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Complex Trkalian fields and solutions to Euler's equations for the ideal fiuid
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We consider solutions to the complex Trkalian equation 7'Xc=c, where c is a three-component vec-
tor function with each component in the complex field and may be expressed in the form c=e'~VF, with

g real and F complex. We find that there are precisely two classes of solutions: one where g is a Carte-
sian variable and one where g is the spherical radial coordinate. We consider these Aows to be the sim-

plest of all exact three-dimensional solutions to Euler s equation for the ideal incompressible Quid. Pic-
tures are presented. The approach we use in solving for these classes of solutions to these three-
dimensional vector partial differential equations involves differential geometric techniques: one may em-

ploy the method to generate solutions to other classes of vector partial differential equations.

PACS number(s). 47.20.—k, 47.90.+a, 41.20.—q

I. INTRODUCTION

The Beltrami equation

vX(VXv)=0

c=e'~VF, (1.2)

has received enormous attention in recent years. Reviews
[1—3] note the prominent role that Beltrami fields play in
the theory of exact, closed form solutions to the Euler
and Navier Stokes equations and their relations to the
electromagnetic wave equations. Moreover, Beltrami
fields are related to minimum energy plasma fields and
have therefore garnered much attention from the magne-
tohydrodynamics community [4—7]. In this paper, we
would like to undertake the first steps in a systematic
classification of these vector fields, using a di6'erential
geometric technique which we discuss below.

Any three-component vector function v in A may be
written as the real part of a three-component complex
vector field of the following form:

stability of these solutions, a discussion of boundary con-
ditions is given in Sec. IV.

We completely categorize all solutions to the simul-
taneous set of equations given by (1.2) and (1.4). The two
classes of solutions to this problem are (a) where the func-
tion g in (1.4) is identical to a Cartesian variable (for ex-
ample, z) and the function F is a complex analytical func-
tion of the other two Cartesian variables [see (3.12) and
(b) where g is the spherical radial coordinate r and the
function F is an analytical function of a certain combina-
tion of the spherical angular variables [see (3.19)]. In
both cases F and g each solve Laplace's equation. These
solutions are closely related to the possible forms of
linearly polarized TEM waves [12].

Our method of solution is very particular and we will

employ it in further work. Finding the solution to Eqs.
(1.2) and (1.4) is a first step in an attempt to solve three-
dimensional hydrodynamical problems using potential
methods. The procedure is as follows. The transforma-
tion from the three Cartesian variables to the functions

g, F,F leads naturally to a metric function q, ,

where g is a real function and F is a function from A to
C . Trkalian fields [8] are real vector fields which solve

ds =dx +dx +dx =q dy'dyj (1.5)

VXv=v (1.3)

and therefore satisfy (1.1). We solve the complex version
of the Trkalian equation

V Xc=c (1.4)

where c is also a vector of the form of Eq. (1.2). Notice
that both the real and imaginary parts of c must solve the
Trkalian equation, which is a linear equation. From solu-
tions to the Trkalian equation, one may straightforwardly
derive (nonzero helicity) three-dimensional (in a topologi-
cal sense; see [9]) time-independent solutions to Euler's
equations for the incompressible ideal fiuid [10] and
time-dependent solutions to the incompressible Navier-
Stokes equations [11]. Therefore we consider Eqs. (1.2)
and (1.4) to be the simplest possible three-dimensional hy-
drodynamical equation. Although we do not discuss the

