, (55)

It follows &om the latter inequality that for almost every
reasonable level of Langmuir turbulence, the weak tur-
bulence theory is inappropriate for the description of the
modulational processes developed.

V. WKB ANSATZ

is conserved. Hence we can consider (55) as an equation
that determines b~2 as a function of bn and k, . Inte-
gration in (55) should be performed only over the trans-
parency region. Some of the waves become trapped at
z & 1/2. Now we set k rD, to be much larger than bn/np
and calculate integral (55) in this limit. For nontrapped
wave we have

As we have demonstrated above, the random phase
approximation imposes severe restrictions on the appli-
cability of the weak turbulence theory. Thus alterna-
tive considerations of the modulational processes could
be useful.

One possibility is to investigate the so-called multi-
mode modulational instability (as it has been done for
two pump waves in [17,23—28]). However, mathematical
difFiculties do not allow us to find the instability thresh-
olds easily in this case.

A more elegant way has been found in [18] (see also [1])
where a sufficient condition for the modulational insta-
bility has been found by considering the change of Lang-
muir wave energy in the presence of density perturbation.
One of the most attractive features of the consideration
is that the random phase approximation was not used
there. However, there are other limits of applicability,
which will be discussed below.

We consider a plasma in a cube of unit volume with
a one-dimensional density jump 2bn in the center (such
that the plasma density is np —bn if 0 ( z & 1/2 and
np + bn if 1 ) z ) 1/2). The work needed to compress
the plasma to this density distribution from an initially
homogeneous distribution is given by

2 bn —1 if z & 1/2f.) 1/2. (56)

1 /bnb
12k2rD. (n, ) (57)

Note that integration over z ) 1/2 does not perform if

BCd Q (d ——3k VT
Ap

(58)

Putting the frequency shift (57) into (58) we find the
critical wave number, which divides the trapped and un-
trapped waves

1 bn
k„,-, =

TD Ap
(59)

The waves are trapped if k, & k„;i (i.e. , they exist only
for z & 1/2) and untrapped if k, ) k„;t (the latter exist
for 0 & z & 1).

Integration of (55) over z & 1/2 gives

Furthermore, we use (54) and (55) to find the &e-
quency change of the untrapped waves. The latter is
given by

1 (bn&
bW„= —pnp(T, + T;)

~

—
i2 (np)

(52)
Ap

(60)

where the factor p is equal to unity for the isothermal
process and 5/3 for the adiabatic process. Expression
(52) defines the energy to be given to the plasma. But
there is also an energy gain due to the decrease in the
energy of the Langmuir waves.

In inhomogeneous plasmas, the &equency of the waves
depends on the coordinate

~„,(z) = (u„+ b(u„, (z) = cu„1+ bn(z)
AQ

In the case of the isotropic distribution of Langmuir
waves, the waves with the same wave number k but dif-
ferent angles with the z direction have difI'erent &equency
shifts. The average frequency shift is given by

bed 1
bee (k, )dk, .

24Jp~ 2&p~ k p
(61)

&sing (61) and (60) we find that the trapped waves al-
ways produce a negative frequency shift

The dispersion of the Langmuir waves leads to a depen-
dence on z of the z components of their wave vectors

A: 3v2 k3.
R)~, —— b~„(k,)dk (62)
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The untrapped waves give a frequency shift that is posi-
tive, but smaller than (62) hWi = (h~f' + h~t2, ) Wi, dk.

2')

3v2 k3 k —k
2(k )dk Te crit( crit) Integrating over dk dk„(taking into account that bw2& +

but2, depends on only k, ) and introducing

(63)
Wg ——2 Wgdk dk„, (69)

Thus the total &equency shift is negative

b(u = b~f + b~g, ———
2~„,k2

(bn)t '
24vz, ,k (np )

(64)

Since the number of Langmuir waves is conserved, the
change in their energy is due to the change in their fre-
quency

I'bn) Wi, dk
8Wi =—

(no) 24k rD,
(65)

The total energy change is given by

1 (bnl
bW = bW„+ bWi = — —

~ pno(T, +T;)
2 (np)

WA, dk
x 1—

12k'v~2, pno(T. + T;)

(66)

Thus we see that for bW & 0 the preferred plasma state is
inhomogeneous. The factar in square brackets in (66) is
remindful of the corresponding factor in (18). However,
in contrast to (18), no assumption of the weak turbulence
theary has been made to find (66). Also, na conditions
on the &equencies and the wave vectors of modulated
perturbations such as (17) have been adopted.

