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We investigate the interacting-domain-wall model derived from the triangular-lattice antiferro-
magnetic Ising model with two next-nearest-neighbor interactions. The system has commensurate
phases with a domain-wall density of q =

3 as well as that of q = 0 when the interaction is re-
pulsive. The q = — commensurate phase is separated from the incommensurate phase through the
Kosterlitz-Thouless (KT) transition. The critical interaction strength and the nature of the KT
phase transition are studied by the Monte Carlo simulations and numerical transfer-matrix calcula-
tions. For strongly attractive interaction, the system undergoes a first-order phase transition from
the q = 0 commensurate phase to the incommensurate phase with q g 0. The incommensurate
phase is a critical phase which is in the Gaussian model universality class. The effective Gaussian
coupling constant is calculated as a function of interaction parameters from the 6nite-size scaling of
the transfer-matrix spectra .

PACS number(s): 05.50.+q, 64.60.Cn, 64.60.Fr, 64.70.Rh

I. INTRODUCTION (2)

The triangular-lattice anti ferromagnetic Ising
model (TAFIM) displays rich critical phenomena. The
TAFIM with nearest-neighbor coupling K (( 0) is de-
scribed by the Hamiltonian

=K) s;s, ,kgT
(ij)

where (ij) denotes pairs of nearest-neighbor sites of tri-
angular lattice and s; = +1. The ground states of the
model are infinitely degenerate due to &ustration on each
elementary triangle and correspond to a critical state
with algebraic decay of correlations [1]. Each ground-
state configuration can be mapped to a state of the tri-
angular solid-on-solid (TISOS) model [2] which describes
the equilibrium shape of a simple-cubic crystal near its
(1, 1, 1) corner or growing of the simple-cubic crystal
along the [111 direction [3], and also of the domain-
wall model [1,4]. The latter describes the commensurate-
incommensurate (C-IC) phase transitions [5]. When a
two-dimensional system with anisotropic interactions has
degenerate ground states, excitations from a ground state
may take the form of domain walls of striped shapes. A
typical example is the axial next-nearest-neighbor Ising
(ANNNI) model [6]. Though domain-wall type excita-
tions are energetically unfavorable, they also carry a fi-
nite amount of entropy. So the system is in an ordered
phase without domain-wall excitation (C phase) at low
temperatures while it is in a modulated phase with finite
density of domain wall for sufIiciently high temperatures.

Ground-state properties of the TAFIM are studied by
taking the limit K m —oo in Eq. (1) and by assigning sta-
tistical weights to each ground-state configuration. The
new efFective Hamiltonian of interest here can then be
written as

Here, (ij) (((ij))) denotes pairs of nearest-neighbor (next-
nearest-neighbor) sites, b (e ), a = 1, 2, 3, are direction-
dependent nearest-neighbor (next-nearest-neighbor) cou-
plings, and 6 is a magnetic field. Each allowed spin con-
figuration is, ) is understood to be one of the ground-
state configurations implicitly. The statistical weight for
each configuration is proportional to e

If there are only nearest-neighbor couplings, the sys-
tem is equivalent to the noninteracting domain-wall
model and can be solved exactly [1,4]. The system ex-
hibits Pokrovsky-Talapov (PT) transition [7] which sep-
arates an ordered commensurate (C) phase and a dis-
ordered incommensurate (IC) phase. The IC phase is a
critical phase which is in the Gaussian model universality
class. The 6..ee-energy functional of the Gaussian model
is given by

~= fd, z, (op~' K, (apl+ )
2 (BTip 2 i Bx2)

where Ki and K2 are the anisotropic stiBness constants.
The Gaussian model has scaling dimensions

(4)

where p and q are integers and g = 2vr+KiK2 is called
the Gaussian coupling constant [6]. The Gaussian cou-
pling constant is equal to 1/2 throughout the IC phase
in this limit [4].

The efFect of the magnetic field for the system with
b = e = 0 has been studied by numerical transfer-
matrix calculations [8] and Monte Carlo simulations [9].
The system undergoes Kosterlitz- Thouless (KT) phase
transition [10] from the disordered critical phase to the
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ordered phase as 6 increases.
When there are two next-nearest-neighbor cou-

plings (ei g 0, e2 g 0, es —— 0) as well as nearest-
neighbor couplings, '8 in Eq. (2) can be interpreted
as a Hamiltonian for an interacting domain-wall sys-
tem [4]. The nearest-neighbor and ne~t-nearest-neighbor
couplings play the role of the fugacity of domain walls
and the interaction between domain walls, respectively.
There are two types of domain walls and the two next-
nearest-neighbor couplings eq and e2 control wall-wall in-
teractions between respective types. In a previous pa-
per [4], we considered the partially interacting domain-
wall (PIDW) model where domain walls of only one
type interact with each other (ei ——0, e2 P 0 case).
The PIDW model is equivalent to the general five-vertex
model which in turn is exactly solvable through the Bethe
ansatz method. We obtained exact phase diagram and
quantitative understanding of the effect of the interaction
in the critical properties of the PIDW model. When the
repulsive interaction is strong, the system is in a novel
C phase with domain-wall density q = I/2 which is ab-
sent in the noninteracting system. In fact, this phase
is equivalent to the C phase appearing in the ANNNI
model where the interactions between domain walls are
assumed to be infinitely repulsive [6]. The IC phase is
also the critical phase in the Gaussian model universality
class but the Gaussian coupling constant g varies contin-
uously throughout the IC phase.

