
PHYSICAL REVIEW E VOLUME 51, NUMBER 3 MARCH 1995

Anomalous relaxation in fractal structures
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For the purpose of studying some interesting properties of anomalous relaxation in fractal struc-
tures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures
(Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the
critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341
(1941)] which is one of the empirical laws of anomalous relaxation. Scaling properties are found in
the relaxation function as well as in the particle density. We also find that, in structures with almost
the same fractal dimension, relaxation in structures with dead ends is slower than that in structures
without them. This paper ascertains that the essential aspects of the anomalous relaxation due to
many-body effects can be explained in the framework of the one-body model.

PACS number(s): 61.20.Lc, 47.53.+n, 61.20.Ja

I. INTRODUCTION

Since the 19th century, the anomalous relaxation,
which is characterized by a nonexponential relaxation
function, has been observed in phenomena such as the
viscoelastic response of solids and the strain recovery
in polymers [1]. Recently, state-of-the-art experimental
techniques have made it possible to measure several phys-
ical properties related to anomalous relaxation or slow
dynamics in many disordered systems including super-
cooled liquids [2,3], spin glasses [4], and amorphous ma-
terials [1,5,6]. Most of the experimental data concerning
the anomalous relaxation have so far been described in
terms of empirical laws such as (i) the Cole-Cole form of
the complex susceptibility y(w) [7],

where w is the frequency, u is the frequency at which
the imaginary part of the complex susceptibility y" (w)
becomes maximum, and the parameter o. satisfies 0 (
n & 1, and (ii) the stretched-exponential form of the
relaxation function [8]

P(t) = exp —(t/7-)

where t denotes time, w is the relaxation time, and the
parameter P falls in the region 0 & P & 1. The relation
between the complex susceptibility y(w) and the relax-
ation function E(t) is described by [9]

Note that the characteristic feature of the Cole-Cole type
is that the shape of y" (w) in the log-log plot is symmetric
with respect to u „.On the other hand, it is asymmet-
ric in the case of the stretched-exponential type. When
n = P = 1, the relaxation process is exponential (Debye
relaxation). Although anomalous relaxation has been ob-

served in a wide variety of physical quantities, its mech-
anism has not yet been fully understood.

The motivation of our work is to explain, in the frame-
work of a simple model, anomalous structural relaxation
phenomena which are essentially the results of many-
body effects. In a many-particle system, the density au-
tocorrelation function is considered to be the relaxation
function and is measured by neutron scattering experi-
ments. Instead of dealing with a many-particle system
as it is, we propose that the essential aspects of many-
body effects can be realized by applying geometrical con-
straints to the movement of one particle. In other words,
we approximate the movement of a particle under the
influence of many-body effects by the movement of one
particle in a restricted geometry [10,11]. In this frame-
work of a one-body picture, the characteristic function of
a position vector corresponds to the relaxation function.

We study random walks in spaces of fractal dimen-
sions. Here we use the word "&actal" to express that the
system under consideration has the following two proper-
ties: (i) self-similarity and (ii) the fractional dimension.
By Monte Carlo (MC) simulations and analytical study
of random walks in structures of fractal dimensions, we
demonstrate that the relaxation becomes anomalous be-
cause of the restricted geometry for one particle.

Calculations are carried out of the following physical
quantities: (i) the relaxation function E(k, t), (ii) the
complex susceptibility y(k, w), (iii) the particle density
G(r, t), (iv) the mean square displacement (MSD) R(t),
and (v) the non-Gaussian parameter (NGP) [12] A(t).

This article is organized as follows. In Sec. II we de-
scribe in detail our model for anomalous structural relax-
ation phenomena. Our results obtained by MC simula-
tions are presented in Sec. III. Analytical studies based
on scaling arguments are represented in Sec. IV. In Sec.
V a summary and a discussion are given.

II. MODEL
Suppose we have a system in which the density of par-

ticles is so high that the motion of a particle is consider-
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ably restricted because of the existence of other particles.
In this system a particle cannot move as it pleases [Fig.
1(a)]. Although many-body effects are expected to play
important roles for structural relaxation in this system, it
is interesting to clarify to what extent we can describe the
essential aspects of anomalous relaxation in the frame-
work of a one-body picture. We take many-body effects
into account in terms of the geometrical constraint for a
particle which walks at random [10,11] [Fig. 1(b)].

