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Viscosity coefFicients of partially aligned nematic and nematic discotic
liquid crystals
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The afBne transformation model —formulated for ellipsoidal particles with axis ratio Q and
previously used for the calculation of the viscous properties of nematic liquid crystals with perfect
orientation order —is generalized to realistic uniaxial phases with imperfect order (Maier-Saupe order
parameter S & 1). For the nematic liquid crystals N-(4'-methoxybenzylidene)-4-(n-butyl) aniline
(MBBA) and p-methoxy-p'-n-butylazoxybenzene (N4) and some cyanobiphenyls (kCB and kOCB
with k = 5, 8) a comparison of the theoretically obtained Miesowicz viscosities with experimental
data is made.

PACS number(s): 61.30.Cz, 66.20.+d

INTRODUCTION

A good qualitative and reasonable quantitative under-
standing of the anisotropy of the viscosity and of the
coeKcients characterizing the flow alignment in nematic
and nematic discotic liquid crystals is obtained by the
affine transformation model [1—4]. By this approach, the
transport coeKcients of perfectly aligned particles with
ellipsoidal equipotential surfaces are related to the trans-
port coefBcients of a reference fluid of spherical particles
at the same density and one or two paraxneters which
specify the shape of the uniaxial [1—4] or biaxial [5] el-
lipsoidal equipotential surfaces. Here, we restrict our at-
tention to (efFectively) uniaxial particles with the axis
ratio Q = aib where a and b = c are the semiaxes of
the equipotential surfaces. The cases Q ) 1 and Q & 1
pertain to prolate and oblate particles which form ne-
matic and nematic discotic phases. The afBne transfor-
mation model has been tested successfully in nonequilib-
rium molecular dynamics computer simulations [3,4,6,7]
of fluids with perfectly oriented particles corresponding
to a Maier-Saupe order parameter S = 1. All real ne-
matic liquid crystals, however, are only partially aligned
(S & 1). For a comparison of the theoretical results
based on the aKne transformation model for particles of
axis ratio Q one expects that the behaviour of a nematic
liquid crystal with 8 ( 1 somehow corresponds to that
of a model nematic liquid crystal with S = 1 and an ef-
fective axis ratio Q, tr which is smaller (larger) than Q
for prolate (oblate) particles. Qualitatively, this conjec-
ture made previously [3,4] is correct. A quantitative pre-
scription for the relation between the anisotropy of the
viscosity of perfectly and of partially aligned nematic liq-
uid crystals is presented here in the spirit of a modified
afBne transformation model which has been tested for
the anisotropy of the (self-)difFusion in ffuids of partially
oriente~'. . nematic liquid crystals [8]. This theory, which
aims to extend a well established model &om complete
to partial alignment, is complementary to a mesoscopic
approach to the calculation of the anisotropy of the vis-
cosity based on an expansion with respect to powers of

the alignment tensor as follows from an (approximate)
solution of a Fokker-Planck equation [9—16].

I. PRESSURE TENSOR AND VISCOSITY
COEFFICIENTS

A. Phenomenological ansatz

Before any properties of the viscosity of a nematic liq-
uid are discussed, two equivalent (well known) versions
of an ansatz for the &iction pressure tensor are presented
in order to specify the meaning of the various viscosity
coefBcients.

Let p and e be the mass density and the flow velocity
of a fluid. With the help of a substantial time derivative

&~
=

&~ + vpV'p the momentum balance can be written
as

1
VDVp VQV+8p& + Gl/p, p&p + Ql/p3 (2)

with

1
cc)p = —8'p~pV~vp

2
I I 1V'„v„=—(V' v„+V'„v„)——V'pvg8„„

2 3

The symbol' —indicates the symmetric traceless part
of a tensor. The quantities wp and p ~ are referred to

d
p v~ + V~P~ + V ~p~~ —0

dt

where the total pressure tensor P ~ already has been split
into its equilibrium part P„„andthe friction pressure
tensor p ~. Here and in the following, greek subscripts
refer to Cartesian components and the summation con-
vention is used for them.

