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Third law of thermodynamics in the presence of a heat flux
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Following a maximum entropy formalism, we study a one-dimensional crystal under a heat Aux.
We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the spe-
cific heat, and the entropy as functions of the internal energy and the heat Qux, in both the quantum
and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute
temperature and nonequilibrium steady states under high values of the heat Hux are shown, which
point to a possible generalization of the third law in nonequilibrium situations.

PACS number(s): 05.70.Ln, 65.50.+m

I. INTRODUCTION

Planck statistics, i.e., Bose-Einstein statistics with zero
chemical potential, is a standard ingredient in the anal-
ysis of phonons and photons. Einstein's application of
Planck statistics to oscillators in crystals provided the
first theory of specific heats compatible with the third
law of thermodynamics. Planck statistics succesfully de-
scribes equilibrium situations. To obtain nonequilibrium
distribution functions, one usually starts from suitable ki-
netic equations, which are relatively easy to solve when
the heat Qux or the electric current are low, but which are
almost intractable or rather cumbersome for the analysis
of high values of the heat flux.

The aim of this paper is to search for generalizations
of Planck statistics in nonequilibrium situations charac-
terized by a nonvanishing heat flux. In particular, we are
interested in the situation when the heat flux is large.
As we will see, the behavior of the system under high
values of the heat Qux bears some interesting analogies
with the behavior of equilibrium systems at low absolute
temperature. In particular, the heat flux reduces the dis-
order of the system and, therefore, reduces its entropy.
Furthermore, the generalized temperature defined as the
inverse of the derivative of the nonequilibrium entropy
with respect to the energy tends to zero for high heat
fluxes, and so does the specific heat.

Therefore, the analysis of the generalizations of Planck
statistics may be useful, besides its standard academic
interest, to open the question of whether the third law
of thermodynamics could be generalized to deal not only
with equilibrium systems in the low temperature limit,
but also with nonequilibrium steady states under high
values of the heat flux.

Let us finally note that the use of generalized entropies
dependent on the fluxes besides on the classical variables
for the description of nonequilibrium steady states is
standard in recent developments of nonequilibrium ther-
modynamics [1] which, however, are usually restricted to
second-order corrections in the heat Qux. This work may
also be useful in this context, by pointing out generaliza-
tions valid to any order when the heat flux is high; other
examples of developments valid for high heat fluxes can
be found in Refs. [2—5].

The plan of the paper is as follows. In Sec. II, we find
the phonon distribution function in a one-dimensional
crystal crossed by a heat flux using information theory,
and evaluate the Lagrange multipliers in terms of the
internal energy and the heat flux both in the quantum
and the classical limits. Section III analyzes the behavior
of the thermodynamic quantities in situations where the
heat flux takes high values. Section IV is devoted to some
concluding remarks.

II. INFORMATION THEORY AND HEAT PLOW

7r/l dy g m'/l

f hur = ——
~/i 27l 2'

and fixed heat flux

dkf [ki, (2)

dk

g, 27r dk

7r/l

27t ~/)
dkf k;

l denotes the cell size, and 6 the Planck constant 6 di-
vided by 2'.

Therefore, one must And the f(k) functional satisfying

We start by applying the scheme of information theory
[6] to obtain the phonon statistics for a one-dimensional
lattice in which the energy density and the heat flux are
specified. For the sake of simplicity, we will assume the
Debye approximation, i.e., a linear dispersion relation
~ = c~k~ for all the spectrum, with w the phonon fre-
quency, k the wave vector, and e the (constant) sound
speed. This approximation is expected to be exact in
the limit of low temperatures, since then only phonons
of low energy (low wave vector) are excited, and for them
the dispersion relation is approximately linear. For high
temperatures, however, it is only a rough approximation
that, as we will see, provides qualitative good results.

We must thus maximize the entropy density for a boson
gas, namely [7]

/' dI
s = k~ —[(f + 1) ln(f + 1) —f ln f],

/l 2'
with f (k) the phonon distribution function, under the
constraints of fixed energy density,
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the extremal condition

ds —k~Pde —k~pdq = 0, (4)

08
kgP =—

06
and

198
kgp =—

t9Q

By comparison with the equilibrium thermodynamic re-
lation, one can thus identify the generalized temperature,
0 = (k~P) i, dependent not only on the energy density
e but also in the heat flux q; the parameter p has no
analog in equilibrium and must be regarded as a purely
nonequilibrium quantity describing how an increment in
the heat flux modi6es the entropy. The purpose of this
section is to obtain explicit expressions for both param-
eters in terms of the macroscopic variables, e and q.