In this paper, we study the structural relaxation in
fractal structures. We consider two types of structures
with fractal dimensions: (i) structures without dead ends
and (ii) structures with dead ends. As the first type
we choose the two-dimensional (2D) Sierpinski carpets
(SCs) with a central cutout [13] [Fig. 2(a)]. The fractal
dimension of the 2D SCs is df = ln(b —l2)/lnb, where
6 is the system size and l is the hole size. The fractal
dimension df is de6ned by
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where V is the volume of the fractal structure and Dp,
L, and Vp are, respectively, the dimension, the linear di-
mension, and the volume of the space in which the frac-
tal structure is placed. As the second type we choose
the 2D site-percolation clusters on a square lattice at
the critical concentration p, = 0.592745(2) [14,15] [Fig.
2(b)], for which the fractal dimension is known to be
df = 91/48 —1.896 [14].

FIG. 2. (a) The 2D Sierpinski carpet of four stages with
b = 4, l = 2. The fractal dimension df is df 1.7925. (b)
An example of the 2D site-percolation clusters on a square
lattice at the critical concentration. The fractal dimension is
dy = 91/48 1.896.

o o III. MONTE CARLO SIMULATIONS

A. Algorithm

o ooooo
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Our MC simulations are designed in such a way that
when the dice tells a random walker to walk into a wall,
he or she remains unmoved for one time step. Periodic
boundary conditions and mirror boundary conditions are
used for the Sierpinski structures and the percolation
clusters, respectively, to remove the inHuence of bound-
aries. The self-similarity of the system holds when the
area where a random walker moves is much smaller than
the size of the system.

The system sizes for the 2D SCs are 7292 (b = 3, l =
I), 1024 (b = 4, l = 2), and 625 (b = 5, l = 1 and
b = 5, l = 3). The system size for the 2D percolation
clusters is 4002. The number of samples is 2 x 10 (in
the case of the 2D percolation clusters, 10 samples on
each of 20 percolation clusters). The time step of the MC
simulations is 10 ~

FIG. 1. (a) Schematic illustration of a system in which the
density of particles is so high that the motion of a particle is
considerably restricted because of the existence of other parti-
cles. (b) Schematic illustration of our model in which we take
many-body effects into account in terms of the geometrical
constraint for a particle which performs a random walk.

B. Random walk on a square lattice

In our model, the relaxation function F(k, t) is the
characteristic function of the random variable (r(t)—
r(0)):
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r~k g~
—(~a'( (') —(0)))

where k is the wave number vector, k = ~k~, r(t) is the
position vector of a particle at time t, and the angular
brackets denote the sample average. We choose k = (1, 1)
as the direction of k.

For the sake of reference, we first carry out MC sim-
ulations of random walks on a square lattice. Prom a
detailed analysis of the results of our simulations, we see
that the relaxation function is described by the exponen-
tial function of the form [Fig. 3(a)]

1P4
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per
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where the relaxation time w is determined by the value
of t at which E(k, t) = e . Note that 7' varies from
wave number to wave number. In Fig. 3(b), the relax-
ation functions F(k, t) for different k values are plotted
after being scaled by respective x values. We show the
dependence of w on k in Fig. 4. The solid line represents
v. =4k

In the discussion of relaxation, it is also important to
study the behavior of the imaginary part of the complex
susceptibility, as noted at the beginning of Sec. I. It is
easy to see from Eq. (3) that the Cole-Cole relaxation
[Eq. (1)] with w „= 1/7 and n = 1 is derived once
the characteristic function F(k, t) obeys the exponential
decay, which corresponds to the case of P = 1 in Eq.
(2). It is clear from Eq. (1) that y" (~) has a peak at

FIG. 4. loge. vs log k for the square lattice (open circles),
the 2D SC with b = 3, I = 1 (filled circles) and b = 5, I = 3

(open squares), and the 2D percolation clusters at p = p,
(filled squares). The solid line represents r oc k ~ with pa-
rameters p = 2.007, 2.121,2.210, and 2.81, respectively, ob-
tained by the least-squares fit.