The viscosity coefBcients occur in the (linear) relation
between p ~ and the gradient of the velocity V' v„.This
second rank tensor is decomposed into its isotropic, an-
tisymmetric, and symmetric traceless parts:
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as the vorticity and the deformation rate (shear rate)
tensor. For a nematic with the director field n = n(t, v )
and its corotational time derivative

d
N~ = —np —E'~~p(d~ng

dt

the ansatz [17—19]

B. Miesowicz viscosities

In a plane Couette or a plane Poiseuille fIow with the
velocity in the x direction and its gradient in the y direc-
tion, one has

1V' v~ = I e"e, u„=——I'e'
—p~„=o;gn„n„ngn„pg„+o.2n~N„+n3n„N„

+0,'4 yg/p + A5n~npppg + o.'6npnp ygg/

+(ingn„Pi„b„„+(2n n„VPV P + (3Vgn'g8„„
(6)

with the shear rate

(14)

is used. The Leslie coefFicients o.q, . . . , o.6 and the coef-
ficients (i, (2, (3 have the dimension of a viscosity. De-
composition of the pressure tensor in analogy to (2) yields
[9]

e '"' are unit vectors parallel to the x, y, z coordinate
axes.

The Miesowicz viscosities g, , i = 1, 2, 3 are de6ned by

I I

—27/p» —277' n~np pp&
I I—2g2 n~N„—2@3 'n~n„ngn„pg„

(2 evil p Vg'UP

(p „)= p, (n„N„)+ p2 ('n„ni'pp„)

(7)

(8)

with the director n parallel to the x, y, and z axes, re-
spectively; cf. Fig. 1. The orienting (magnetic) field has
to be strong enough to overcome the How induced ori-
entation. A fourth coefficient g4 analogous to (15) with
n parallel to the bisector between the x and y axes is
needed to characterize the shear viscosity. Instead of g4,
the Hel&ich viscosity coefFicient

3p~x = —'gv+wvw —Known~'7&~ .
qi2 ——4il4 —2(qi + g2) (16)

In (8), () indicates the antisymmetric part of a second
rank tensor, e.g. , (p„„)= 2 (p„&—

p& ). The viscosity
coefficients used in Eqs. (7)—(9) are related to those of
Eq. (6) by

is used in addition to the Miesowicz coeKcients. Those
four effective viscosities measurable in a Bow experiment
are related to the viscosity coefficients of Eq. (6) and Eqs.
(7)-(9) by

(10a)

&3 CI2 ) Q2 = O.'6

1 1
Ov (2 + 'C3 K Cl + (nl + n5 + ns)3 3

Due to the Onsager-Parodi relation

(10b)
(10c)

(10d)

A2 + 0!3 = 0!6 —0!5

l1(—
~

n4+ —(n5+ ns)
~2 ( 3 r

1 1 1
rji ———(n5+ ns), il2 ———(n2+ n3) 773 — ni

2 2 2

1
rli = —(n4 + ns + n3)

2
1 1 1= il + ni + il2 —+ —(gi + p2),6 2 4

1
'g2 = —(n4 + n5 —n2)

2
1 1= n+ -6 — ~. + -(y —»),6 2 4

1 1-
'g3 = —0!4 = 'g ——'gy,

2 3
77y2 = 0!y = 2'g3

(17b)

(17c)

(17d)

or equivalently

92 72 (12)

The antisymmetric part of the pressure tensor con-
tributes to gq and g2 but not to g3 and @~2. Notice that

and the relation (2 ——K, only seven of the nine viscos-
ity coefFicients are linearly independent. In an isotropic
fIuid all coefFicients vanish except for the shear viscosity

—n4 and the bulk viscosity gv = C3. Positive en-
tropy production requires g ) 0, g~ ) 0, pz ) 0 b«pz,
g2, gq, and p2 may have either sign. One standard set
of viscosity coefficients is the ni, . . . , ns of Eq. (6). The
coefficients occurring in the ansatz (7)—(9) can be prefer-
able in connection with theoretical considerations. In
experiments, linear combinations of the "basic" viscosity
coefBcients are measured. Some examples are mentioned
next.