To do that, we perform the integrals appearing in (2)—
(3) to find

and

hc (r
2K (a+ a j (6)

hc /I+
2vr (a+ a ) (7)

where we have defined the parameters

y~ = a~sr/I = s~ (P + pc),a~ = hc(P + pc),
x

I~ = dx
exp(x) —1 ' (8)

—:herr/t denoting the Debye energy. Equation (6)
expresses that the internal energy at a given "volume"
element is the sum of the energy of the phonons moving
to the right plus the energy of the phonons traveling to
the left; Eq. (7) is interpreted analogously. In the next
subsections, expressions (6) and (7) are evaluated in two
limit cases, namely the quantum and the classical limits.

A. Quantum limit

We will call the quantum limit to the range in which
condition y~ &) 1 is satisfied, as one would get by mak-
ing h ~ oc; in equilibrium it corresponds to the low-
temperature limit. In this range, expressions (6)—(7)
yield, after some direct calculations

P and p standing for the I agrange multipliers assigned,
respectively, to the energy and heat flux constraints. One
finally obtains the following expression for the number of
phonons with wave vector A: at the given macrostate:

1
fo(k; P, p) =

exp(Phc~k~ + phczk) —1

A similar expression can also be obtained without using
a maximum entropy formalism, as an approximation in
pure dielectrics at low temperatures, with P = (k~T)
and p = (k~—T) v/c, k~ being the Boltzmann con-
stant, and v the drift velocity of the phonon gas [4, 8].

The connection between the Lagrange factors and ther-
modynamic quantities becomes apparent after (4), from
which one immediately reads

1 7t- i/'~ 1 1+
2 6h, Qec + q QEc '—

q

1 1 1

2kggT gl + x Ql —x

1

gee+ q Qec —q

(1o)2ck~T Ql + x Ql —x

with T(e)—:(6hce/k&7r) ~, the local-equilibrium tem-
perature, and x = q/ce, the reduced heat Qux; the in-
tegral is solved with the use of formula 3.411-1 of Ref.

In equilibrium (q = 0), one has p = 0 and P
(k~T), so that (5) reduces to the equilibrium Bose-
Einstein distribution. Equation (9) also provides the
equation of state

k' vr'a T2 (11)
3hc

in agreement with the result found by Landsberg and De
Vos for photons in one-dimensional systems [10], where
the corresponding Stefan-Boltzmann law is found to be

2 2 T, with g the energy radiated per unit time
in each extreme of the solid; in order to show it, one sim-

ply realizes that the energy flow at a given point of the
system comes described by @ = 2 —cc, the factor 1/2 ex-
pressing the fact that in a differential volume element of
the unidimensional system one half of the photons travel
in every sense, and the factor 2 coming &om the two
possible polarizations of photons.

Outside equilibrium, we notice that the generalized
temperature only takes real positive values, since the in-
equality ~q~ & ec holds from the definitions of e and q, and
that asymptotically approaches to zero as ~q~

-+ ec, in
contrast to the local-equilibrium temperature T, which
is independent of the heat lux. On the other hand, a
simple inspection of Eq. (10) shows that p has the sign
of —q, thus indicating that an increase in the heat Aux
carries a reduction in the entropy density, as one expects
intuitively.

Finally, it is interesting to And an expression for the
quantum condition out of equilibrium, thus generalizing
the equilibrium low-temperature condition to nonequi-
librium situations. With the help of (9)—(10), condition
y~ &) 1 is equivalent to e+ ~q~/c && hc/l . By taking into
account that ~q~ & ec, it is straightforward to obtain for
the quantum limit the condition

i.e., the energy per particle, c = e/, is much smaller than
the Debye energy.

We could as well have defined the quantum limit so
that y+ or y )& 1, then the quantum limit condition
would read 0 « Trp, with Tri = srp/k~ the Debye tem-
perature, in a stronger analogy with the equilibrium con-
dition; nevertheless, we have preferred the former more
restrictive definition because it allows one to write ex-
plicit expressions for P and p.
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B. Classical limit

On the opposite limit, we define the classical range so
that y~ (( 1; in equilibrium, this corresponds to the high-
temperature limit. In this limit, one can approximate
integrals I~ simply as I~ y~, and (6)—(7) yield

c 1 +
2l ac+ q Ec —q

1 1
E' 1 —x

1 1

2l ac+ q

1 x
E'c 1 —x (14)

In equilibrium, Eq. (13) provides the equipartition of
energy, namely c = k~T, as corresponds to the classical
limit in one dimension. In a nonequilibrium situation,
on the other hand, the generalized temperature can be
written, after (13), as