where we have used y& =g, yz =F, and y3 =F. First, the
partial differential equation (PDE) (1.4) may be interpret-
ed as a constraint on the metric tensor: the appropriate
relations among the elements of the metric tensor q," are
found. Next, with this metric one may calculate the Ric-
ci tensor. In dimensions fewer than 4, the Riemannian
curvature tensor and the Ricci tensor are linearly related
to one another (see Ref. [13], for example). Indeed, the
vanishing of the Ricci tensor is both a necessary and
sufficient condition that the coordinate system g, F,F be a
di6'eomorphism of the Cartesian x, ,x2, x3 system. It is
interesting that only in the very last step of the pro-
cedure, one makes the correspondence of the g, F,F sys-
tem with the Cartesian system. That is, the original vec-
tor PDE is solved with respect to the natural coordinates
of the problem, which are not in general the Cartesian
variables.
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In Sec. II we show how the solutions to (1.1) are relat-
ed to solutions to Euler's equations. In Sec. III we com-
pletely characterize the solution to (1.1) by the method
outlined above. Since the method is different, we show
what the method might look like as applied in solving
two-dimensional incompressible, potential Row problems
in Appendix B. Of course, in the latter case, the solu-
tions may be derived straightforwardly by other well
known means; the discussion is included since it isolates
the method particularily well (for some already familiar
problems). The reader is strongly encouraged to read
Appendix 8 before beginning Sec. III.

Section IV discusses what sort of boundary conditions
the complex Trkahan fields may satisfy. Type A fields do
not satisfy natural boundary conditions; however, type B
(singular) fields may have no normal component to a
bounding surface.

Section V discusses how the work presented here
meshes with Bjdrgum's [14] and Bjdrgum and Godal's
[15] work on Beltrami fields. Section VI is a discussion
and conclusion. In ongoing work, we discuss solutions to
other vector PDE's, including linearly polarized trans-
verse electric field I16] and TEM [12] solutions to the
electromagnetic wave equations. The main purpose of
this article is to introduce a potential method capable of
constructing truly three-dimensional vector field solu-
tions to PDE's of mathematical physics.

A glossary of various terms is presented in Table I.

II. HYDRODYNAMICS
AND THE COMPLEX TRKALIAN FIELD

Trkalian fields yield solutions to Euler's equations for
an incompressible inviscid Quid. These latter equations

may be written

Bv Vp+(v V)v=-
Bt p

(2.1)

where the density p=const and V.v=O. A pressure
function may be found (at least locally) if and only if the
vorticity equation is satisfied:

a +VX(g Xv)=0,
at

(2.2)

g=VXv=v . (2.3)

Trkalian fields are divergenceless and obey a linear super-
position principle. Each component of the vector field
satisfies the Helmholtz eigenvalue equation

AU, +U,-=O . (2.4)

In the literature therefore, Trkalian fields are often
represented as a sum over Fourier modes, using wave
vectors with unit norm:

( ak+ik Xa)ie' ', (2.5)

where k ak=0 and k.k=1. It is our contention that the

where /=V Xv. Thus any time-independent vector field
satisfying g'X v=0 is a solution to Euler's incompressible
equations [17,18]. We shall call these fiows Beltrami
fiows (in keeping with Bjdrgum; see Table I). A subset of
these fiows are the Trkalian fields, satisfying g'=A, v,
where A, is a constant, which under suitable scaling and
inversion we can always take to be unity.

Consider therefore the Trkalian Rows which solve the
differential equation

TABLE I. Some elementary fields. Note that the word complex has a di6'erent connotation in its
usage in complex lamellar and complex Laplacian (where we mean "rescaled" or "conformally
equivalent to) than it does in its usage in complex Trkalian. Complex Trkalian describes a vector field
whose imaginary and real parts are both Trkalian.

Di6'erent fields Definitions

Solenoidal
Lamellar (potential, 1D)
Complex lamellar (2D)
Laplacian
Complex Laplacian
Beltrami

Trkalian
Complex Trkalian

V v=O
VXv=0
v.V X v=O
V.v=O, VXv=0
there exists an a such that v/a is Laplacian
V X v =Qv for some function Q

~v X(V X v) =0
VXv=kv for some constant k
complex vector field of the form e'~VF

satisfying Trkal's equation

Dual field

Torsion function 0
Torsion constant k
H

see Appendix A
imaginary part of a complex vector field
see Beltrami above
see Trkalian above
helicity of the vector field;

square root of the Jacobian of the
transformation from Clebsch
to Cartesian coordinates

H' = —2iH
the Jacobian of (g, F,F)= ) Cartesian
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where g is some real function. Equation (3.2) implies that
c=e'~VF for some complex valued F. That is, c is a
zero-helicity field of a very special type. (In general,
c=GVF, where F,G are complex, yields c.VXc=O.)