~)(
q2Al

5, 4:::j::~%'!$~

/
Z

/4 3

WAR'IMR~~'~4:. ;

I IG. 1. Geometry of a plane Couette How and definition of
the Miesowicz viscosities.
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gy + gp+ g3 ——3g,

g1 g2 2@2 p2)
'gi + 'gg —2'g3 —'gy + &p]

(18a)
(18b)
(18c)

C. Flow alignment and viscosity for a free flow

If no external orienting field is applied, the director
n in the flowing nematic liquid crystal orients such that
the antisymmetric part of the pressure tensor associated
with the torque acting on the fluid vanishes. This leads
to [17—19]

n„=cos(Pp) e„+sin(Pp) e"„,
cos 2pp = —7i/p2

(19)

provided that 1p21 ) pi. The angle pp is referred to as
the Bow alignment angle.

The viscosity of a freely Bowing nematic liquid crystal
with the director n„determined by the flow alignment is

=1 1 2
gS— (gl + g2 Pl) + f12 1 (71/P2)

2 4

The dependence of the normal pressure differences p
p» and p, —

2 (p + p„„)as well as of p„,and p,„on
the various viscosity coeKcients which follows from the
ansatz (6) or &om (7)—(9) is not iieeded here. However,
some brief remarks on flow alignment are in order.

1
(u~u-) = ('u~&-') + -4-pv

1= Sp'n n„'+ —b„3
1= S2n n„+—h„(1—S2)p, v

Here we have assumed uniaxial symmetry of the orienta-
tional distribution. The average of the first term of (22)
is rewritten as sb„(uAu„)PA„+('u„u ' 'uAu„')PA„. Use
of

I I I

up, uv uAu]c &Are. = upuvuau~ &A]c

+— up, uA &Av + '7p, v (24)

Of course, equations analogous to (7)—(9) can be writ-
ten down for the perfectly oriented Buid. In the spirit
of the considerations of Ref. [8] which worked quite suc-
cessfully in the case of the anisotropy of the diffusion
the pressure tensor of a partially aligned fluid is now ob-
tained Rom (22) by averaging p ' over orientations, viz. ,p„„=(p„'). This conjecture is based on the assumption
that the molecular orientation is practically perfect in
small volume elements and that S~ ( 1 is caused by ori-
entational changes over distances which do not affect the
viscous properties as expressed by the coeKcients occur-
ring in (22). The averaging is straightforward for terms
like

1- 1 1- 2= g+ —6i ——&i+ —62 1 —(Vi/W2)6 4 2
(2O)

and of

( tL~ilvuAV, + ) S4 7L~7lv77A7lrc

S4 ——(P4 (n l4) ),It should be mentioned that the antisymmetric part of
the pressure tensor also vanishes for n~ = e„where the
effective viscosity equals g3. This second type of Bow
orientation is not stable, in general.

where S4 is an order parameter analogous to S~, leads to

(ugkuvuAuK) YAK 4 P vnA Ic 7Alc

2+—(S2 —S4) (n„nAPA„+n„nAPA~)
72( 1O

+—11 ——S2+ —S4 1&~15' 7 7 )
1+—(S2 —S4) 8p nAn„PA„.
7

II. FROM PERFECT TO PARTIAL ALIGNMENT

(26)

I et m be a unit vector parallel to the figure axis of
a molecule. The second rank alignment tensor can be
defined by ('u„u ') = (u„u ) —sb&„.In a uniaxial state
one has

('u„u ') = S2'n„n ', S2 ——(P2(m n)), (21)

where S~ ——S is the usual Maier-Saupe order parameter
and Pg(u n) is the 8th Legendre polynomial.

