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Apparent rate constant for diffusion-controlled three-molecule reactions
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We present simple explicit estimates for the apparent reaction rate constant for three-molecule
reactions. For diluted systems and d & 1, it depends only on the di8'usion coefBcients and sizes of the
reacting particles. For small concentrations and d & 1, it is also time dependent. For concentrated
systems, it gains the dependence on concentrations.

PACS number(s): 82.20.—w, 05.20.Dd, 82.40.—g, 05.40.+j

I. INTRODUCTION

Three-molecule chemical reactions are important for
catalysis [1], where two particles, say A and B, react
in the presence of a third substance, "catalytic site" C.
Applications to coagulation were addressed in [2].

To our knowledge, the erst attempt to develop a the-
oretical description of the kinetics of the three-molecule
reaction [3]

The most important result of this theory is the funda-
mental Smoluchowsky reaction rate constant, kg ~. It
determines the apparent rate constant k pp and, hence,
the mean reaction rate

dC~
dt

= —k ppC~C~,

where C~ and C~ are the mean concentrations. Fre-
quently k „„obeys the "inverse resistance law" [12,13]

A+ B+C ':- Product,

A+ B ',- Product (2)

started with the mean-field-type approach in d = 3 [11].
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was made in [4,5], in which the heuristic mean-field-like
analysis of the reaction kinetics for large C sites was
presented. Here kt is the "chemical" reaction rate con-
stant, which determines the reaction rate per one three-
particle encounter. Recently, three-molecule reactions
gained much more interest and important results were
obtained [2,6—10].

The theory of the bimolecular di8'usion-controlled re-
actions

+
ktransp kchem

(4)

For the reaction (2) in 3D the "transport" constant is
kt„,p ——ks ~ and the "chemical" constant is k h,
kb. For bimolecular reactions in diluted systems the
mean-field theory is adequate for a large time domain and
therefore first attempts to improve the Smoluchowsky
theory concerned concentration-dependent corrections to
ks ~. It took a long time, starting from the early works
[14—19], to recognize that fluctuation effects can be signif-
icant since they may determine the long-time asymptotic
for the concentration dependencies [20].

In the three-molecule reactions theory the recent works
are concentrated mainly on the long-time behavior
and/or d = 1 although a mean-field-like theory is not
elaborated on and the analogue of kg t is not calcu-
lated [21]. Particularly, Refs. [2,7,6] stress that for the
long-time kinetics of the reaction (1) with A—:B:—C,
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i.e. , for the reaction A+ A+ A '.- LA with l ( 3, the
fluctuation effects are not decisive and that the concen-
tration of A, |~, for t ~ oo and d ) 1 is governed by

O' = SgDABV'CB(r, t) ~„B» —ki,CB(RAB, t),

CB(r = oo, t) = CB,

(9)

CA oc 1/+t,

and for d = 1 contains "logarithmic corrections, "

CA oc Q(1nt)/t. (6)

Corrections such as those that appear in Eq. (6) have
been confirmed numerically in [7] and then explained the-
oretically on the basis of the renormalization group (RG)
treatment [9] and heuristic argument [10].

In our paper we present simple explicit estimates for
the Smoluchowsky-like rate constant, k&h, which deter-
mines for three-molecule reactions in d-dimensional sys-
tems the apparent rate constant in the equation

dCA (t)
k„„bA —CA (t)CB (t)Cc:(t),

II. BIMOLECULAR REACTIONS

where b~ ——the number of A particles which enter the re-
action m, inus the number of A particles which the Prod-
uct contains.

(i) For small C sites and/or diluted systems we show
that for d ) 1 k pp

——const and for d = 1 it is time
dependent. Therefore, Eq. (7) leads to Eq. (5) if CA =
C~ ——C~ and t —+ oo in d ) 1. For the same conditions
in d = 1 we regain Eq. (6). We stress that in this case
the result is still a mean-field result, since the fluctuations
are not incorporated (see [22] for a more detailed analysis
of the fluctuation effects on the k-particle reactions with
difFerent types of initial distributions). However, even for) 1 k pp is renormalized by the transport processes
and, therefore, it is not equal to kq.