Substituting the relation c=e'sVF into (3.1) yields

Vg XVF= —iVF,

Vg XVF=+i VF,

(3.3)

(3.4)

1

ab 0
0 0
0 ia' (3.5)

0 EH' 0

with the matrix inverse

1 0 0

q,b= 0 (3.6)

0

This is equivalent to

ds =dg +2e dFdF, (3.7)

if we define e (as yet undetermined) to be 1/iH' The.
nonvanishing components of the metric tensor have been
identified. This completes the first step of the procedure.

At this point we have just calculated the metric tensor.
We must ensure, however, that the various coordinate re-
lations encoded into the metric tensor are consistent with
a fiat (Euclidean) three-dimensional space. We begin
with the line element 3.6 [or (3.7)] and calculate the Ricci
tensor. First

where F is the complex conjugate of F. We wish to find
the components of the tensor q;. =(Bx~/By' )(Bx~/By~),
where we define y, =g, y2 —=F, and y3=—F. First we note
that this tensor and the tensor q'" =—(By'/Bx~)(By "/Bx~)
are matrix inverses. Next, from (3.3), for example, one
immediately notes that VF VF=O. Thus q =0. Simi-
larly we find q =0, q' =q' =0, and q" =1. The last
result comes from taking the inner product of (3.3) and
(3.4) and simplifying. Finally, define H'—:Vy

'
Vy

X Vy, which turns out to be a pure complex entity. As
is always true, we have detq' =(H') . Putting these to-
gether, we may write

tensor R is symmetric; thus we have written down only
the upper triangle in (3.9). Fortunately, there are symbol-
ic manipulation programs available that allow one to cal-
culate the Ricci tensor from the metric tensor in a matter
of moments.

The curvature tensor vanishes if and only if the g, F,F
system is a di6'eomorphism of the Cartesian system. In
three dimensions this condition is satisfied if and only if
the Ricci tensor vanishes [20]. Thus, since J,2=J»=0,
we need

J=lnG(g)+lnM(F, F) . (3.10)

Since Ji+Jii =0, then up to scaling and translation we
have, for conditions A or B, respectively,

G = 1/V'2 or G =g /+2 . (3.11)

e (J i+2J )+2J =0 (3.13)

We substitute J = —
—,'ln2+lng+lnM(F, F) (this ensures

that all the other components of the Ricci tensor vanish)
into (3.7) and (3.15) giving

Conditions A or 8 ensure that all the components of the
Ricci tensor (3.11) vanish except for the (2,3) component.

Case A leads to (lnM)&3=0 [since J& =0 in (3.11)], im-

plying 2J= —ln2+lnW'(F)+In W'(F) for some W, W
which are arbitrary functions of F,F, respectively (the
prime denotes a derivative). Then 2e = W'(F ) W'(F ).
Thus the line element may be written as
ds =dg +d8'd8. Thus we may define x and y by
8'=x+iy so that we identify g with the Cartesian vari-
able z. That is, we may pick axes so that g =z and F is
any complex analytic function of 8 =x+iy. Thus for

Ay ds =dz +dz +dy and

c=e "V[F(x+iy )]=e "F' (l, i, O) . (3.12)

For the simple helical field mentioned in Sec. II, we
would have F(x+iy ) = i(x+—iy ) and c=e "( i, 1,0—).
Curiously it seems to have been Beltrami [21] who first
wrote down that the Trkal equation was solved by the
real part of (3.12); unfortunately this line of thinking has
never been developed thoroughly until this article. Ex-
amples are given in Figs. 1 —3.