Suppose that the viscosity coefficients occurring in (6)
or in (7)—(9) are known for a fluid of perfectly aligned
or "ordered" particles where n = u, and the coefhcients
are distinguished by the superscript "ord." Then Eq. (6)
reads

(B~UV) = (llpuv) —S27l~EVA~CsrAn~

1+—svpAwA (1 —S2) (27)

Notice that Sq ——1 and S4 ——1 for perfect alignment.
The remaining average (u~U„) contains the compet-

ing influences of the internal dynamics represented by
(u~u ) and of the macroscopic vorticity uA In the uni. -

axial case the evaluation of these mean values leads to

ord ord ord
uvup, uAusc"f4~ + o'g ur ~ps

ord ox'd ox'd+o.3 u~Uv + o.'4 pv~ + o,5 uvupppp
ord ox'd+o's u~uA'YAy. + Ci uAuv. 'YArc~~v

+Q K ugkVAvvA + (2 VAvA 8/iv

with U„=u~ —c~p„upu„.

(22)

In many relevant cases the (macroscopic) director n„is
stationary. Thus we will assume that nv = 0 is suK-
ciently well realized in the experimental setup a situa-
tion which includes the measurement of Miesowicz vis-
cosities as well as the phenomenon of flow alignment.
Then the corotational derivative N of n reduces to
X„=—s„A wAn and Eq. (27) becomes
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1
u~U„)= (u„u ) + S2n~N + —e„~&up (1 —S2) . (28)DP

In general, the vorticity ~ has also a component parallel
to n which may not be neglected as was presupposed
for a single needle-shaped molecule. Decomposition of

into contributions parallel and perpendicular to n is
expressed by

1
P), = —[(S2 + 2)(h~ —n~n ) + (1 —S2)ngn ] (29)

3

and we finally obtain

'Yi = 'Yq ~a~~/(~~~K) .(1) (33b)

Similarly, for the other coefficients occurring in (7)—(9)
one obtains by the analogous procedure

introduced in (8). For perfect alignment p& reduces to
(ns' —n2' )(bp —npn ) which represents pi' ——ns'

together with the symmetry of one molecule. The
effective rotational viscosity pq that shows up in a given
flow geometry depends on the angle between director n
and vorticity u . The scalar coefficient p~ is calculated
&om the tensor in Eq. (33) according to

1(u„U„)= (u„u ) + S2 n„N„—s „pPp
2

Comparison of (—p„') with (6) yields

(30)
2

z = q"'+ —(1 —s, ) q,"',
4

6i = S26i'+ —(S2 —S4) &s'

(34a)

(34b)

ox'dS40.'1
2 ( 10 3

n4 ——n4' + —
I

1 ——S2+ —S4
I

ni'15' 7 7

+—(1 —S,) (n, ' + n, '),1

n, =s,n, + —(s, —s,)n,7

ns ——S2n, ' + —(S2 —S4) n, '
7

Ci = S2(i'+ —(S2 —S4)
7

(2 —S2(2 )1 'C3 —(s + (1 S2) C23

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(n2'"u U„+ns' u„U ) = S2 (n2' + ns' ) n„N„
(~)

~vp A f$~ +T
2

We have introduced the new tensor of rotational viscos-
(~)ity p&

p,''.l = —(n,' —n, ') [(2 + S,) (h,.—n, n. )

+2 (1 —S2) npn ] (33a)

This tensor replaces the rotational viscosity coefficient pq

Nevertheless, there is no exact correspondence of (—p„'„)
and —p '„with respect to terms involving o.2' and o.3',
as can easily be seen from (30). Even if (u„u„)is
canceled which may be justified for the flow experiment
determining the Miesowicz viscosities (the experiment is
performed in a way to prevent the rotation of the director
and thus it is a reasonable assumption that the motion u
of a singular molecular axis is strongly hindered as well)
but which is clearly not fully. 11ed for a free flow there
remains the contribution due to the part of u„parallel
to the director n .