In this paper, we study the interacting-domain-
wall (IDW) model where domain walls of both types in-
teract with the same strength (ei ——e2 g 0 case). We are
concerned with the nature of the ordering and the phase
transition. We find. that the system has an ordered C
phase with q = 2/3 when the repulsive interaction is
sufIiciently strong and suggest that the phase transition
between the IC phase and the q = 2/3 C phase is the KT
transition. We argue that the transition is d.escribed in
the continuum limit by the Gaussian model Eq. (3) with a
symmetry-breaking field Vs cos [3$(r)]. The repulsive in-
teraction acts as the symmetry-breaking field. When V3
is sufFiciently small, the system is in the critically disor-
dered state with scaling dimensions given in Eq. (4). The
Gaussian coupling constant is not constant any more in
the critical region but varies continuously since it is renor-
malized by the V3 field. The symmetry-breaking field V3
has a scaling dimension X3 o As V3 increases, it becomes
relevant in the renormalization group sense. This hap-
pens when As o

——2 (or g = 9/4). The phase transition
involved in this order-disorder transition is the KT tran-
sition. So, we predict that the KT transition occurs as
the repulsive-interaction strength varies.

On the other side, where the attractive interaction is
strong, the domain walls are bounded with each other.
We find that, as the chemical potential of domain walls
increases, there is a first-order phase transition from the
q = 0 C phase to the IC phase accompanied by a finite
jump in q.

This paper is organized as follows. In Sec. II we intro-
duce the IDW model and present the relation between
it and the TISOS model. Possible ordered phases in the
IDW model are discussed. Unlike the PIDW model, the

IDW model is not exactly solvable. So, we investigate the
IDW model by numerical diagonalization of the transfer-
matrix and Monte Carlo simulations. In Sec. III we an-
alyze the eigenvalue spectra of the transfer matrix using
the finite-size scaling theory. The transfer matrix applies
to a system with a cylinder geometry: infinitely long in
one direction, and periodic with a finite size N in the
other direction. The calculations are performed. for the
strip width N up to N = 18, corresponding to a transfer
matrix of size 2 x 2 . Using the finite-size scaling of
the eigenvalue spectra, we calculate the Gaussian cou-
pling constant g &om which the KT transition point for
the repulsive interaction is located. The first-order phase
transition line for the attractive interaction is obtained
from the eigenvalue spectra and an analytic approxima-
tion. In Sec. IV results of Monte Carlo simulations are
presented. The simulations are done for a lattice of size
up to 120 x 120 while the domain-wall d.ensity is fixed
to 2/3. As well as the specific heat, we also calculate
the fluctuations of the position and the density of do-
main walls since they serve as order parameters for the
KT transition. Monte Carlo results are consistent with
those of transfer-matrix calculations. In Sec. V we sum-
marize our results and discuss the origin of the difference
between the PIDW model and the IDW mod. el.

II. THE MODEL AND ITS GROUND STATES

We consider a two-dimensional domain-wall model on
a finite N x M triangular lattice with one side of the
elementary triangle lying along the horizontal direction.
The configurations of domain walls are mapped &om the
ground-state configurations of the TAFIM [4]. The do-
main walls propagate vertically along the two directions
of the elementary triangle. We call the domain wall of
type 1 (2) if it is left (right) inoving. A single chain
of domain wall has an entropy ln2 per unit length since
there are two ways for domain walls to move. The con-
figurations of domain walls are subject to the restriction
that they never be created or annihilated during propa-
gation. Thus we do not allow the "dislocations" which
form topological excitations. However, the effect of such
excitations will be discussed briefly in Sec. V.