B(t)—:((r(t) — (0)) ),
and the NGP A(t),

(7)

(( (t) — (o)) )
2R~(t)

(u~ „= I/7o, which happens to be equal to I/r in the
case of the normal diffusion. This leads to the fact that
g" (k, w) for difFerent k values are scaled to a master curve
by scaling ~ by ~ „=1/7. and that the dependence of

„on k is given by cu „=k /4.
The time dependences of the MSD R(t),

0.8
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50 are for a square lattice shown by the long-dashed curves
in Figs. 5 and 6, respectively. These figures show that
the MSD is proportional to t and the NGP decays to
zero rapidly.

We plot 27rrG(r, t)cr vs r/o for several times t in Fig.
7, where G(r, t) is the particle density defined by
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104 10' and o is the square root of the MSD. The solid curve
corresponds to the relation expressed by Eq. (A4) in the
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FIG. 3. (a) F(k, t) vs log t for various values of k

(k = n7r/250, n = 3, 5, 8, 11,15, 19, 25, 31) and (b) the mas-
ter curve to which P(k, t) for various values of k are scaled
in the case of square lattice. The solid curve represents the
exponential function.

FIG. 5. The mean-square displacement R(t) for the square
lattice (long-dashed curve), the 2D SC with b = 3, I = 1
(short-dashed curve) and b = 5, l = 3 (dotted curve), and the
2D percolation clusters at p = p, (dot-dashed curve).
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FIG. 6. The non-Gaussian parameter A.(t) for square lat-
tice (long-dashed curve), the 2D SC with b = 3, I = 1

(short-dashed curve), and b = 5, l = 3 (dotted curve), and
the 2D percolation clusters at p = p (dot-dashed curve).

Appendix. We find from this figure that the scaling law
for G(r, t) holds. All these results presented in this sub-
section show that our simulations correctly reproduce the
properties of the norxnal relaxation expected. naturally for
the random walks in a regular lattice such as a square lat-
tice.
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C. Random walk on fractal structures

y" (k, ~) = lim-+~ 2t
exp [tk . r(t)] e' 'dt

(10)

In our analysis, we take the maximum time steps of our
MC simulations as t „, i.e. , t „=10 .

In Fig. 8 the imaginary parts of the complex suscepti-
bility g" (k, ~) scaled by ~ „are shown in. the case of (a)
the 2D SC with b = 3, l = 1 and (b) the 2D percolation
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FIG. 7. 2vrrG(r, t)o vs r/o for various times t in the case of
the square lattice. The solid curve corresponds to the relation
represented by Eq. (A4) in the Appendix.

Now let us turn to our main subject of a random walk
in structures with geometrical constraints. In order to
make our point clear, we start with the study of the
imaginary part of the complex susceptibility y" (k, w) as
a function of the wave number A: and the frequency u.
Although y" (k, io) is related to E(k, t) by Eq. (3), it is
also well known that y" (k, u) is derived from the relation