For the sake of simplicity we assume (u„u„)—:0 and
focus our attention on flow experiments with this special
constraint. Then (30) is just the decomposition of (u U„)
into its symmetric and skew symmetric parts. The crucial
term (n2' u U~ + ns' u~U ) can now be rewritten as

old
2 t2

-ord
4/3

old
2+2
ord

Iv
old

2K

(34c)
(34d)
(34e)
(34f)
(34g)

For the Miesowicz viscosities and for gq2 one now infers
&om (33), (34), and the definition in Eq. (15) that

1ord + S -ord +
6

2 f 5
+—

I
1+ —s, —

15i 7
1+ (2+ S2)»'

1ord + S ord

6

+—
I
1+ -S2-

15q 7
1

(2 + S2)

ord S -ord +13''
+ —(1 —S2)

ord
g] 2 —&477' 2 ~

-ord
2

'9'
12

ord1

-ord
2 '9'
12

4 Iib

1

10 3—I1 ——s, +-s, Ig'15' 7 7

(35)

(36)

For perfect alignment with S2 ——S4 ——1 the relations
given in (35)—(38) reduce to Eqs. (17). However, as a
consequence of the dependence of pq on the director align-
ment with respect to vorticity the general expression for
as in (37) cannot simply be derived &om Eq. (17c): The
term involving pz' would have been missed, causing the
paradox that in an isotropic state there would be a dif-
ference between gq ——g2 and g3 which clearly is not
possible.

With the help of Eqs. (31), the viscosity coefBcients of
a partially aligned nematic liquid crystal are expressed in
terms of the viscosities of a perfectly aligned fluid and by
the order parameters S2 and. S4. The relations presented
so far apply to both ordinary nematic and nematic dis-
cotic substances. Differences between these two classes
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of nematic liquid crystals appear in the specific expres-
sions for coefficients of the perfectly oriented Huid to be
discussed next.

III. MODIFIED AFFINE TRANSFORMATION
MODEL

The pressure tensor and consequently also the viscos-
ity coeKcients of a fluid contain "kinetic" and "poten-
tial" contributions [3,4,6,7j. The latter dominate in the
viscosity coeKcients of liquids. If the small kinetic con-
tributions are disregarded, the viscosity coefficients of a
perfectly aligned fluid of ellipsoidal particles as given by
the aKne transformation model are

chord
—1 ref1

2
(39a)

ol d
2

ord
3

~ord
4
Old
5

1—(1 —Q') n"'
1

(q
—2 1) ref

ref 2 ref
4 g )

ord ord ord
2 & 6 3

(39c)

(39d)
(39e)

+ord

~ord

qord

qord

~ord

~ord

I
1+ —(q —q )

—1 2 ref

1
(q

—2 q2) ref

ord
I1

(q q
—i

)
ref 2 -ord

(q
—2 q2) ref 2 -ord

(4Oa)

(4ob)

(4Oc)

(4od)

(40e)

(4of)

Similarly, for the Miesowicz coeKcients and for g12 and
gs one has

ord ~—2 ref ord ~2 ref ord ref

ord ord ord 4 (q + q
—i) 2 ref (41)

Due to (40) and (35)—(37), the results obtained by the
modified affine transformation model for the Miesowicz
viscosities are

where Q = a/b is the axis ratio of the (effectively) uniax-
ial particles (the semiaxes of their equipotential surfaces
are a and b = c) and il" = 2ci4' is the shear viscosity of
a reference fluid of spherical particles at the same density
and temperature. Furthermore, one has g& ——gv for
the bulk viscosity and e ' = gz' ——0. The viscosity
coefficients of Eqs. (7)—(9) are given by

il, /il"' = 1+S, (Q' —1}
4 ( 10 3+—

I
1 ——s, +-s,

I (q —q-'), (43)

(3 —1
il /il" =1 ——

I
-s, + —s, —4

~ (Q —q ') . (44)15 q7 7

Analogously, one finds

ili2/n" = —S4 (Q —Q ')

and

(46)

&2(q) = —~2(q ') ni(q) =n2(q ') . (47)

These symmetry properties relating viscosity coefficients
of nematic and nematic discotic substances are a conse-
quence of the affine transformation model.