For case B we wish the 23 components of the Ricci ten-
sor to vanish:

ds =dg +g [M(F,F)] dFdF, (3.14)1; q k qa a
rkl— ~qkl

dy
(3.8)

Then

R„,=r„,.—r„., +r'„r',.—r',„r,".
—2(Jf+J»)

0

—J13

—e (J„+2J,) —2J33

(3.9)

where the subscripts following commas denote deriva-
tives with respect to g, F, and F, respectively. The Ricci

with

0 lnM

aFBF
(3.15)

As one might expect from the line element (3.14), we can
relate case B to the study of the spherical coordinates.

Equation (3.15) has fascinating properties [22—24]. It
arises in the study of heat propagation movement of plas-
mas and traces its origins back to Emden, Darboux [25],
and Liouville [26] as well. In different contexts, it bears
the names Emden-Fowler, Arrhenius, and Thomas-Fermi
equations. First we note that it is equivalent to the two-
dimensional equation bq' = —e ~ [using M = ( 1/&2)e ~ ].
Second we note that if M(F, F) is a solution to (3.15),
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then
~

A'(F) M( A, A ) is also a solution to (3.15) for any
arbitrary complex analytic function A (F) [or g(F,F) is a
solution implies that ~g( A(F), A (F))+in[ A (F)]
+ln[ A (F)] also is a solution].

Thus introduce 3,3 so that

M = A '(F ) A '(F )/cosh
2

(3.16)

ds =dr + r (d g +sin gdg ) (3.17)

and we recover the spherical coordinate system. Since 3
was a completely arbitrary function of F, then conversely
F is a completely arbitrary function of A. So due to the
definitions of g, P we have

This solves (3.15) for arbitrary complex analytic functions
A, A. That any solution to (3.15) may be expressed in the
form of (3.16) was originally given by Liouville [26] (who
expressed his solution with respect to a variable corre-
sponding to the exponential of the function A). For ex-
ample, setting A =b(lnc+lnF), where b and c are real
constants, yields M=2b/[R [(cR ) +(cR ) ]I, where

=FF. Solutions of this type correspond to the much
discussed radial solutions in liame propagation [22].
On the other hand, setting A = ib(ln—c+lnF) yields
M= 1/[R cosh(argF)], where arg takes the argument of
a complex number.

Next define cosg=tanh[(A + A )/2] and /=i( A
—A ) /2. Then it is not difficult to show that
M dFdF=dg +sin gdg . Thus

p:::t)t

jf::p.

'e'

FIG. 4. A total of 714 vectors are plotted on the surface of
the sphere showing the complex Trkalian Aows for g=r and
F=cos[$+i arc tanh(cosg)]. Here r is fixed to be 0.5. The vec-
tor magnitudes are not drawn to scale. The true vector magni-
tudes are the fourth power of those represented in the figure.
This is to keep the arrows at the poles from dominating the
figure (where the vectors become singularily large).

h =U =
—,'VF VF=F'F',

(3.20)

F,~h„,„~=F[ —arc tanh(cosg ) +i P ] . (3.18) h =U = ,'VF VF=F'F—'/(r sin g),

We should require also that either F be a 2~-periodic
function of P or a (complex) scalar multiple of the identi-
ty function. This ensures that the resulting vector fields
are single valued. Notice that F is annihilated by the
operator B s+i(1/si n)OBQ, which may be used to factor
the angular momentum operator. Thus

lr
c= . [g+ig]F' .

r sinO
(3.19)