~max

~~~m»

FIG. 8. log y" (k, ur) vs log(u/~ „) for various values of k

(a) in the case of the 2D SC with b = 3, I = 1 and (b) in the
case of the 2D percolation clusters at p = p . The solid curve
represents the Cole-Cole susceptibility with (a) o. = 0.954 and
(b) o. = 0.748.

clusters at p = p . Note that w is the frequency at
which y" (k, io) has a maximum value. From these figures,
we find the following features: (i) y" (k, io) for different
values of k are beautifully scaled by w „. (ii) For each
value of k, y" (k, u) is symmetric with respect to w „ in
the log-log plot, which is a characteristic feature of the
Cole-Cole form. In fact, the data of our MC simulations
(open and filled circles, squares, diamonds, and triangles)
agree remarkably well with the solid curve, which repre-
sents the Cole-Cole form [Eq. (1)] with a = 0.954 in Fig.
8(a) and n = 0.748 in Fig. 8(b).

The parameter o. depends on the &actal dimension df.
The actual dependence of o. on the normalized fractal
dimension df/Do (in this case Do ——2) is presented in
Fig. 9 for the 2D SCs. This figure shows that o. decreases
when dy/Do is reduced, which refiects the fact that the
smaller the &actal dimension, the slower the relaxation.
The results for the 2D percolation clusters at p = p,
are shown in Table I. When we compare the parameter
o. obtained from the 2D percolation clusters at p = p,
and &om the 2D SCs with b = 3, / = 1 at almost the
same values of dy/Do, we find that the former is much
smaller than the latter. This fact is understood in the
following way. In the fractal structures with no dead
ends such as the Sierpinski structures, the slowing down
of the relaxation is caused by the blockings due to walls,
in which case it is relatively easy for particles to find
detours. On the other hand, in the fractal structures
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such as the percolation clusters, which are characterized
by a number of dead ends at various stages of hierarchy,
it takes quite a long time for particles to escape from
dead ends once they are trapped therein and accordingly
the relaxation becomes largely slow.

The results of our simulations also show that, for each
given fractal structure, the peak position of y"(k, ur)

changes as a function of k in the form u „oc k~ with

p & 2. It is interesting to remember that, as explained
in Sec. IIIB, w ~„(x:k for the case of the normal relax-
ation.

As for F(k, t), the results for various k values are shown
in Figs. 10(a) and 11(a) in the case of the 2D SCs with
b = 3, l = 1 and the 2D percolation clusters at p = p,
respectively.

Here it is interesting to remember the fact described
in Sec. IIIB that for the normal relaxation the quan-
tity I/w „obtained from the peak position of y" (k, w)
defined by Eq. (1) is identical to the relaxation time 7,
which is the scaling factor for the characteristic function
P(k, t) given by Eq. (2). Since Eq. (1) of the Cole-Cole
type and Eq. (2) of the stretched-exponential type are not
mutually related via the Fourier-Laplace transformation
except for the case of n = P = 1, our results of the Cole-
Cole type anomalous relaxation in the fractal structures

-0.2
0.01 0.1 10 100

never lead to the stretched-exponential form of Eq. (2)
and therefore the curves shown in Figs. 10(a) and 11(a)
are not of the stretched-exponential form. However, Eq.
(3) indicates that, when y" (w) is scaled by, say, wp, E(t)
is also scaled by I/wp. In our case here, (dp = Ld as
we clarified in. Figs. 8(a) and 8(b), the scaling factor for
E(k, t) has to be 7 = I/w „. The results after scaling
by this factor are shown in Figs. 10(b) and 11(b). In
both cases, the scaling property is remarkable, especially
in the region around t = v.

Since we have 7 = I/~ „, the k dependence of 7. is
given by

FIG. 10. (a) E(k, t) vs log t for various values of k

(k = nor/250, n = 3, 5, 8, 11, 15, 19,25, 31) and (b) the master
curve to which P(k, t) for various values of k are scaled in the
case of the 2D SC with b = 3, / = 1. The solid curve is the
relaxation function of the Cole-Cole type with the parameter