(ii) For large C sites and/or concentrated systems we
show that k „„in Eq. (7) becomes a function of the mean
concentrations and, therefore, Eqs. (5) and (6) are not
valid. For important limiting cases, we present explicit
results which are substitutes for Eqs. (5) and (6).

In order to understand the main scaling laws for kqh

we consider first a simplified hoping picture with cor-
relations in the reaction zone (RZ) and without correla-
tions at larger distances. For important limiting cases we
present also the more traditional diffusion-reaction equa-
tion approach. To clarify these ideas we start with the
bimolecular reaction (2).

where R~~ ——R~ + R~ and 4 is a flux of B particles
through the d-dimensional sphere ~r~ = RAB with the
surface Sp. The reaction rate is equal to the quasi-steady-
state value of 4 multiplied by C~. For d = 3 it leads to
Eq. (4) with k,p„,~ = k, ki„~~,z ——kg ~, and

' 4vrRDg~ for d= 3

2n DAB
S~()f ) )

2DAB t
R2

ford=2

/4DAB/(art) for d = 1.

where

L oc RAB for d & 2 and L oc QDABt for d & 2. (13)

B. Hoping model

Let us now consider the simplified picture of the reac-
tion (2) in which the correlations for A and B are present
only in the RZ and the exchange of A(B) particles be-
tween the RZ and the nondisturbed region is a "one step"
process with the frequency, vA~Bl oc L /DAlBl, which
equals to the minimum eigenvalue for the corresponding
diffusion problem. Here we also assume that the con-
centration of the reacting particles is small, so we can
consider only pairs AB and. neglect configurations with
more particles B(A) in the RZ of A(B). Thus the re-
action rate is proportional to the number of AB pairs,
N~~, and the balance equation reads as

Fort)) RAB/Dind&3andfork~)) ks ~ ind) 3,
k „z ——ks ~. In d = 3, the deviation of CB(r, t) from the
limiting value CB decreases as RAB/~r~ and, therefore,
the size, L, of RZ where the distributions of A and B
are correlated. , is of the order of the reaction radius R~~.
Contrary to d = 3, in d = 1 the correlated region grows
proportionally to y DABt. The d = 2 case is marginal.
In low dimensions, d & 2, the diffusion is recurrent, the
space exploration is compact [23], and hence the number
of the returns of the diffusing particle to the origin tends
to infinity as t i oo. Therefore, the volume of RZ [23]

Ooc I",

A. Smoluchowsky theory
dNgg N~a—vAB (~I CACB +AB) kbdt. (14)

According to the Smoluchowsky theory, the concentra-
tion of B particles at the distance r from the center of the
A particle, CB (r, t), is governed by the diffusion equation

OCB(r, t)
Ot

where D~~ ——Dp + D~, with the boundary conditions

where V is the total volume of the system and v~~ ——

vA+ vB. The First term on the right-hand side of Eq. (14)
is the rate of jumps into the RZ, the second term is es-
cape rate from the RZ, and the third term is the reaction
rate. The quasi-steady-state solution of Eq. (14) for the
reaction rate yields the result, Eq. (3) and Eq. (4) with
kcpern = kp and ktv ansp = v&& O. Taking advantage of
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Eqs. (11)—(13) we conclude that

vAB ~ kstol

III. THREE-MOLECULE REACTIONS

A. Probability distributions

Consider the reaction (1) with an immovable C site,
Dc ——0. In order to take three-molecule correlations
into account we write down the master equation for the
joint probability P(n~, n~) of having n~ particles A and
nB particles B in the RZ, near a C site,

dP(n~, n~)
dt di ff + r euct- (16)

The difFusion and reaction terms here are given by

Id ff = —(v'AnA + vBnB + vAQCA + VBOCB)P(nA, nB)
+(n~ + 1)vgP(n~ + 1, n~)
+(ng + 1)vgP(ng, nJs + 1)
+vga)CgP(ng —1, n~)
+vIsnc gP(ng, n g —1), (17a)

with the accuracy of the insignificant numerical multi-
pliers for d = 1 and d & 3, and with the accuracy of
logarithmic corrections for d = 2.

k&h oc vABO oc R DAB (20)

with the accuracy of the logarithmic corrections which
appear in 1D.