A typical case is given in Figs. 4 and 5. Choosing
F(a) =cos( —ia ) and using (3.18) and (3.19) yields

where F' depends on either A, x +iy, or B,—are t ahn(c so)g +i/ In both . cases bF=O, the three-
dimensional Laplacian of F is zero for either class. In

fe ~ teel ggye ~ odette ~ Pe ~ ~ $J ~ ~ ~ ~

~ ~ eo ~ te ~ ~ ~ ~ o ~ ee ~ ~ ~ e ~ ~ ~ te ~ o ~ ~ o ~ ~ ~ e ~ ~
~ ~ ~ ~ ~ e ~ ~ oo ~ ~ ~ ~ ~ e ~ ee ~ ~ eo ~ ~ ~ ~ ~ ~ ~ ee ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e/ ~ ~ ~ ~ ee ~ \ eQ ~ ~ ~ ~ ~ ee ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ O' ~ ~ oe t ~ ~ ~ ~ ~ ~ ~ ~ p ~ ~ ~
~ ~ et ~ ~ o 4 o eeo ~ oP ~ ~ We ~ ~ ~ Tt ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~:. .., , ...:..4.-...&.:.................r. .:,...~....~. ...~ ~ ~ ~ oo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e /o ~ ee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ee o ~ ~ ~ p \ ~ oo ~ ~ ~ ~ ~ ~ ~ ~ te ~ ~ ~ ~ ~ ~ ~ jo ~ eeet ~ ~ ~ eo ~ ~ ~ ~ ~ oe ~ ~ ~ ~
~ ~ ~ e ~ ~ ~ o% ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~

~ ~ ~ ~ eo ~ ~ ~ ~ oe ~ ~ ~ ~ ~ ~ oe ~ ~ ~ e ~ ~ ~ ~ ~ e ~ ~ ~ ~ e ~ o ~ ~ ~

I g[cosr cosP cosg+sinr sing]
rsin 0

+P[cosr sing —sinr cosP cosg] I .

Thus even a very simple function chosen for F may yield
a rather complicated expression for v.

In summary, there are precisely two cases: A, the
Cartesian case (3.12), where the screw direction is in the
direction of a Cartesian variable and F is an analytic
function of the other two Cartesian variables, and 8, the
spherical case (3.19), where the screw direction is in the
radial direction of a spherical coordinate system and F is
an analytic function of the variable [

—arc tanh(cosg)
+i/], with the additional requirement that the resulting
vector field be single valued.

It is straightforward to calculate the helicity for either
case 2 or B. We find, respectively,

FIG. 5. A better look at one of the singularities of the com-
plex Trkalian How of Fig. 4. There are a total of four singulari-
ties. Two singularities lie at the poles (on the z axis) and two
more singularities lie on opposite sides of the sphere (at the
same latitude).
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case A, actually the two-dimensional Laplacian is of
course zero and, in case B, the "angular momentum
part" of the Laplace operator acting on I' is zero.

As a final remark, notice from (3.20) that there are no
oscillations in the helicity (equivalently velocity magni-
tude) in the direction of increasing g (that is, z or r). This
is related to the fact that c is a complex null vector
c.c=O, so that only the cross terms v =0 survive in cal-
culating U .

From (3.20), we notice that nothing precludes that the
helicity should vanish at exceptional points. Note also
that the integrated helicity over any infinite domain of R
(for the complex Trkalian fiows) will always be infinite.
In that sense, these solutions lack a certain natural global
character.

Br Br

Bq, c3qb

R S 0

(5.2)

0 q)—

where R,S, T,M are themselves functions and T may be
found from

T=S /R+ +q, Q

H AHR
(5.3)

(The determinant of the matrix 5.2 is 1/H, where
H =Vq & Vq2 X Vq3 is the Jacobian of the transformation
from the q's to the Cartesian variables. ) One may demon-
strate Eq. (5.2), using the identity

IV. BOUNDARY CONDITIONS
BI

Bq3

Vq, XVq,
Vqi. Vq2 X Vq3

(5.4)

Bjdrgum has shown that in regions free from singulari-
ties, if either v.n=O or vXn=o, where v is a solenoidal
Beltrami field and n is the normal to some bounding sur-
face, it necessarily follows that the vector field v must
vanish identically. We are then able to discuss which
types of boundary conditions the complex Trkalian fields
may obey.