It is interesting to note that for spectrum (25), the
threshold condition for the development of the modula-
tional instability, which can be found &om (66), almost
coincides with (33). Indeed, after integration of (66) far
spectrum (25), we find that the instability is possible if

W 2~2kmin kmax~De ~

Qnp(Te + Ti)
(67)

This coincidence allows us to conclude that at least for
spectra such as (25), expression (66) gives us not only
the suKcient but also necessary condition for the devel-
opment of the modulational instability.

The above results cannot be directly applied to the
one-dimensional situation since in the latter case we have
to use expressions (57) and (60) without averaging over
possible values of the angle 0 between the propagation of
high-frequency Langmuir waves and low-&equency den-
sity modulations. Incidentally, the assumption of isotrop-
icity of the wave spectrum has not been used in deriving
frequency shifts bu& and bu~, . Thus we can use some of
the results obtained above. We have

we convert to the one-dimensional problem. Note that
on the rhs of (69), a factor 2 appeared because we have
taken into account negative values of k, (thus we assume
that the function WI, is even in k; in all subsequent
formulas integration is performed only over positive k, ).

Furthermore, if we substitute in (68) the concrete ex-
pressions for b~f and b~t„ introduce the characteristic
scale k, of change of the one-dimensional spectrum Wk
(so that we can consider Wi, const for k & k, ), and
choose k„;t (( k„we find

——WA, ~~ -A.
2 k

+ Wi, 1 /'bn l
k ) 127D i no/

(70)

1 (bnl'
hW = — —

~
pno(T, + T;)n, )

Wg dk
x 1+

12k2v~~, pnp(T, + T, )
(72)

This expression has a factor (in square brackets) that is
very similar to that in (34). However, there is no modu-
lational instability in this case.

VI. APPLICABILITY LIMITS
OF THE WKB APPROXIMATION

In the above derivation some steps need clarification.
In particular, when we integrate (in 3D case) over all pos-
sible harmonics to calculate bW~, we have to take into
account diferent characteristics of waves depending on
whether their k is more or less than k„;q. Indeed, ex-
pression (63) takes place if k ) k„;t, if k & k„;t, we do

The second term (which contains the integral) in (70) is
positive. The first term on the rhs in (70) is negative due
to the contribution of trapped waves.

If we have a flat spectrum (25), we find from (70) and
(52) that the modulational instability is possible under
the condition

W
Pnp Te+ T

which is similar to (38). We call that result (70) contains
a negative contribution into bW~ only if there are trapped
waves (in other words, if the turbulent spectrum contaiiis
waves with k, & k„;t).

If all of the wave numbers in the spectrum WI, are
larger than k„;t (i.e. , if k;„)k„;t), then we have from
(70) [compare with (66))
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not have untrapped waves at all. This means that on the
rhs of (63) the step function 8(k —k ) appears, which will
efFect subsequent integration. Moreover, Eq. (62) takes
place also only if k & k„;t, otherwise we have integra-
tion until k [not k„;& as in (62)] and in the numerator on
the rhs of this equation the expression 2k„;tk —k will
appear instead of k„;~. Thus the above consideration is
correct for isotropic spectra only when

kmin & kcrit. (73)

Lp /2+L/2

p/2 —L/2
k2+ dz«k .

3vT
(74)

Prom (74) we then obtain

If the opposite inequality holds, we have to distinguish
intervals of k & k„;t and k & k„;q when integrating over
k in the corresponding expression for be~. We stress that
condition (73) does not mean that we have no untrapped
waves, since in the considered geometry it is necessary
to have k, = k cos 0 & k„;q for the wave to be trapped.
The latter inequality can easily be fulfilled even for waves
whose wave numbers satisfy (73).