Domain walls have the chemical potential p and in-
teraction energy c per unit length. Relationships be-
tween (p, e) and (b, e ) of Eq. (2) are derived in Ref. [4].
The interaction energy is assigned to each segment of
adjacent-parallel domain walls. The grand. -canonical par-
tition function of the IDW model is written as

where Q is the number of domain walls per row, z = e~

is the fugacity of a domain-wall segment of unit length,
and y = e is the interaction parameter. Here, we use
the convention that the "temperature" of the domain-
wall system is absorbed into p, and e. Note that this
temperature is different from that of the TAFIM. The
function C, (pi, . . . , pg) counts total length of adjacent-
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parallel domain walls where p;(j) denotes the horizontal
position of the ith domain wall at vertical position j.
Since configurations with diferent numbers of domain
walls do not couple with each other at all, the partition
sum can be evaluated independently for each Q;

where Z~ is the canonical partition function, represent-
ing the second sum in Eq. (5), and q = Q/N is the
domain-wall density. The grand-canonical and canoni-
cal ensembles are connected through the relation
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Before proceeding with the analysis of the IDW model,
we digress to explain the equivalence of the domain-
wall model and the TISOS model. The TISOS model
is a solid-on-solid model on a triangular lattice on which
integer-valued heights h; at site i, —:(x, , y, ) are assigned
with the restriction that the height differences between
any nearest-neighbor sites are kl or +2. See Ref. [1] for
details. Let n, be the number of domain walls on the
left-hand side of the point (x;, y;). Then, the mapping

h,. = 3n; —2x;

relates a domain-wall configuration to a height configu-
ration. Note that the height variables satisfy the peri-
odic boundary condition h~& ~ +N y ~ ) h(z. y. ) only if the
doinain-wall density q = 2/3. In this case the TISOS
model so constructed describes the equilibrium shape of
a cubic crystal viewed f'rom the [111]direction. The case
of q g 2/3 corresponds to that viewed from other direc-
tions.

"Ground states" of the model for given x and y are
the configurations which maximize the Boltzmann weight
in Eq. (5). For the attractive interaction (s & 0), a C
phase with q = 0 (1) is the ground state when p & s
(p, ) s'). There will be a first-order phase transition along
the line y, = e' at zero temperature, i.e. , ~s'~ M oo. On the
other hand, for the repulsive interaction (s ) 0), the q =
0(1) C phase is the ground state when p & 0 (p ) 3s).
When 0 & p & 3e, the q = 2/3 C configurations become
the ground states. These new ground states correspond
to the most densely packed domain-wall states without
interacting pairs and are threefold degenerate. They are
shown in Fig. 1.

To understand finite-temperature behaviors, we should
consider excitations kom these ground states. Excited
states &om the q = 0 state are formed by domain-wall
formations. If the domain walls are far apart &om each
other (this is the case when the attractive interaction is
not so strong), the energy cost is —p and the wandering
entropy gain is ln 2 per unit length of domain walls. Thus
there will be a phase transition at p = —ln 2.

An excited state of the q = 1 state is formed by remov-
ing one segment of domain walls &om each rom. We will
call it the domain-wall hole excitation. Unlike a domain

FIG. 1. Three ground states of the domain-wall system
with repulsive interactions when 0 ( p ( 3e. The broken
lines represent a triangular lattice and the solid lines represent
sections of the domain wall. Each ground state is obtained
by periodic repetitions of each unit in the vertical direction.

wall, the domain-wall hole need not form a continuous
path. Thus a single domain-wall hole has a wandering
entropy in% and takes energy cost p per unit length.
So the q = 1 state is always unstable under domain-wall
hole excitations at any value of p.

The q = 2/3 C state has complicated excitations. The
simplest kind of excitation is generated by locally revers-
ing two units of a domain wall with respect to a vertical
axis. Its excitation energy is 2c. This excitation is a lo-
cal excitation so it cannot destroy the long-range order
at low temperatures. Another important excitation is
formed by domain boundaries between the three ground-
state configurations. This is illustrated in Fig. 2 where
three ground-state configurations of Fig. 1 coexist, form-
ing domain boundaries.

The nature of such excitations becomes more trans-
parent when we introduce a coarse-grained field variable
as follows. First we assign a height variable 6; to each
lattice site according to Eq. (7). The height variables
corresponding to the domain-wall configuration of Fig. 2
are also shown in Fig. 2 by small numbers. We now group
lattice sites into a triangular array of elementary triangles
shown as dotted triangles in Fig. 2. To each elementary
dotted triangle o. , we then assign a coarse-grained height
variable

where n s denote the three sites of the triangle n. The
values of h for the configuration of Fig. 2 are shown
by big numbers in the middle of each dotted triangle.
h take integer values and h = h (mod 3) if local
configurations at n and n' are in the same ground-state
configuration. At each boundary, Lh = +1 or + 2. In
the continuum limit, the critical behaviors of the system
are described by the Gaussian model with &ee-energy
functional W in Eq. (3) if there is no interaction be-
tween domain walls. The repulsive interaction favors the
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In this section, we presented ground states of the IDW
model and the conjecture that the C-IC transition of the
IDW model with the repulsive interaction at q = 2/3 is
described by the free-energy functional given in Eq. (9).
In the next two sections, we will confirm our conjecture
by transfer-matrix calculations and Monte Carlo simula-
tloIls.