Since the type A complex Trkalian fields (with screw
direction along a Cartesian axis) are solenoidal, they can-
not satisfy the aforementioned natural boundary condi-
tions. The type 8 complex Trkalian fields always have a
singularity interior to any region containing the origin so
that the rigorous result of Bjdrgum does not apply.
Moreover, these fields always have a vanishing com-
ponent in the radial direction, so that one may pick a
boundary (r is a constant) that encloses a simply connect-
ed region in such a way that the vector field lies tangent
to such a surface. However, there is a line singularity
passing through the center of the sphere, leading to an
infinite value of the integrated helicity. In conclusion,
then, we see that no finite amplitude complex Trkalian
field in a simply connected domain may satisfy the physi-
cally interesting boundary conditions v n=O on some
surface. In multiply connected regions, Trkalian fields
satisfying physically interesting boundary conditions may
exist.

which holds for any three functionally unrelated func-
tions q„qz, q3. Using (5.4), the Beltrami equation [Eq.
(5.1)] may be written

Br Br Br Br Br=Q q)
Bq3 Bq3 Bq) Bq) Bq2

(5.5)

Equation (5.2) then follows directly. Bjefrgum, however,
does not ensure that the above metric tensor given by
(5.2) yields a zero curvature tensor. This must be the case
if the q „q2, and q 3 coordinates are to be themselves
functions of Cartesian coordinates, as we argue in our pa-
per.

If one uses the representation given in Eq. (A7)

v= —,'(e 'Vy2+e 'Vy3), (5.6)

iy&——e

l——e
2

2iy )e 'D

t —Iy,—e 'A
2

where y& =q2 is real and y2 and y3 are complex conju-
gates, then Bj@rgum's statement is equivalent to the fol-
lowing. The Beltrami fields are precisely those vector
fields where

l —
~y&—e

2

—2'
&e 'D

V. 8JQRGUM AND GODAL'S %"ORE
ON BELTRAMI FIELDS where

(5.7)

Vq, XVq2
0 =q& Vqz+ Vq3, (5.1)

where 0 is the torsion function. This leads to

In this section, we discuss the work of Bj@rgum and
co-workers and interpret his results in the same frame-
work as ours. In his first long paper on Beltrami fields
[14], Bjdrgum writes that the Beltrami vector fields are
precisely those vector fields which may be written as

1+2 OH
HQR

A+RH
4H

are real functions. Equation (5.7) may be used as a start-
ing point for the Ricci tensor calculation. Given A and
H, there are two functions (say, R and S) that character-
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ize the matrix (5.2). Similarly, two functions characterize
the matrix given by (5.7) (say, R and 2). The function A
is related to S by

3 =5+Rq3 . (5.9)

The determinant of the matrix (5.7) is
[D+P][B(D P)+—a /2]= —1/4H2=1/H'~. This is
because H'' = Vyi. Vy2XVy3 = —2iVq& Vq2XVq3= —2iH, as may be found from calculating v V Xv from
(5.1) and (5.6). To proceed from (5.2) to (5.7), one needs

Br Br
By Byb

Br Br Bq Br Br

By. Bq, Bq, By„"Bq, Bq,

(5.10)

with

zsa

q3
—i Iy 1

2

l

2
—e

0 —,'e

0 —,'e

(5.1 1)

iy& Br —iy
&

Br
e i +ie

By 3 By2

Bl Bl —y, Br Br

By By, By, By
(5.12)

For complex Trkalian fields it is straightforward to
show in that case that one must have 3 =D=O and
8 = 1 (which specifies the torsion function). This matches
the coefficients of e ' and e ' above in Eq. (5.12) or,
equivalently, discards the oscillating terms of the matrix
(5.7). At that point one is left with the matrix described
below Eq. (3.6):

Br Br

By, By

1 0 0

1

iH'
ab

(5.13)

The curvature condition then ensures a complete solu-
tion. In future work we plan to examine less restrictive
cases than the complex Trkalian case and calculate cur-
vature more directly from Eq. (5.7). One might suspect
that the complex Trkalian fields hold a very prominent
place in the theory of the Beltrami fields since they seem
to take the elements of the matrix (5.7), which are most
robust in some sense. As we plan to show in later work,
the complex Trkalian fields may be shown to yield pre-
cisely the linearly polarized TEM solutions [12] of elec-
tromagnetic wave theory.