When one of the difFusion coeKcients, say DB, be-
comes small, such that D~/D~ && Cg(C~)O, Eqs. (19)
lead to

dCA (»)dt
vB ~~A CcCB ~ ksmol ~A CcCB y

where ks l is the Smoluchowsky constant for the reac-
tion A+ C = 0.

g. Large A or B concentrations (large C sites)

For C~(~)0 )) 1, the analysis of Eqs. (16)—(18) for the
averaged A(B) concentrations in the RZ,

d&CBA
d

=vg(OVCcCg —Ncg)

W~(~l'CcC~ —Nc~) —kr ~l 'Nca~
(19b)

When vg )) v~BCrs and v~ &) vgBCg (which im-
plies that vAOVCCCA»» B&CAB and vBOVCCCB»»
vgNcrrg), the steady-state state solution of Eqs. (19)
leads to the Eq. (7) for the reaction rate and to the Eq. (4)
for k pp with k p, ——kq and k$z~~sp —vABO. Taking
advantage of Eqs. (11)—(13), we conclude that the three-
molecule analogue of the Smoluchowsky constant is equal
to [24]

Irg~gr = B(nA, nB)P(nA, nB)
+B(ng + 1,n~ + 1)P(ng + 1,ng + 1), (17b)

C&'~'&) =—): ).P(n~ »)n&(~)l~
nA ——0 n~ ——0

(22)

where B(n~, nor) is the reaction rate for the RZ which
contains nA particles A and nB particles B. We assume
that the local reaction rate is equal to the product of A
and B concentrations in the RZ,

leads to

dCA('B) („) C" C"
v~ (C~(~) C~()s) ) kr (23)

AAAB
R(ng, n~) = k,

B. Hoping model

(18)
Note that the reaction term [the last term on the right
hand side of Eq. (23)] in this regime decouples into the
product of the concentrations. For the quasi-steady-state,
Eq. (23) reduces to an algebraic second order equation for
the reaction rate. When krC~ && v~0, it leads to Eq. (7)
with

Small 4 and B concentrations (small C sites) vAnk,' ""—-.n+ k,C.
For small A and B concentrations, such that

CA (C~)0 && 1, we consider only triples, the particles C,
which have A and B in the RZ, and pairs, the particles C
which have either A or B in the RZ. The mean number
of C particles is Nc ——CcV; the mean number of CA
pairs is Nc~ = NcP(1, 0};and the mean number of CB
pairs is Nc~ = NcP(0, 1}.The reaction rate is propor-
tional to the number of the triples, Nc~~ = NcP(l, 1}.
From Eqs. (16)—(18) we obtain the balance equations

dCA = OCc min(v~C~, v~Cgy).
dt

(25)

C. Diffusion appoach

1. Small A and B concentrations (small C sites)

When k&CB»» vAO and k&CA»» vBO, the steady-state
solution of Eq. (23) leads to

d%CA(B)
dt

—vA(foal CcCA(B) NcA(B))

vB (+NC A(B) CB(A) +NCAB) i (19a)
For the small concentration limit we propose the fol-

lowing extension of the Smoluchowsky approach to three-
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molecule reactions. We place the origin into the center of
an immovable particle C and determine the conditional
density of triples,

When ktCB » 4~Bc&D& and ktC && 4vrBcBDB, it
leads to the unusual result

CAB (rA, rB, t) d"rA d"rB=Nc AB (rA, rB, t) /(V Cc), (26)
dC~

dt
:4rrCc min(CARcADA CBRcBDB)~ (35)

where NcAB(rA, rB, t) is the number of triples with a
paricle A in the volume element d"r~ near the end of the
d-dimensional radius vector drA and a particle B in the
volume element d"rB near the end of the d-dimensional
radius vector drB. The analogue of Eq. (8) reads as