For S2 ——S4 ——1, the results of the original affine
transformation model are recovered f'rom (42)—(46). En

the other limiting case of an isotropic state with S2 ——

S4 ——0, one finds

APYz
K/iiPP

.JIP/liFz
,115ii!~XVXI &Xr

, i FP/i &i'i &X
Ii/YEZ~XAV

/sikes. ~A'X
liiii~i Ai"i Xi/

,~f/ltd Wi/i' ~
///NA/'IX. ~ .ZE)Si/'ll I

i'�'u'z
i///)///&8 X Z

./////u. ~z z
/Ylill/X. & ~~

r///i~ay Iz
/////i ~~A~ Z/'

li
(FAN

Xi
Jf7i~~XPY ~

////i~z Ir
//t~ Ypr ~

0. 1

0

2.4

0 0.1 0.2 0.3 0.4 Q. S 0.6 Q. l 0.8 0.9

2. 5

1.5 Q

1.4

1.3

1.2

Notice that g3 and g12 are invariant under the replace-
ment of Q by Q, p2 changes sign, and ili, il2 exchange
their roles, i.e. ,

ili/g' = 1+ S2 (Q —1)
4 f 10 3+—

I
1 ——s, + -s4

i (q —q-')» E
(42)

FIG. 2. Deterinination of the axis ratio Q of N4
(experimental values (taken from [28]) are marked with a
filled Q).
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H H HH HH
H H C C

I I
H C C N C C H

/ N // N /MBBA: c—o —c c—c c—c
/ y /

C C H H H
I

H H

H H HH HH
H H C C

/

/ /
H C C N C C H

I 4 I/ i I234. c o c c N c c
/ y /

C C O H H
/

FIG. 3. Structural formulas
of MBBA and N4 (isomeric
mixture).

�

@2 —g3 —Qs —Io

no =
I
1+ (Q —Q ')

15
gi2=V2=o.

(48)

In order to analyze the dependence of the viscosity co-
efficients of Eqs. (31) with (40) and (41) and of Eqs.
(42)—(46) on the Maier-Saupe order parameter S = S2, a
specie. c form of the functional dependence of S4 on S2 is
needed. As a reasonable guess which guarantees S4 ——0
and S4 ——1 for S2 ——0 and S2 ——1, respectively, the
ansatz

S4 = S,(l —(1 —S,)"), 0 ( v ( 1 (49)

IV. COMPARISON WITH EXPERIMENTS

Prom (42)—(44) we have

1n:= —(ei + n2 + ns)3
1=

~

1+ —(4+S.) (q —q-')
15 (50)

and

is made. The assumption that the orientational distri-
bution is proportional to exp( P2), where the Legen-
dre polynomial depends on the angle between the figure
axis of a molecule and the director, leads to v 0.6.
Such a distribution, e.g. , underlies the Maier-Saupe the-
ory, is motivated by entropy arguments discussed in the
Appendix, and is supported by the results of computer
simulations [20]. As will turn out in the following analy-
sis, the viscosity coeFicients, except for A&2, are not very
sensitive to the choice of the parameter v.

S (q'-q-')
1+ —,'. (4+ S.) (q —Q-')' (51)

Thus we can derive the effective axis ratio Q of a liquid
crystal from its Miesowicz viscosities. With the help of
the nomogram in Fig. 2 the axis ratio of p-methoxy-p'-
n-butylazoxybenzene (N4), a nematic mixture, is found
to be Q = 2.5. Taking this Q value, the agreement of
the theoretical predictions of the modified transformation
model with the measured viscosities is quite remarkable.
For the dependence of S2 on temperature we used Hailer's
equation

P

T*)
with the experimentally determined values [21]

(52a)

TMnBA ——319.2, pMBBA = 0.188,
TN4 ——348.5, pN4 ——0.171 .