o. = 0.954.

b jt df

TABLE I. Results for the 2D SC and the 2D percolation clusters.

ds

1.975
1.893
1.792
1.723

0.988 + 0.001
0.954 + 0.003
0.938 + 0.002
0.924 + 0.003

1.896 0.748 + 0.010

2D SC
0.984 + 0.002 2.036 + 0.009
0.941 + 0.003 2.121 + 0.009
0.917 + 0.006 2.179 + 0.029
0.911 + 0.004 2.210 + 0.031

2D percolation clusters
0.719 + 0.003 2.81 + 0.10

2.003 + 0.013
1.997 + 0.014
1.999 + 0.040
2.013 + 0.036

2.02 + 0.08

1.940 + 0.009
1.785 + 0.008
1.645 + 0.022
1.559 + 0.022

1.35 + 0.05
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r oc k ~ and R(t) oc t are fulfilled, we show through
a straightforward dimension analysis that
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FIG. 11. (a) E(k, t) vs log t for various values of k

(k = n7r/250, n = 6, 8, 11,14, 18, 22, 28, 34) and (b) the mas-
ter curve to which F(k, t) for various values of k are scaled in
the case of the 2D percolation clusters at p = p . The solid
curve is the relaxation function of the Cole-Cole type with
the parameter o. = 0.748.

with p ) 2. The values of p are given in Table I and p
vs df/Do is plotted in the case of the 2D SCs in Fig. 9.
From this figure, we find that p/2 increases from 1 as the
fractal dimension df/Do decreases from 1.

Figure 5 shows that the MSD R(t) is expressed by the
relation

R(t) ~t' (12)

1
G(r, t) = F(k, t) exp (—ik r) dk,

with 0 ( 1, except for the case of a square lattice which
has 0 = 1, that is, the diffusion is anomalous. From the
open circles in Fig. 9, we And that 0 decreases from 1 as
the fractal dimension dy/Do decreases from 1. We also
find from Fig. 6 that, except for the long-dashed curve
corresponding to a square lattice, the NGP A(t) does not
decay to zero but stays almost constant.

Since the particle density as defined by Eq. (9) is given
by

IV. ANALYTICAL STUDIES

A. Asymptotic forms for E(k, t) and y" (k, u)

In this subsection, we study the asymptotic behavior
of F(k, t) and y" (k, w) on the basis of the scaling argu-
ment for the probability density G(r, t) of random walks
on fractals. As G(r, t) is the probability density function,
G(r, t)dr represents the probability that we find a parti-
cle in a region between r and r + dr at time t when the

0.8

0.6

0.4—
0

0.2

t—400 o

t=800 ~

t=4400
t= 18000 ~

t=44000
t=72000

t=100000

As clearly judged from the open squares in Fig. 9, this
relation evidently holds. Equation (15) is also significant
in the sense that it relates a parameter 0 concerning dif
fusion to a parameter p concerning relaxation.

The above-mentioned scaling law of P(k, t) in the k
space suggests the scaling law of G(r, t) in the r space.
From Eqs. (11) and (15), G(r, t) is considered to be scaled
by r (x t+ /"/ oc t /, that is, 0 is the square root of the
MSD. In fact, the scaling law of G(r, t) is obviously seen
in Fig. 12 for the 2D percolation clusters.

We also calculate the spectral dimension d„which is
defined as the exponent characterizing the spectral den-
sity of states in fractal networks [16]. We can show that
the spectral dimension d, is related to other parameters
through d, = Od f . When we use the fractal dimension
d of random walk, d, is expressed as d, = 2df/d be-
cause 0 is related to d as 9 = 2/d [17]. The value
of d, thus calculated in the case of the 2D percolation
clusters at p = p is consistent with the known value
of about 4/3 drawn from the Alexander-Orbach conjec-
ture [16] within error bars. The spectral dimensions in
the case of the 2D SCs are not known exactly. For the
2D SCs with 5 = 3, / = 1, Hattori et al. [18] got the
value dP+P = 1.721 in the pattern-on-pattern (POP)
approximation and Watanabe [19] obtained the value
d, = 1.862 in the Migdal-Kadanoff (MK) approxima-
tion. Our results lead to the value d, = 1.785 + 0.008,
which falls between these two approximate values d,
and dMK

then the MSD R(t) as defined by Eq. (7) is calculated by

R(t) = jr'G(r, odr
0 1

I

2 3 4 5

(14)

When the scaling of E(k, t) holds and the relations

r/a
FIG. 12. 27rr G(r, t)o vs r /cr for various times t in the case