IV. DISCUSSION

Thus the hoping and diffusion models lead to simi-
lar results for the apparent rate constants for the bi-
molecular reaction: Eqs. (11) and (15), as well as for
three-molecule reactions: Eqs. (20), (21), and Eqs. (30),
for small C sites; and Eqs. (24), (25), and Eq. (34), (35)
for large C sites. The diffusion model provides more
precise results for the marginal dimensions: d = 2 for
bimolecular reactions, Eq. (11), and d = 1 for three-
molecular reactions, Eq. (30). On the other hand, the
hoping model provides an easier way for the analysis of
the correlations structure, see Sec. III A, and for the small
difFusion coefficient limit, Eq. (21).

In the small C limit the three-molecule ABC correla-
tions are important, since the reaction act—annihilation
of a triple changes the concentrations of both A and
B in the RZ from it's maximum value to zero, i.e. ,

8(CA) = 8(CB) = CA(B). Threfore, three-particle cor-
relations cannot be decoupled. Meanwhile, since the
concentrations are small, the linear boundary condition,
Eq. (29b), is valid. Configurations with more then one
particle A and/or B in the RZ are improbable and the
reaction occurs when the A particle joins the CB pair or
when the B particle joins the CA pair. Therefore, the
limiting mean reaction rate, Eqs. (20) and (30), in this
case equals to the rate of jumps of the particles A(B) to
the RZ of CB(A) pair, multiplied by the mean concen-
tration of CB(A) pairs, which means that kgh, cc Aks
When DB —+ 0, the reaction is limited by the transport
of B particles to C and the reaction rate, Eq. (21), is the
same as for the bimolecular reaction B + C ~ 0 with
kapp ~ ksmoL ~

For large C sites, fiuctuations of A and B concentra-
tions in the RZ are much smaller than the mean values
and, therefore, the decoupled (but nonlinear) equations
for A and B concentrations, Eqs. (23), (31), and (32),
are valid. For kr -+ 0, Eqs. (24) and (34) predict a non-
renormalized value, k „„=kq, for k& ~ oo, Eqs. (24),
(25), (34), and (35) predict the same reaction rate that
one can expect for diffusion-controlled bimolecular reac-
tion. Note that the reaction "chooses" from A and B
the reagent with the smallest effective reaction rate [25].
More detailed analyses of the correlator structure will be
published in a subsequent publication.

SCAB(rA~ rB) t) = (DA 7,„+DB 7„)CAB (rA, rB, t) .2

(27)

For the "spherically symmetric" system, i.e. , for D~ ——

DB ——D and CA = CB, Eq. (27) reduces to

SCAB(r) t) i 2&( 0 ( 2g i SCAB(r, t) l
)=Dr r 28

c)t Br c)r )
with the following boundary conditions:

lim CAB(r, t)„~ = CACB, (29a)

SCAB(r, t)
S2D (29b)= k, CAB(R, t),

r=R

where r = grA2 + rB2 is a distance in 2D dimensional
space. The solution of the Eq. (28) with the boundary
conditions (29) leads to the Eq. (20) for d ) 1. For d = 1

DAB
ln DAB t (30)

R2
kth oc

2. Large A and H concentrations (large C sites)

We place the origin at the center of C particle, and
write following decoupled equations for A and B concen-
trations

OCA(B) (r, t)
Bt

= DA(B)+ CA(B) (r, t)

with the boundary conditions

(31)

o(CA(B) (r, t)
BT

= k, CA(r, t)CB(r, t). (32)
RcA(B)

The solution of Eqs. (31)—(32) leads to the following
expression for the fl.ux through the reaction boundary in
the 3D system:

4~t +cA+cBDADBCACB)

where
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