0 = T(1 —x'), (15)

where T—:E/k~ denotes the local-equilibrium temper-
ature. Therefore, the existence of a heat flux leads to
a reduction in the value of the generalized tempera-
ture. Nevertheless, this generalized temperature cannot
take arbitrarily small values due to the classical (high-
temperature) condition, as we see below, Eq. (17). The
p parameter, on the other hand, turns to be proportional
to —q, showing again that the heat flux makes the en-
tropy decrease, and though it seems to reach very high
values as x tends to 1, the classical limit condition, Eq.
(16), provides an upper limit for it, namely p « (sDc)
In the opposite limit, for small fluxes (T « 1), p becomes
linear in q, as usual in extended irreversible thermody-
namics [1]. In the last section, we will compare these re-
sults with the corresponding expressions given by Miller
and Larson for a linear harmonic chain using Boltzmann
statistics [2].

Finally, our purpose is to express in physical terms
the condition under which the classical limit is attained,
that is to say, the nonequilibrium analog to the equi-
librium high-temperature limit. With the aid of Eqs.
(13)—(14) the classical limit reads, after straightforward
calculations

III. TEMPERATURE, SPECIFIC HEAT, AND
ENTROPY UNDER A HIGH HEAT FLUX

By direct inspection of Eq. ( 9), we have seen in
Sec. II A that as x approximates one the generalized tem-
perature 0 tends to zero. Since the behavior of equilib-
rium systems when T ~ 0 deserves special attention in
equilibrium thermodynamics, it is natural to ask whether
the situation with x ~ 1, leading to 0 ~ 0, should de-
serve also special attention in the analysis of systems un-
der a heat flux. Some of the distinctive features when
T —+ 0 are that S ~ 0 and, as a consequence, the specific
heat C —+ 0. In this section we will study the behavior of
the specific heat and the entropy density when x tends
to one, to see whether C and s tend also to zero in this
case.

As we have seen, when x tends to one we are set in
the quantum range (see also next section). By using Eq.
(9) for the nonequilibrium temperature, one finds for the
heat capacity

06
C(e, g) =—

80

4p!2 (6gc ) ~ (1 2;2)s/2
(18)k&8' q ~ ) (1+x)'~'+ (1 —x)'~'

Note that we have defined the specific heat as C = Be/00
rather than C—:Be/BT The rea. son for this is that, ac-
cording to macroscopic nonequilibrium thermodynamics,
in a nonequilibrium steady state it is 0 rather than T that
is directly measured by a thermometer [12].

From (18) and (9), finally, one realizes that C oc

(1 —x) ~ —+ 0 as x ~ 1. Then we find a third-law-like
behavior for steady nonequilibrium systems in situations
where the heat flux approaches its maximum value.

The next step is to analyze the behavior of the entropy
at high heat fluxes. In order to do so we could simply
integrate the expressions found for P and p. Instead,
we calculate it from the definition itself of the entropy
density, Eq. (1), and afterwards we check that the results
thus obtained coincide with the ones obtained by direct
integration.

Equation (1) is rearranged to give

s(1 —l~l)» s~
s(P, &) =

9+ k~
g(t)dt + g(t) dt, (19)

thus we have that (a) the condition of the classical limit
is stronger than simply s )) sD, and (b) it does not make
sense to study the limit x ~ 1 in the classical limit. A
more elegant expression can be reached by combining (15)
and (16) to find

g(t)—:[f(t) + 1] ln[f (t) + 1] —f (t) ln f (t),
f(t) = [exp(t) —1] (20)

In the quantum limit (y~ )) 1) the integrals appearing
in (19) become pure numbers, with no dependence in P
or p, so that the entropy density reduces to

0 )& TD-
kii ( 1 +
2vr (a+ a (21)

Therefore, one concludes that the classical limit condition
in nonequilibrium situations becomes a mere generaliza-
tion of the equilibrium condition where the generalized
temperature substitutes the equilibrium temperature.

where A = Jo g(t)dt = vr /3, as can be found through
the change of variables x = exp( —t) and the help of for-
mula 4.231-2 of Ref. [9]. By using (9) and (10), one
Anally gets
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s(e, q) = — gee+ q+ Qec —qc 65
1= —s.,(e) [v'1+ x+ v'1 —x],g (22)

s,~
= k~(2s/3s~) being the local-equilibrium entropy.

Then, as x ~ 1, the entropy does not go to zero, in con-
trast to what happens in equilibrium when T ~ 0. This
can be understood microscopically as follows: as the heat
flux grows, the number of phonons moving contrary to
the heat flow decreases, and in the limit x —+ 1 they dis-
appear (see next section), but there still exist phonons of
different modes moving in the sense of the heat flux; this
implies that although the entropy decreases it does not
vanish when the heat flux reaches its maximum value, de-
scribing the disorder inherent to the distribution of the
remaining phonons over the different modes of the spec-
trum that point in the sense of q.