of the 2D percolation clusters at p = p .
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particle starts &om the origin x = 0 at time 0. Then the
probability that we find a particle in the vicinity dr of
the origin at time t is G(0, t)dr. The number of sites that
a particle has visited after time t is proportional to the
volume R~&r'2(t) (x t~»"", where the MSD R(t) has the
relation R(t) oc t2r . [In this section, we use the con-
ventional exponent d (the fractal dimension of random
walk) instead of 8 (0 = 2/d ).] Therefore the probabil-
ity of that particle returning to the origin G(0, t)dr is
written as

1
G(0, t)dr-

~de /2

J()(z) = 1 ——z + 0(z ).
4

From Eqs. (23) and (20), we obtain

OO 12d 2 2F(k, t) = 2vr R"r II(R) 1 — t ~—" k R dR
0 4

+O()k r -)
mk

g2 jd R'r+'II(R) dR (t +0)-.
2 p

(24)

The scaling behavior of probability densities was stud-
ied by Havlin et al. [20]. One expects the following scaling
form for G(r, t):

Here we have used the normalization condition

(25)

(17)

E(k, t) = (19)

a"~-'Jp ~'~"-IZ n a d'Z,
0

(20)

where Jp is the zeroth-order Bessel function of the first
kind. From Eq. (20), it is found that I" (k, t) depends on
k and t only through the product t r'~ k, that is, P(k, t)
shows scaling for various values of k: F(k, t) = F(t/~)
with ~ (x k

First, we study the asymptotic behavior of I'(k, t) in
the limit t ~ oo. When the scaling function II(x) is
holomorphic at the origin x = 0, II(x) is expanded in
Taylor's expansion as follows:

Here the rdf ' factor comes from the scaling of the
density of the fractal substrate and the factor of t"~~ " is
required because of Eq. (16). Note that II(2:) is a function
of argument x alone. The scaling factor of r, t ~", comes
Rom the anomalous difFusion theory [Eq. (12)]. In the
case of the 2D site-percolation clusters at p = p, Dp = 2,
dy = 91/48 = 1.896 [14], and d = 2.87 6 0.02 [21].

The relaxation function E(k, t) is written as the
Fourier transform of G(r, t) with respect to r:

P( t)k= f G(r, t)e'"'ttr

When the scaling of G(r, t) [Eq. (17)] holds, E(k, t) is
rewritten as

in the derivation of the first term in Eq. (24).
In order to get the asymptotic forms of y" (k, w) from

the asymptotic forms of E(k, t) [Eqs. (22) and (24)), we
use the following formula:

p(p)"t" 'dt= ' ' (k&0)
0 s (26)

where I'(k) is the gamma function. As a result, we find

tu"~r ((tr && 1/7)
X ( t ) ~—2/dte

( )) 1/~)
(27)

B. Forms for E(k, t) and g"(k, ur) in the intermediate
time or frequency scale

II(x) = exp( —Ax ) (28)

and obtained the value of an exponent a by Gtting their
data,

a = 1.65 + 0.10, (29)

where A is determined from the normalization condition
for G(r, t) [Eq. (25)] as

The functional form of the scaling function II(x) of
random walks on the 2D site-percolation clusters at p =
p on a square lattice was extensively studied by Havlin
et aL using the exact enumeration method [20). They
assumed the following functional form for II(x):

II(x) = II(0) + ~+ O(x').dII 0
(21)

(30)

Substituting Eqs. (28) and (29) into Eq. (19), we get
Substituting Eq. (21) into Eq. (19), we get

."r 'J.(k.)D(0)d.+O-(t-('+'»~'-)
gdy/d

(t ~ ~). (22)

Next, we study the asymptotic behavior of F(k, t) in
the limit t +0. In the case of-z « 1, Jo(z) is expanded
as

P(k, t) = ke tt ' 'Ze (t't" ktt} e dtt. (31)
p

In Fig. 13 we show the relaxation function F(k, t) ob-
tained by performing an integral in Eq. (31). From this
figure we find that the scaling argument [Eq. (31)] and
our MC simulations give remarkable agreement. Con-
sequently it is ascertained that the relaxation is of the
Cole-Cole type in the intermediate time scale (in this fig-
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ure, over five decades around t = r).
Combining the result in this subsection and Eq. (27),

we find

y" (k, ~) ( Im

dÃ jd
1

1+ (—iwr)
—2/d

)

w (( 1/r
intermediate frequency

cu )) 1/7

(32)

A schematic illustration of y" (k, cu) [Eq. (32)] is shown

in Fig. 14. From our MC results, we find the following
relation among o, and the absolute values of slopes:

df 2 ( o.. (33)