(52b)
(52c)

Notice, that the axes ratio Q is—except for the choice
of the parameter v = 0.6 which is not very sensitive
the only Gt parameter of the model. Indeed, an ellipsoid
with this particular axis ratio resembles the shape of a
molecule of N-(4'-methoxybenzylidene)-4-(n butyl) ani-
line (MBBA) or N4 quite well (see Pig. 3, and compare
the space filling model of MBBA in Pig. 4). The shapes
of the molecules of MBBA and the main component of
N4 (a nematic mixture) are very similar. The Miesowicz
viscosities (see Pig. 5) are mostly in8uenced by the Maier-
Saupe order parameter S = S2, the dependence on the
order parameter S4 is comparatively weak. Thus it is in-
structive to look at a quantity like pi~ which according
to Eq. (45) depends on S4 alone. The agreement of the
experimental data with the theoretical prediction is not

a n'v. 4 0.25 0.5
S-,

0.75

FIG. 4. Space 6lling model of MBBA and enclosing ellip-
soid with axis ratio 2.5.

FIG. 5. Miesowicz viscosities of MBBA and N4 (data from
[29,28] using Hailer's equation [21]).
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S2(T) = Sp (1 —T/Tc) (53a)

with

S" = 1.2267 )
F" = 0.2418,

S = 0.9161, E = 0.1392 .
(53b)
(53c)

0.25 0.5

S,

0.75

as good as it was for the Miesowicz viscosities but tak-
ing into account the variance of the data the agreement
seems to be acceptable (see Fig. 6).

Another class of nematic liquid crystals where mea-
surements of all Miesowicz viscosities [22] are available
and a relation between the order parameter S2 and tem-
perature T has been experimentally obtained by using
NMR techniques [23] is the cyanobiphenyls [kCB and
kOCB with k denoting the length of the alkyl (oxy)
chain]. The functional relation used here is given by

FIG. 6. Comparison of qq2 with experimental values

[29,28]. The order parameter S2 is derived from temperature
by the help of Hailer's equation [21].

The nomogram for obtaining axis ratios is shown in
Fig. 7; the comparison of theoretical and experimen-
tal values of relative viscosities is made in Fig. 8. It
can be seen that the effective axis ratio Q is increasing
in the sequence 5OCB—8CB—8OCB—5CB. The difference
in molecular shape is due to the alkyl (oxy) group (cf.
Fig. 9) indicating that an even number of kinks (5OCB,
8CB) in that group leads to a more spherical molecule
than a chain with an odd number of kinks (8OCB, 5CB).
In addition, the greater flexibility of long chains tends
to "smooth out" the difference between the kCB's and
kOCB's whereas short chains have a more distinct influ-
ence on the form of the molecule.

Because an even number of kinks gives the aliphatic
chain the tendency to protrude in a direction perpendic-
ular to the plane of the biphenyl core the diameter of the
molecule is increased at the cost of its length. Contrar-
ily, an odd number of kinks bends the chain back to the
core plane producing more elongated molecules. How-
ever, increasing mobility of the chain will flatten out this
effect. Thus the observed odd-even effect as well as its
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FIG. 7. Determination of axis ratios of A:CB and A, QCB (k = 5 8).
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FIG. 8. Relative Miesowicz viscosities of kCB and kOCB (k = 5, 8); data taken from [22].

CONCLUSIONS

For constrained flow experiments with strongly hin-
dered rotation of the molecular axes and stationary di-

name T [K] structural formula

SCB
4-n-pentyl-4'-cyanobiphenyl

SCB
4-n-octyl-4'-cyanobiphenyl

308.7

313.2

H

y

H

H

5OCB
4-n-pentyloxy-4'-cyanobiphenyl 339 5 0

SOCB
4-n-octyloxy-4'-cyan obiphenyl 353.0

+C

H

H ~C Q

FIG. 9. Cyanobiphenyls; data taken from [22].

decreasing sensitivity with increasing chain length are in
total accordance with the expectation arising from the
molecular structure of those substances.