.0 III. FINITE-SIZE SCALING ANALYSIS
OF TRANSFER-MATRIX SPECTRA

go ~ ~ ~ o 0

0

o

0 We study the IDW model on a finite lattice with width
N and height; M using the transfer matrix. The grand-
canonical partition function Z~ in Eq. (5) is written as

0 1

N

) MQT TM
@=0

FIG. 2. An excited. state of the domain-wall system with
repulsive interactions. The small numbers on vertices of a
triangular lattice denote heights h, of an equivalent TISOS
configuration and the large numbers in dotted triangles de-
note the coarse-grained heights h

coarse-grained height h(r) to be an integer where h(r)
denotes h in the continuum limit. So we postulate that
the order-disorder phase transition in the IDW model
with q = 2/3 is described by the Gaussian model with a
symmetry-breaking Beld whose &ee-energy functional is
given by

where Tg is a transfer matrix which acts on the NCg di-
mensional space spanned by statekets ~ni, . . . , ng) spec-
ifying positions of Q domain walls. The matrix element
(ni, . . . , n& ~

Tg
~
ni, . . . , n~) represents the Boltzmann

weight for a domain-wall configuration between two rows
of a lattice as shown in Fig. 3.

We denote the pth largest eigenvalue of Tg by e
and E" will be called the energy of the pth excited level.
In the limit M ~ oo, the canonical partition function is

—ME'
given by the largest eigenvalue, i.e. , Z~ ——e ™.In the
IC phase, q = Q/K varies continuously as a function of p
and e. When q is given, the chemical potential should be
chosen so as to satisfy the finite-size version of Eq. (6),

d —Kg + —K2' E», )
+Vs cos [3$(r)] (9)

0 0
EQ+x EQ —x

The eigenvalue spectrum for a conformally invariant
system follows the universal scaling form

where P(r) = s h(r) and the parameters Ki, K2, and Vs
are functions of the interaction strength y. It is known
that; this system has two phases: the critically disordered
phase (high-temperature phase) and the ordered phase
(low-temperature phase) [10]. In. the critical region the
model is renormalized to

d —Kx + —K2, 10
2 i Bxi) 2 qcIz2)

ReE (N) =Mf + (X ——)+e~ —l, (u)
2z.( c t'1 )
N 12 (N)

where c is the central charge, X is the scaling dimen-
sion of the operator associated with eigenstate n, ( is
an anisotropy factor, and f is the bulk free energy per
site [11].The IC phase of the domain-wall system is the
critical phase in the universality class of the Gaussian
model whose central charge is 1 and scaling dimensions

where Kq and K2 are renormalized stifFness constants
which are functions of Ki, K2, and V3. The scal-
ing dimension of the symmetry-breaking field is X3 Q

9/(2g) with the efFective Gaussian coupling constant

g = 2m KqK2. In the critical region the symmetry-
breaking field is irrelevant (i.e. , As o ) 2). The phase
transition into the ordered phase occurs at the values of
the model parameters which satisfy the relation X3 Q —2
and belongs to the universality class of the KT transition.
The transition point can be found &om the condition
g = 9/4.

pl
/ I/

/ /
I r I

I

N N+1
FIG. 3. An example of a domain-wall configuration in

two successive rows of a triangular lattice of width N = 6.
The domain-wall configuration of the lower row is repre-
sented by the stateket ~1, 2, 3, 5) while that of the upper one
is represented by ~1, 3, 4, 5). The transfer-matrix element
(1,3, 4, 5~To=4~1, 2, 3, 5) denotes the Boltzmann weight of the
above configuration and is equal to y.
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are given in Eq. (4). In a previous paper [4], we showed
that the pth excited level of Tg leads to the scaling di-
mension X„oand excitations of the largest eigenvalues
of Tg~q relative to that of Tg lead to Xo q. Using this
knowledge, we can estimate the Gaussian coupling con-
stant by an estimator g(N) defined by

Re (E~o i + E~~ i —2E~o)

2 Re (E~i —E~o)

which should approach g as N —+ oo. A sequence of
g(N) is obtained by numerical diagonalization of trans-
fer matrix for a system of width N up to 18. We present
the estimates in Fig. 4(a) and Fig. 4(b) for the repul-

I

sive (y ( 1) and attractive (y ) 1) case, respectively, for
several values of y. The curve for y = 0.2 in Fig. 4(a)
is noticeable. g(N) apparently does not converge to a
finite value as N increases when q = 2/3. It means that
when y = 0.2 the eigenvalue spectrum does not follow the
finite-size scaling form of Eq. (11) and that the system
is no longer in a critical phase. We gave an argument in
the preceding section that the system undergoes a phase
transition into the ordered phase as the repulsive inter-
action becomes strong and that the Gaussian coupling
constant should be 9/4 at the transition point. Thus we
estimate the critical interaction strength y by solving
the equation g(N) = 9/4 numerically. For this purpose,
we find that the alternative estimators defined by

6 E~(N+ 3) —E~o(N)
g(N) =-

E~ (N + 3) —E~o (N + 3) — E~i (N ) —E~o (N )

converge better. The solutions of g(N) = 9/4, de-
noted by yi(N), are given in Table I. The strip-width
dependence of yi(N) follows from corrections to scaling
of the eigenvalues. At the KT transition point there
are logarithmic corrections due to the presence of a
marginally irrelevant field [9]. Thus the sequence of es-
timator yi(N) is extrapolated by fitting it to the form
yi(N) = y2 + a/(b+ lnN). Since the sequence y2 thus
obtained also shows slow convergence, we fit it again to
the same form and obtain the result y, = 0.252 + (0.003).
See Table I.