Judging from our MC results (Sec. III) together with our
scaling argument (Sec. IV), we conclude that the relax-
ation in fractal structures is described by the Cole-Cole
form over quite a wide range in the intermediate time re-

gion around ~ and in the intermediate frequency region
around ~~, which are the regions of interest. The devi-

ation from the Cole-Cole relaxation appears only outside
these regions.

FIG. 13. j'(k, t) vs log(t/r) in the case of the 2D percola-
tion clusters at p = p . Dots represent our MC result, open
circles denote the result obtained by performing an integral in

Eq. (31) with a = 1.65, and the solid curve is the relaxation
function of the Cole-Cole type with the parameter n = 0.748.

From our MC results of random walks on fractal struc-
tures and analytical studies based on the scaling argu-
ment, we have shown the following properties.

(i) The anomalous relaxation is ascribable to the re-
stricted geometry allowed for diffusion.

(ii) The relaxation in fractal structures is of the Cole-
Cole type in the intermediate time and frequency region
around w and ~, respectively, which are the regions
of interest.

(iii) E(k, t), g(k, cu), and G(r, t) show scaling.
(iv) The relation 0 x p/2 = 1 holds between a parame-

ter 0 characterizing diffusion and a parameter p charac-
terizing relaxation.

(v) In structures with almost the same fractal dimen-
sion, the relaxation in structure with dead ends is slower
than that in structure without them.

(vi) The spectral dimension d, obtained by our MC
simulations in the case of the 2D SCs with 6 = 3, l = 1 is
between the approximate values d, and d, obtained
earlier.

In this way, we have proposed and studied the model
of random walks in structures with fractal dimensions on
the confident expectation that our model embodies the
essential aspects of the structural relaxation in many-
body systems. Summarizing the above-mentioned results
of ours, we assure that the present work really gives im-

portant clues to the understanding of the mechanisms
of anomalous relaxation. Another possible model in the
framework of one-body picture is the fractal time ran-
dom walk (FTRW) in regular lattices [22]. In the FTRW
model, the relaxation is also shown to be of the Cole-Cole
type [22]. This fact is extremely interesting and gives us
a future work on the relation between random walks in
fractal structures and the FTRW in regular lattices. The
anomalous relaxation of the stretched-exponential type
will be realized with other types of restricted geometry
[11].

It is worth mentioning that, in the recent studies of
anomalous relaxation, Niklasson has studied the dielec-
tric response of disordered materials on the basis of the
generalized diffusion equation [23]. He analyzed the
equation by means of the concept of fractal.

Cole-Cole form
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APPENDIX: CUMULANT EXPANSION
OF THE RELAXATION FUNCTION

log co

FIG. 14. Schematic illustration of y"(k, m) for random
walks on 2D fractals.

The relaxation function E(k, t) is the characteristic
function of the random variable (r(t) —r(0) ) as defined
by Eq. (5). It is shown that the probability distribution
function of (r(t) —r(0)) is the particle density G(r, t),
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s'(k, t) = f G(r, t) e' 'dr (AI)

F(k, t) = exp ), ((r(t) —r(0))"),(ik)"

n=l

In the case of a two-dimensional system, we have

k2 6 k
F(k, t) = exp ——B(t)

~

1 ——R(t) A(t) +
4 q 12

(A2)

(A3)

where B(t)—:((r(t) —r(0)) ) is the mean-square displace-

We can expand F(k, t) in powers of k (cumulant expan-
sion) [12] as follows:

ment, ((r(t) —r(0) )"),is the nth cumulant of (r(t) —r(0)),
and A(t) is the non-Gaussian parameter defined by Eq.
(8).

When the particle density G(r, t) has a Gaussian form

1 ( r'
2 B(t) 2B(t) ) ' (A4)

t
F(k, t) = exp

~

——~,r)
v = 2Dpk

—2 4y
—2

(A5)

(A6)

the nth cumulant with n & 3 is zero. Accordingly, the
relaxation function F(k, t) is exponential, that is, the
relaxation is of the normal Debye type:
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