The above matrix [Z] may be found straightfor-
wardly by using y, =q2, y2=(q3+iq, )e ', and

+ i/2y3=(q3 iq, )e —'. The Beltrami equation in terms of
the y variables then may be written

VI. CONCLUSIONS AND DISCUSSION

In this paper we have introduced a method for con-
structing true three-dimensional vector field solutions to
vector PDE's of mathematical physics. As opposed to
axisyrnmetric Aows, which are the dominant solutions to
Quid mechanical equations listed in texts, true three-
dimensional Aows should have a finite value of helicity
v VXv. It is clear that the Clebsch representation is
then the most convenient: v=fVg+Vh. That is be-
cause nonzero helicity fields may always be expressed in
such a manner [27] and can never be expressed with
fewer than three Clebsch functions. Given the represen-
tation, however, the question remains how to construct
these functions (f,g, h ).

Our approach then is to represent the appropriate vec-
tor field with the appropriate Clebsch functions and then
to construct the relations between the elements of a
metric tensor q; using the original PDE. After having
constructed a metric tensor consistent with the equations
one wishes to solve, one computes the Ricci tensor. If the
Clebsch functions are to be functions of the Cartesian
variables, then (in three dimensions) the Ricci tensor
must necessarily vanish. After solving the partial
difterential equations for the vanishing of the Ricci ten-
sor, one finally searches for the class of transformations
of the metric tensor back to Cartesian coordinates. By
this means, the integrity of the good coordinates —the
Clebsch functions —remains intact.

In particular in this manuscript we have undertaken
steps in a systematic classification of Beltrami [28,29],
and Trkalian fields which are thought to be important
constituents of high Reynolds number Aow fields. For ex-
ample, the so-called Arnold-Beltrami-Childress (Trkali-
an) fiow has been extensively studied [30] particularily for
its chaotic properties [31—34]. Note that, although it is
always possible to write down a formal solution to the
Trkalian equation as in Eq. (2.5) in terms of Fourier
modes, the use of Clebsch functions, which we advocate
here, has many advantages. For example, when one
Fourier decomposes a problem one implicitly assumes
that the Cartesian coordinates are a natural coordinate
system for the problem. As we have discussed above, this
is not necessarily the case.

In this article the analysis proceeds by considering the
Beltrami fields as real parts of complex vector fields and
then considering complex vector fields of a certain type.
Complex vector fields play a prominent role in many
areas of mathematical physics including electromagne-
tism (see Ref. [35]) and minimal surfaces (see Ref. [36) or
[37]). In this paper, we examine complex vector fields,
which satisfy the Trkalian equation (1.3), and may be
written in the form e' VF, with g real and F complex
(that is, we restrict the problem enough in order to give a
complete solution). Both the real and imaginary parts of
such a vector field will then be Trkalian. The two classes
of solutions to the complex Trkalian equation with the
complex vector field of the above form are given in Sec.
III. The class of solutions where v is a two-dimensional
(2D) potential field with a screw direction in a Cartesian
direction has been studied before (Bj&rgum's uniplanar
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Trkalian fiows). The class of solutions where v is a zero
angular momentum field with a screw direction in the
spherical radial direction does not appear in the Beltrami
literature. Examples of both types of fields are presented
in the figures.