When y ( y„there appears the q = 2 /3 C phase. As
in the q = 1/2 C phase of the PIDW model, q remains
locked to the value 2/3 in the range p ( p ( p+. Es-
timates of the chemical potential at the lower and upper
boundaries of the C phase are given by

2.5-

2.0-

g 1.5-

1.0-

0.5-
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Dl
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P- J l
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+
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0.6

+

Ak& WN—dh—
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where Qo ——2N/3. Since they are evaluated from finite-
size systems, we should know the finite-size scaling form
of p~(N). Due to the marginal corrections at the phase
boundary, the largest eigenvalues for Q = Qo + m are
expected to have scaling forms

05 iLI

&r

0.4- +@~~
g 0.3-

S aAEkgl@l 0 GI4EkD. =:
~A -'

O @~+~+ I Q~I ~)W+~& I aP~l=
e ~M+~ y ~+

0 0 vr(g, ( 1
Eq ~ —Eq —pram+ m + 0

qNlnNp

It then follows that p~(N) behaves as

02-

0.1-

mA. A00 ~ ~I
0.0 0.2 0.4 0.6 0.8 1.0

Accordingly, we estimate p~ by fitting p~(N) to the
equation p~(N) = p~ + a/N + b/NlnN. The result
is shown in Fig. 5.

We have thus determined the phase boundary of the
q = 2/3 phase using the finite-size scaling of the eigen-
value spectra of the transfer matrix. Next, we consider
the system near the q = 0 C phase. As the chemical
potential p increases, domain walls begin to form. They

FIG. 4. (a) Estimates of the Gaussian coupling constant
g(N) as a function of q for several values of y. The symbols
A, Q, +, G, and ~ correspond to N = 6, 9, 12, 15, and 18,
respectively. The values of y are 0.2, 0.4, 0.6, 0.8, and 1.0 from
top to bottom at each value of q. The broken line denotes the
line g = 9/4. (b) Same as in (a) but for the values of y 1.0,
1.1, 1.2, 1.3, 1.4, and 1.5 from top to bottom.
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TABLE I. The transfer-matrix calculation of the KT tran-
sition point of the IDW model. Estimates of the critical in-
teraction strength yi(N) are found by solving the equation
g(N) = 9/4 by the Newton iteration method. The sequence
of yi(N) is fitted to the form yi(N) = y2+ a/(6+ In N) to ob-
tain a sequence of extrapolated values y2(N). y, is estimated
by fitting y2(N) again to the same asymptotic form. The
error is estimated from the difference between y, and y2(9).

N
3
6
9
12
15

g1
0.170?90486223
0.197135051080
0.206717177287
0.211836668182
0.215121556318

g2
0.265782
0.256660
0 ' 255360

y,
0.252

form a &ee or bound state depending on the interaction
strength y. To see this, we calculate in the Appendix the
ground-state energy and un-normalized eigenket of Tg
for Q = 2 from the Bethe ansatz method. The results for
the maximum eigenvalue and the eigenket are

with the critical chemical potential p = —ln2.
When y ) 3/2, Eq. (12) shows that domain walls form

a bounded state. The two domain walls are bounded
with the mean distance

dp ——(m —n) = 4(y —1)'
4(y —1)2 —1

The ground-state energy of the bounded state consists of
two parts: E2 ——E, +E;„qwhere E, = —ln2 comes
from free motions of the center of mass of the two domain
walls and E;„t——ln [y + 1/4(y —1)] from the effective in-
teraction. To generalize Eq. (12) for Q & 3 where exact
results are not available, we construct a simple approxi-
mation for E as a sum of E, and E;„t.Thus we write
the ground-state energy of the Tg for Q f 2 as

E~ = E. +(Q —1)E;„,
1= —ln 2 —(Q —1) ln

~
y+ (»)4(y-1)~

This approximation will be called the two-domain-wall

E = —21n2, ~A) = ) ~m, n)
3

jf y ( —,

E2 = —ln
~
2y+

2(y —1) J
'

~A) = ) [2(y —1)]
"

~m, n)
m(n

(12) 0 7&i
8L

Po —0.8-

where the thermodynamic limit is taken. The eigenket
has qualitatively diferent properties on both sides of the
y = 3/2 line.