Finally, it is interesting to study the behavior of the
entropy for high heat fluxes in the classical limit. Though
we have seen that this is not correct since the limit x ~ 1
is outside the classical range, it allows one to show some
analogies with respect to what happens in equilibrium.
For the calculation of the entropy in the classical limit,
one must keep the dominant term in the development of
the function g(t) for small t. Some calculations supply
for this dominant term: g(t) —lnt, so that its integral
gives —t(lnt —1) tint, a—nd the entropy density (19)
remains

kg kg
s = — y+ lny+ — y lny

2&G+ 2&G

Finally, with the help of (13)—(14), the latter expression
provides for the entropy per particle, s' = sl, ,

rium Bose-Einstein distributions corresponding, respec-
tively, to phonons moving to the left, with temperature
0 = k~hc(P —pc), and phonons moving to the right,
with temperature 0+ ——k~hc(P + pc). Of course, if the
exact dispersion relation were used instead of the linear
one this picture would not hold.

In this two-temperature picture, the quantum and the
classical limits read simply as 0~ (( TD and 0~ )) TD,
respectively, and the corresponding expressions for these
temperatures are, with the aid of (9)—(10) and (13)—(14),

0~ = T/1+x
in the quantum case, and

0~ = T(1+*)
in the classical one. Then, the temperatures describing
the equilibrium distributions for each family of phonons
depend on the value of the heat flux. In both cases it
is seen that as the heat flux grows, the temperature for
the phonons moving against the heat flow decreases, and
when x —+ 1 it goes to zero, meanwhile the temperature
for the phonons traveling with it increases. This gives a
simple explanation for why the limit x —+ 1 cannot be ad-
dressed classically: in this limit, the number of phonons
in modes with moments pointing against the heat flux is
too low so as to permit the classical limit to apply. An
interesting point would be to And an experiment provid-
ing evidence of the existence of these two temperatures;
this is the aim of future work.

On the other hand, a question that may bear some
theoretical interest is to contrast our one-dimensional ex-
pressions in the quantum limit with the tridimensional
ones, namely [4]

s' = k~ 1n(s/srp) + —ln(1 —x )2
(24)

-3/4
llcc (llcj l c 'lc (g4 —Bc* —4

As expected, the existence of a heat flux makes the en-
tropy decrease. The problem is that when x tends to
one, the entropy diverges, in analogy with the behav-
ior of the classical entropy for an ideal gas as T ~ 0.
Thus one finds, also in the classical limit, some similar-
ities between the behavior at low absolute temperatures
in equilibrium and at high heat fluxes (or low generalized
temperatures).

In summary, one observes that as the heat flux ap-
proaches its maximum value the generalized temperature
and the heat capacity go to zero while the entropy does
not. This could suggest some sort of generalization of
the third law of thermodynamics to nonequilibrium sit-
uations by stating that when 0 ~ 0 the heat capacity
must vanish, thus encompassing the equilibrium and the
nonequilibrium behaviors.

IV. CONCLUDING REMARKS

The study developed in the previous sections can be
regarded in a different way by realizing that, due to the
Debye approximation, the nonequilibrium phonon distri-
bution function, Eq. (5), can be split in two equilib-

4 3 +2 (25)

-3/4
p; cc ('4c) l c l (Q4 —4cc —1—

—1/2
x 4 —3x +2 q;, (26)

with x = Iql/. c.
One observes some analogies between the latter ex-

pressions and our Eqs. (9)—(10), such as the fact that in
both cases the generalized temperature tends to zero as
the heat flux approaches its maximum value, or that p;
keeps the sign of —q, , thus indicating that the heat flux
contributes to a decrease in the entropy. But there also
exist some differences. Aside from a different exponent in
e that is responsible for the T dependence of the Stefan-
Boltzmann law in three dimensions, it is observed that
the reduced heat flux appears in each case differently:
while in the tridimensional case x appears in terms of
the type v 4 —3xz + d, with d a numerical constant, in
one dimension it appears in terms of the form 1 + x, see
Eqs. (9) and (10); obviously, the same happens with the
entropy. Furthermore, similarly as the energy density ap-
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pears with difI'erent exponents in each case, the way in
which the generalized temperature approximates to zero
as x tends to one is also different in each case, namely
8 oc (1 —x) ~ in one dixnension, and 0 oc (1 —x)s~4 in
three dimensions.