Moreover, the above use of the WKB approximation
can be inadequate when considering the step function
of 8n(z). In fact, we have to smoothen this step, e.g. ,
as bn(z) = np tanh(Ak, z), where A « 1. further-
more, we can integrate over z to some Lp which should
be much larger than the characteristic scale of change
of the smoothed function. That is, we have to adopt
Lp )) 1/Ak, . In this case, the assumption A « 1 implies
that the WKB approximation can work (with a small in-
homogeneity on the scale of the wavelength) and, on the
other hand, the inequality Lp )) 1/Ak, means that we
can treat the considered function as almost a step func-
tion (in other words, the corrections to the result of the
step function will be at least of order 1/Ak, Lp)

However, the point is that in the development of the
modulational instability we probably cannot assume that
bn is an arbitrary, sufficiently smooth function. At the
same time, for narrow spectra we have to obtain (in the
limit Ak ~ 0) the results for one monochromatic pump,
i.e., in the absence of threshold. In this sense, the WKB
threshold obviously fails.

If we assume that the width of the transition region
is L, then for justification of WKB approach we should
require the following: (a) L does not make a significant
contribution to the solution of the corresponding equa-
tion for hw and (b) the values of k, for which the WKB
approximation is not applicable (i.e. , k,L ( 1) do not
make a significant contribution to the integral determin-
ing b~.

Requirement (a) results in an inequality, which is de-
fined by (here we do not use our previous assumption of
the unit length of the system and introduce Lp g 1)

k for which the WKB approximation is not applicable
(i.e. , k, L ( 1) are not significant if 1/L (& k„;t, i.e. ,

when

I )) 6rD (76)'-b.
Conditions (75) and (76) can be fulfilled simultane-

ously only if

(78)

np Te np
(80)

(the latter is a consequence of the dynamic equation de-
scribing slow plasma motion [31]). This means that the
WKB approach is applicable for

k d « k,h(k, hLp) ~ (cosa) ~ . (81)

Thus the considered wave spectrum cannot be concen-
trated in the regions k i 0 and/or 0 ~ vr/2 because
in this case (81) can be violated. The limit 0 = vr/2
corresponds to the "perpendicular" development of the
modulational instability, when k p J k. Consideration
of the instability of two monochromatic pumps demon-
strates the absence of thresholds in this case [17,23—28].

For the modulational instability developed, we substi-
tute L from (46) and use (76) to find

W bn)) —. (82)
pTe np

However, this inequality contradicts (80). Thus we see
that the WKB ansatz is inappropriate for any turbulence
level when developed modulational instability exists (and
the corresponding inhomogeneity scale is determined by
the modulational processes). We can conclude that in
this case, the instability threshold in fact determines the
applicability limits of the theory.

—« 6k,'rD. (k, Lp)' '.
np

Since we are interested in the process of the near-
threshold development of the modulational instability,
we can require the initial bn/np to be sufficiently small in
order to satisfy inequality (77) [however, (76) should be
maintained]. Note that inequality (77) has been derived
without any assumptions like k k

If the characteristic scale of the plasma inhomogene-
ity is determined by processes of weak turbulence (e.g. ,
quasilinear difFusion), then from (44) and (76) we find

w
k„;trD .

noTe ( np )
Because of (73) we then obtain that the WKB approxi-
mation is correct in this case if

W « kch~Dey (»)
np Te

which is obviously not as strong as (45).
We obtain a further estimation using inequality (77)

together with (48) and

W bn

t'dna L
&( 36k, rD, .

(npp Lp
(75)

VII. CONCLUSION

Requirement (b) leads to the following: the values of
The most important results of the paper are expres-

sions (18) and (33) for 3D isotropic spectra and (38) for
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1D Langmuir turbulent spectra obtained on the basis of
the theory of weak plasma turbulence, as well as (66)
and (67) for 3D spectra and (71) for 1D spectra found
using the WKB approximation. A detailed analysis of
the applicability limits of the approaches used allows us
to conclude that both the above descriptions can be used
to study the near-threshold behavior of the modulational
instability of broad turbulent spectra. However, for the
modulational instability developed when the character-
istic inhomogeneity scale is determined by the modula-
tional processes, the theory of weak plasma turbulence
has severe applicability limits [see, in particular, (49)]
and the WKB approximation cannot be used.