As can be seen from Eq. (12), domain walls form a free
state when y ( 3/2. So, the C-IC transition is the PT
transition as in the noninteracting and the PIDW models.
The domain-wall density has a square-root dependence
on the chemical potential

q - (c —v.)'/',

—0.9-

—1.0
1.5 1.7 1.9 2.1 2.3

1.0
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0.0 0.1 0.2 0.3 0.4 0.5

0.2
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0.0
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FIG. 5. Phase boundary of the q = 2/3 C-IC transition
in the p-y plane. y, ~ are obtained by extrapolating p, +(N).
The broken line is drawn at the critical interaction strength
y = 0.252. p+ and p merge into a single value near that
line. Solid lines are guides to the eye.

FIG. 6. Estimates of pp (a) and qo (b) obtained from trans-
fer-matrix calculations (symbols). The two-domain-wall ap-
proximation for po and the approximation qo 1/do are also
shown in (a) and (b), respectively, by solid lines.
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IV. RESULTS OF MONTE CARLO
SIMULATIONS

In the preceding section, the assumption that the
repulsive interaction induces the KT transition at the
q = 2/3 C phase boundary is used to estimate the criti-
cal interaction strength y &om the numerical diagonal-
ization of the transfer matrix. In this section, we will
con6rm the nature of the phase transition more directly
by Monte Carlo simulations at q = 2/3 on a finite L x L
lattice.

At the KT transition point, there is no diverging peak
in the specific heat. So, we should study other quantities
such as the renormalized stiBness constants K1 and K2 in
Eq. (10). They can be evaluated &om the linear response

FIG. 7. Phase diagrams of the IDW model with the re-
pulsive (s ) 0) and attractive (s & 0) interactions. The solid
lines (—) denote the PT transition, the broken line (———) the
KT transition, and the dotted line ( .) the first-order tran-
sition. The PT transition lines are straight lines with slope
—1/ ln 2.

produced by an additional free-energy term

0
b&y = —vA, dr

|9Xk

approxiination. It should be valid as long as q « 1/dp.
When q ) 1/dp, domain walls are affected by additional
statistical repulsive interactions. These statistical repul-
sions then drive the system into the IC phase. Within the
two-domain-wall approximation, the domain-wall system
undergoes a erst-order C-IC transition from the q = 0 C
phase to the IC phase. Since Eq. (13) is linear in Q, the
transition occurs at the chemical potential

( 1
pp

———in
~
y+ 4(y-1)r ' (14)

while qo, the discontinuity of q at the transition, can be
taken to be 1/dp approximately.

po and qo are also determined numerically. When
y ) 3/2, E& for finite X obtained from numerical di-
agonalization of Tg becomes concave downward in some
region 0 & Q & Qp, indicating a first-order phase transi-
tion. We took the convex envelope of E and estimated
po and qo from the slope of the straight line enveloping
the concave region and kom the point where the straight
line and the curve of E are tangential, respectively. The
results are shown in Fig. 6 for Ave values of¹ These are
compared with Eq. (14) and the approximation qp 1/dp
in Fig. 6.

The resulting phase diagram of the IDW model as ob-
tained from the transfer-matrix calculations is summa-
rized in Fig. 7. This is the main result of this work.

where A: = 1 or 2. Prom the fluctuation-dissipation theo-
rem, we see that

where V is the volume and ( )p denotes the average with
vk ——0. These quantities are called helicity moduli and
serve as order parameters for systems exhibiting the KT
transition, e.g. , the AY' model [12].

Using Eqs. (7) and (8) which connect the Gaussian
model and the domain-wall model, Kk can be written in
terms of the quantities of the domain-wall model as

, ). ~

&~n' ——4, i
~ ~

&ing ——4, i I')(3)p
+kni ~k, 1 +kn j ~k, 1

where Akn, = n;+ „—n;, ek is the unit vector along
the k direction, and bk 1 is the Kronecker delta function.
Prom the definition of n;, we see that

1 if there is a domain wall between (x;, y, ) and (x;, y;) + eiL1n, =
0 otherwise

1 if there is a domain wall of type 1 between (2:;,y;) and (z, , y, ) + e2
42n; = &

—1 if there is a domain wall of type 2 between (x;, y;) and (x;, y;) + e2
0 otherwise.
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Using this relation, we can write the expression for the
stiKness constants as

tion is necessary to calculate the quantities P,. AX', . On
the other hand, one should adopt, in principle, a grand-
canonical ensemble in which the domain-wall number
could vary in order to calculate the fluctuations of the
domain-wall number. But it poses too much technical dif-
ficulty, so we Ineasure instead fluctuations of the domain-

where Q (Qi 2) is the total length of the domain walls
(of type 1 or 2) and AX; = p;(L) —p, (0) is the difference
of the position of the ith domain wall at the top to that
at the bottom. The equations show that Kz controls
the fluctuations of the domain-wall length and K2 the
fluctuations of the domain-wall positions.