Close to the transition to a smectic phase the viscosi-
ties rIq and res for 80CB [24] and 8CB [25] show an inter-
section when plotted against temperature. Such a pre-
transitional behavior, of course, is not described by the
present approach.

rector the complete set of viscosity coefBcients could be
calculated. The rotation viscosity coefBcient p~ had to be
replaced by the rotation viscosity tensor p „andthere-
fore this quantity becomes direction dependent. Consid-
ering this particular dependence on the director align-
ment the Miesowicz viscosities are obtained. However,
the constraints mentioned above are too restrictive to
deal with the phenomenon of flow alignment or the mea-
surement of the rotational viscosity. Those experiments
are performed with a "free" flow. The director is sta-
tionary but "&ee:" The director alignment relaxes to a
certain spatial direction but this direction is due to the
flow Beld and it is not prescribed by external fields.

The afBne transformation model for the viscosity co-
efBcients of a totally aligned nematic or nematic dis-
cotic liquid crystal has successfully been applied to the
presented approach. Thus the comparison with exper-
imentally achieved coefBcients is possible. The result
shows a remarkable correspondence of theoretical and
experimental data and conBrms the afBne transforma-
tion model, additional to nonequilibrium molecular dy-
namic (NEMD) numerical results obtained previously
[3,4,6,7]. The fit parameter of the model is the axis ratio
of the molecules which could be determined for MBBA
and N4 in agreement with the shape of these particu-
lar molecules. For the cyanobiphenyls the axis ratios
obtained can be easily understood when the molecular
structure of these substances is taken into account. Thus
they support the modified transformation model on a
basis that should allow for the prediction of relative vis-
cosities from the steric conformation of the molecules.
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The model presented so far can be applied not only
to nematic liquid crystals but also to nematic discotic
ones. Due to a lack of measured viscosities of discotic
liquid crystals the experimental verification of the the-
oretical predictions is still to be done. However, there
are further theoretical results on disklike nematic liquid
crystals [26,27] which support the results obtained in this
paper.
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FIG. 10. Functional dependence of S4 on S2 according to
the principle of maximum entropy together with various 6t
functions.

APPENDIX: FUNCTIONAL RELATION OF S4
AND Sg

n

f=e px) AG, [

i=1
Z.

The Lagrange parameters A; have to be determined &om
the n relations g, = (G;)y, Z denotes the partition func-
tion.

In the spirit of these general observations we want to
establish a relation between S4 and S2. Starting with
S2 ——(P2) the resulting uniaxial orientation distribution
function f with macroscopic director n is given by

Given a set of expectation values g; = (G;) (i
1, . . . , n) it is a common problem of statistical physics
to determine a reasonable distribution function f which
reproduces the g;. According to the principle of maxi-
mum entropy the distribution function which is the most
unprejudiced guess is a function of exponential type:

We obtain

Se(A) = f Pe[u u) exp[Ape[ee u)]d'u,

Se(A) = f Pe[u u) exp[APe[ee u)] d u (A4)

as the parametrized functional relation of S4 and S2. It
should be noted that both S2 and S4 can be expressed
with the help of derivatives of the partition function Z
with respect to A involving the error function. However,
this specific form is not needed here. It is worth men-
tioning that —although based on totally diferent physi-
cal arguments —the Maier-Saupe orientational distribu-
tion function shows the same behavior as the function in
Eq. (A1).

For practical purposes Eqs. (A3) and (A4) are too com-
plicated. As shown in Fig. 10 the relation between S4 and
S2 can be closely approximated in the experimentally rel-
evant interval of S2 [0.4, 0.8] by the fit function

f (n u) = exp[AP2(n u)]/Z,

Z= expAP2 n-u d u.
(Al)

(A2)

S4(S2, v) = S2 [1 —(1 —S2) ]

with v = 0.6.

(A5)
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