Thus we can conclude that within their applicability
limits both the weak turbulence theory and the WKB
approximation give basically the same expressions for the
thresholds of the modulational instability of broad wave
packets. At the same time, we have found that in the
case when the characteristic inhomogeneity scale is de-
termined by the quasilinear diffusion, more severe condi-
tions on plasma parameters are imposed by assumptions
of stochastic wave properties than those of the WKB ap-
proximation; therefore the WKB approximation could be
valid for the description of the near-threshold behavior
of the modulational instability for more types of broad
wave spectra.

The results obtained have been found under the as-
sumption that the wave number of the modulational per-
turbations are much less than the difference in wave num-
bers of any two harmonics in the turbulent spectrum:
k' k p « A: —kq. However, the following question
arises: Can the thresholds found be the real thresholds
of the modulational instability? In other words, can the
instability develop if, e.g. , k d )) k —kq? The answer is

given in [16]: In the latter situation the instability devel-
ops and there are no thresholds in the 3D isotropic case
as well as the 1D case. However, in this case there are
limitations on the possible wave numbers of the modula-
tional perturbations, in particular

TV )) Lk r~, .2 2

72 OTe
(84)

Comparing (84) with, e.g. , (33) or (38), we see that the
latter expressions are indeed thresholds since they indi-
cate instability for a pump level that is not larger than
(84). Of course, we still have no answer in the case when
the wave number of the modulated perturbations is of
the order of the difference between the wave numbers of
harmonics in the turbulent spectrum. This problem is
the most diKcult for investigation. Here we note only
that for the two monochromatic pumps the analogous
problem of the modulational instability when the wave
number of the modulated perturbations is of the order
of the difference between wave numbers of the pumps is
also not solved yet; see, e.g. , [17].

1 W
mod C

De

This inequality, together with k p )) Ak, can be real-
ized when

To summarize, we have considered the modulational
instability of the broad spectrum of Langmuir waves in
unmagnetized plasmas. To consider the packets of ran-
dom waves, we have used the formalism [16] developed
for the description of the modulational instability on the
basis of the theory of weak plasma turbulence. We have
determined the limits of applicability of this theory for
the description of the modulational processes. We have
shown that the theory of weak plasma turbulence is valid
only for the description of the modulational processes of
sufficiently wide wave spectra and/or sufficiently low lev-
els of plasma turbulence.

We have also considered the problem of the modula-
tional instability thresholds on the basis of the approach
[18] that uses the WKB approximation and does not ap-
ply the random phase approximation. We have demon-
strated that both these approaches (based on the weak
turbulence theory and on the WKB ansatz) give simi-
lar threshold conditions for the case of isotropic three-
dimensional wave spectra. Moreover, for the case of
"flat" wave spectra this threshold condition is coincident
with the necessary and sufficient (in the mathematical
sense) condition for the development of the modulational
instability.

More complicated is the one-dimensional situation
(when all wave vectors have the same direction). We have
demonstrated that the description of the modulational
effects based on the theory of weak plasma turbulence
allows us to conclude that the modulational instability
of the one-dimensional broad Langmuir wave packet is
strongly suppressed compared with the instability of the
isotropic three-dimensional spectrum (and consequently
the instability has higher thresholds than that in the 3D
isotropic case). Consideration of the modulational insta-
bility pf the one-dimensional wave spectra on the basis
of the WKB approximation gives similar results (in par-
ticular, approximately the same tliresholds).

Here we have investigated the simplest case of colli-
sionless unmagnetized plasmas. The case considered is
important for proper construction of basic principles of
the theory of the modulational interaction of broad wave
spectra. We also note that the detailed studies of the
modulational processes for broad wave spectra (and, in
particular, investigation of applicabilty limits of different
theories) for more complicated situations (e.g, in mag-
netized, collision-dominated plasmas, etc.) are also of
significant interest. This would be useful for the inter-
pretation of different phenomena in space and astrophys-
ical plasmas (collisionless shocks, pulsar emission, solar
bursts, solar Bares, solar wind, cosmic rays, etc.), plas-
mas of Earth's ionosphere and planetary atmospheres, as
well as in laboratory plasmas (plasmas of nuclear fusion
devices, laser plasmas, etc.).
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