We performed simulations with the periodic bound-
ary condition along the horizontal direction and the
&ee boundary condition along the vertical direction with
domain-wall density fixed to 2/3. The updating rule from
a domain-wall configuration (p;(j)) to (p, (j)j is as fol-
lows. There are four kinds of configurations for any (i, j);

4-

2-

0
0.0 0.1 0.2 0.3

L= 12
L=36 0
L= 60+
L= 90 x
L = 120 ~

0.4 0.5

(i) p;(j —1) + 1/2
(tt) p;(q —1) —1/2
(ttt) p, (j —1) —1/2
(t~) p, (j —1)+1/2

= p'(&)
= s'(i)
= s'(i)
= J*(j)

= p, (~+1) —1/2,
= p, (j+1)+1/2,
= p'(i+1) -1/2,
= p, (j+1)+1/2.

6-
A given configuration can be changed locally only for
cases (t'ii) and (iv). For case (iii), p;(j) is updated
to p';(j) = p, (j) + 1 with a probability y
provided p;+i (j) g p; (j ) —1, while for case (iv), p; (j)
is updated to p, (j) = p;(j) —1 with a probability
yc(&~ ) ) (&"&) provided p; i (j) g p; (j) —1. For other
cases, the con6guration is not altered. Noting that the
updating trial at (i, j) has nothing to do with domain
walls (i+2, j+2), we divide the set ((i, j)) into four parts
depending on whether i, j are even or odd and choose
randomly one of the four subsets and update all of the
domain walls in that subset.

The &ee boundary condition along the vertical direc-

1
X2 4

2-

0
0.0 0.1 0.2

0++

C

0.3

L= 12K
L=360
L= 60+
L= 90 x
L = 120 ~

0.4 0.5

0.2

0.1-

L=12 E
L=360
L= 60+
L= 90 x
L = 120

4-

2-

0x
L= 12
L= 360
L= 60+
J=90 x
L = 120 ~

0.0
0.0 0.1 0.2 0.3 0.4 0.5

0
0.0 0.1 0.2

(c)

0.3 0.4

FIG. 8. Monte Carlo results for the energy Quctuation C.
This result indicates that the energy Buctuation remains 6nite
when the system enters the ordered phase. The broken line
is drawn at y = 0.252.

FIG. 9. Monte Carlo results for the renormalized stiffness
constants Ki (a), Ks (b), and the Gaussian coupling con-
stant g (c). They show characteristic behaviors of the KT
transition.
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wall number in a fixed rectangular region of size (L/2) x L
during simulations of the L x L system. For such an en-
semble, an elementary probability consideration shows

that 1/Ki should be given by

where Q' is the number of domain walls inside the (L/2) x
L region.

In Fig. 8, we present results for the energy Huctuations
C which is defined by

for systems of linear size L = 12, 36, 60, 90, and 120.
As expected, there is a converging peak instead of a di-
verging peak. The peak position is below the estimated
critical interaction strength, i.e., at the low-temperature
region. This is consistent with the behaviors in the XY
model where the peak is at the high-temperature re-
gion. The KT transition in the XY model is the vortex-
antivortex unbinding transition and that in the IDW
model is a spontaneous symmetry-breaking transition.
The effects of the vortex-antivortex and the symmetry-
breaking field have a dual relation [10]

Z (2~%, yp, y„)= Z (p'/2vr K, yp, yp) (p/2' K)
where K is the inverse temperature, yo is the fugacity
of the vortex and antivortex, and y„is the strength of
the symmetry-breaking field. . We see that the high- and
low-temperature regions are inverted.

Figures 9(a) and 9(b) show the measured values of
1/Ki and 1/K2, respectively, as a function of y for sev-
eral values of L. Though we did not try to extract the
quantitative results, they show manifest crossover behav-
iors near y y . They become smaller and smaller
in the ordered regions as the system size L increases
and the points at which the crossover behaviors set
in become closer and closer to the estimated critical-
interaction strength y, . These behaviors are in accord
with Monte Carlo results of the X'Y' model [12]. Finally,
Fig. 9(c) shows the values of g obtained from the rela-

tion g = 2' KqA2. The coupling constant estimated in
this way is in good agreement with that obtained from
the transfer-matrix spectra. That the values of g at y,
fall short of the expected value 9/4 is attributed to slow
convergence arising from the presence of logarithmic cor-
rections. From these numerical results, we conclude that
the phase transition belongs to the universality class of
the KT transition.