Finally, we compare the results obtained from our in-
formation theoretic analysis of heat transport in uni-
dimensional crystals using a quantum statistics for
phonons, and a similar maximum entropy development
given in the past for a linear harmonic chain by using a
classical Boltzmannian statistics for the oscillators.

One expects to recover the results obtained by Miller
and Larson in the classical (high-temperature) limit.
Those are in our notation, for the Lagrange multipli-
ers appearing in the classical distribution function (Eqs.
(29), Ref. [2])

dispersion relation. Miller and Larson obtain the loga-
rithm of the partition function as the integral

m- /2
lnZ = ——

7l Q

+ ln(1 —y cos P)],

dP [2 ln(2P') + 2 ln(sin P)

where y = p'/(NP') and P is an integration variable.
It is easy to show that the linear approximation in the
dispersion relation yields sin P P and cos P 1, so that
integral (31) straightforwardly yields

ln Z = N ln—P + —ln(1 —y )
I 1 2

2

except from an additive constant without interest. One
thus obtains

I 11+x
8' 1 —X

(27) t9lnZ % 1
~P' P'1 —y"

2N x
7 c 1 —x

and for the entropy per particle

s' = lim~ (S/N) = k~ 1+inc+in(1 —x )

(28)

(29)

with S the total entropy of the system. These expres-
sions must be compared with (13), (14), and (24), re-
spectively. In order to accomplish this, one must realize
that one cannot establish a direct connection between
both pairs of Lagrange factors by expecting the quan-
tum distribution to tend towards the classical one in the
high-temperature limit. This is so because phonons, like
photons, have zero chemical potential, so that in no limit
the quantum statistics becomes classical, in contrast to
what happens for electrons, for instance.

They become comparable through the entropy, since
the maximum entropy formalism leads in the classical
case to

Bln Z 1 y
P' 1 —y'

The ratio between (34) and (33) immediately supplies for
the parameter x = q/ce = q/e' = —y, which substituted
in (33) and with the help of the definition of y yields
precisely (13) and (14) for P' and p', instead of (27) and
(28).

The entropy per particle can be obtained classically
also in the Debye approximation by using the expression
(Eq. (37), Ref. [2])

S = k~ (P'U + p'q + ln Z) .

Introduction of (32), and of (13)—(14) for P' and p' into
the latter equation leads, after some direct calculations,
to

dS = kJ3p'dV + k~p'dq, (3O)
s = lim —= kgb 1+1ns'+ —ln(l —z ), (36)

S 1 2

Nmoo ~ 2
U being the total energy of the system. Dividing by the
total length I and comparing with (4), one thus would
expect to find P' = P and p' = pL. The comparison
of (13) and (27) shows similar expressions differing in a
factor 1 + x 2. The product pl, on the other hand,
can be easily rearranged to give ——&, with the help
of the expression for the sound speed in a linear chain
of particles of mass m, namely c = QK/m l, r being the
elastic constant [11], and making K = m = 1 as in Ref.
[2); in this case, one observes a discrepancy in a factor of
2 with respect to (28). Expression (29) for the entropy
also differs from our Eq. (24) by a factor of 1/2. There-
fore, the results obtained through both developments are
similar but not the same.

The origin of this discrepancy relies on the Debye ap-
proximation made at the beginning of our paper, which
amounts to approximate the exact dispersion relation

(2c/l)
~
sin(kl/2)

~
by its linear approximation w

c[k~ [11]. It is not diKcult to repeat the calculations in
[2] using the linear approximation instead of the exact

which aside &om an additive constant coincides with our
expression (24).

As we have seen in this paper, the Debye approxima-
tion allows quite a simple mathematical analysis supply-
ing, aside from a factor of the order of 2, the exact ex-
pressions found from a much more complex calculation.
Therefore, we conclude that the Debye approximation
does not signifIcantly modify the thermodynamics of the
system while it greatly simplifies the mathematics.

The present quantum analysis permits, furthermore,
one to know the precise conditions under which the clas-
sical limit is attained in nonequilibrium situations, a
question that cannot be addressed f'rom the classical ap-
proach. As we have seen in Sec. IIB, this limit is a
generalization of the equilibrium high-temperature range,
namely 0 )) TD. In this nonequilibrium classical limit,
the heat fIux cannot take very high values because then
the generalized temperature goes to zero, so that the
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limit x ~ 1 cannot be taken. This solves the divergence
of the entropy function and other quantities claimed by
Miller and Larson when x tends to one see, for in-
stance, Eqs. (29) or (36). We stress again the similarity
between this divergence in the nonequilibrium entropy
and the one faced at equilibrium for the classical entropy
of an ideal gas, both disappearing when the systems are
treated using quantum mechanics.
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