V. SUMMARY AND DISCUSSION

In summary, we have investigated the phase transitions
in the IDW model. There are three phases: the q = 0 and
q = 2/3 C phases and the IC phase. The transition be-
tween the q = 0 C phase and the IC phase is the PT tran-

sition when the interactions between domain walls are
repulsive or weakly attractive. When the interaction is
strongly attractive, it becomes the Brst-order phase tran-
sition with a discontinuity of the domain-wall density.
The nature of the transitions is altered because of forma-
tion of bounded domain-wall states. As to the transition
between the q = 2/3 C phase and the IC phase, we sug-
gested the free-energy functional is that of the Gaussian
model with a symmetry-breaking Beld with the scaling
dimension %30. The symmetry-breaking Beld accounts
for effects of the repulsive interaction and induces the KT
transition from the critical phase to the ordered phase.
We confirmed this scenario by calculating the stiffness
constants from the Monte Carlo simulations. Prom the
transfer-matrix method, we calculated the Gaussian cou-
pling constant in the IC phase and the critical-interaction
strength. Phase boundaries in the e-p plane are also de-
termined from the transfer-matrix method.

The domain-wall model is constructed from the
TAFIM with the restriction that three spins on elemen-
tary triangles cannot have the same sign. If this is al-
lowed the excitation of this type constitutes a topological
excitation where two-domain walls are created or anni-
hilated [4]. It plays the role of vortex and antivortex
excitation in the XY model. The scaling dimension of
the excitation is Xo 2. Since it is irrelevant when g & 1,
it cannot alter the nature of the C-IC transition of the
q = 2/3 C phase where g = 9/4 [13].

In the PIDW model where the interaction and the
chemical potential are anisotropic the repulsive interac-
tion stabilizes the q = 1/2 C phase. But, the phase
transition is of the PT type. Thus the anisotropy plays
an important role in determining the nature of the phase
transition. The anisotropy produces an extra term in the
free-energy functional which couples to the differences of
the number of domain walls of types 1 and 2. So the
PIDW model would be described by the effective free-
energy functional

i + 2
2 i, Oxi) 2 (Ox2

+V„cos[pP(r)]

where the symmetry-breaking field accounts for the or-
dering induced from domain-wall interactions and the
linear term —p0$/ctx2 accounts for the eff'ect of the
anisotropy. In this model, the phase transition is induced
by the coupling p. It induces a domain-wall type excita-
tion and the phase transition is in the universality class
of the PT transition [5].

Even though we studied only the equilibrium prop-
erties of the IDW model in this work, the nonequilib-
rium version is also of interest since it describes a driven
domain-wall model or the hypercube stacking model [3]
and also the charge conduction in the charge-density-
wave system [14]. We leave it for further study.
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APPENDIX

where [m, n) denotes a state with two domain walls at
sites m and n. The eigenvalue equation T2[A) = A]A)
gives linear equations for coefficients a(m, n):

In this appendix, we derive expressions for the largest
eigenvalue A and the corresponding eigenket ~A) of the
transfer matrix Tg for Q = 2 analytically. The eigenket
is of the form

Aa(m, n) = ) a(m', n') (m, n[T2[m', n') .
m'&n'

(Al)

1&m&n&N

a m, n m, n When T2 is applied to a stateket [m, n), it generates a
new stateket:

]m n)+~min+1)+[m+1, n)+] +, +1) ifn&m+1
y~m n)+]m n+1)+y[m+1, n+1) ifn=m+1

where y is the interaction parameter. Thus Eq. (A1) becomes

Aa(m, n g m + 1) = a(m, n) + a(m —1, n —1) + a(m, n —l.) + a(m —]., n),
Aa(m, n = m + 1) = ya(m, m + 1) + ya(m —1,m) + a(m —]., m + l. ) .

These equations are solved by the Bethe ansatz

(A2)

(A3)

a(m, n) = Ai2zi z2
"+ Azizi "zz (A4)

where Ai2, Azi, zi, and z2 are constants to be found. Equation (A2) is automatically satisfied by a(m, n) given in
Eq. (A4) provided the eigenvalue is

A = (1 + zi)(1 + z2) .

We can make Eq. (A3) 'oe satisfied by imposing the condition that

[a(m, n) + a(m —1, n —1) + a(m, n —1) + a(m —1, n)] +i ——ya(m, m + 1) + ya(m —1, m) + a(m —1,m + 1) .

This gives the relation between Ai2 and A2q as 1 —2(y —1)z
2(~-i) (A5)

A2g The solutions of Eq. (A5) are given by

If we use a periodic boundary condition a(n, m + K) =
a(m, n), we obtain the equations for zi and z2.

A2g ~ Ag2

A

Multiplying the two equations together gives (ziz2) = 1
which implies that ziz2 ——w where ~ is an Nth root of
unity. The eigenvector corresponding to the maximum
eigenvalue comes &om the solution with r = 1 which
means that zi ——1/z2 = z. The value of z is determined
&om the equation

2 (y —1)40(i, ', „)ify)-,
1+0(~i) ify & -', .

In the limit N ~ oo, this gives the eigenvalues and eigen-
vectors presented in Eq. (12).

Unfortunately the Bethe ansatz works only for Q = 2
and fails when Q & 3. Thus we are not able to get
analytic results for general Q. However, the solution for
Q = 2 provides a useful approximation near the q = 0 C
to IC transition as discussed in Sec. III.
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