Although the Clebsch representation of the vector field
has found fruitful application in fiuid mechanics [38—45],
in thermodynamics, and more generally in variational
principles [46—49], the authors still maintain that this
representation has been underexploited. %'e demonstrate
in this article that the method we have used employing
Clebsch functions has much practical merit in producing
solutions to partial differential equations. The same
method will be used in further articles on Quid mechanics
and wave equations.
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APPENDIX A: VECTOR FIELDS
AND THEIR TOPOLOGICAL DUALS

All the following arguments are local for a region
where the helicity is of constant sign (nonzero).

Proposition 1. Every vector field v may be written as
the real part of a complex vector field of the form

c=e'~V I (Al)

where g is a function with domain % and range %, and F
has domain A and range of the complex numbers.

Proof One knows . that it is always possible to con-
struct the Monge potentials f,g, h so that a vector field v
may be expressed in the decomposition due to Clebsch

v=fVg+Vh . (A2)

Now define

F= (h +if)e—
F—= (h —if )e+'s,

or equivalently

(A3)

(A4)

f= (Fe'g Fe 's), —
2

h = '(Fe'g+Fe 'g)—
2

Now we may write v as

v= ,'(e'~VF+e 'gVF), —

(A5)

(A6)

(A7)

from which Proposition 1 follows.
Proposition 2. The real part of c,v and the imaginary

part of c,w satisfy

VXv+V'g Xw=O,

7 Xw —Tg Xv=0,
vXw&0 .

(Ag)

(A9)

(A10)

We say that any two vector fields that satisfy (AS) —(A10)
for some function g are said to be dual to one another
with respect to g.

Equations (AS) —(A10) are easy to show beginning from

w= —hVg+Vf . (A 1 1)

In particular it may be shown from the above that dual
vector fields satisfy

w. (VXv) =0,
v (VXw)=0,
v (VXv)=w (VXw),

(A12)

(A13)

(A14)

(vXw) (VXv) (wXv). (VXw)
v

(vXw) (vXw) (vXw) (vXw)

v (VXv) vXw =0 .(vXw) (vXw) (A15)

APPENDIX B: THE PROPOSED METHOD
EMPLOYED IN A FAMILIAR PROBLEM

We give a very simple example of the general pro-
cedure we are outlining. Consider the case of incompres-
sible, time-independent, irrotational fiow past an obstacle
in two dimensions. We wish to study a potential function

a stream function g, and a complex potential
W=P+iP Let us try to w. rite a differential element of
length in terms of the functions P and iit. Since P and g
are, respectively, the real and the imaginary part of the
complex potential 8' they satisfy the Cauchy-Riemann

The terms in large parentheses in (A15) constitute a solu-
tion for —Vg from (Ag) and (A9).

A complete classification of vector fields in this fashion
does not seem to be known. For example, one can also
take a vector field in A and write it as the real part of a
zero helicity vector field with domain the complex num-
bers. One can also write a vector field in % as the real
part of a zero helicity vector field with domain the
quaternions. For the dimensions 5 —7, however, no obvi-
ous standard form exists, although clearly these vector
fields may be thought of as the real part of zero helicity
quaternionic fields of a restricted type (the same way that
any real vector field may be thought of as the real part of
a complex vector field satisfying V X c=i Vg X c).

Dual concepts are prevalent in mathematical literature.
Typically one hopes to represent a function (or vector of
functions) as the real part of a complex function with
slightly nicer properties. The complex function uses the
same functions as the real part as building blocks. Thus
one writes a harmonic function as the real part of an ana-
lytic function (which depends on a single variable, but
where this variable belongs to the complex field). Simi-
lanly one writes the panharmonic function as the real
part of a p, regular function (see Ref. [51]).
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relations BPIBx = —8@/By, BP/By =Bg/Bx, or, , more
compactly,

Vg=zXVQ .

Now one may straightforwardly calculate

VP V/=0 .

For shorthand, lety'=P andy =g. Then

(B1)

(B2)

(B3)

l By 1/a 0
0 1/a

The matrix

a 0
0 a

Bx~ Bx~
(B4)glj By' By~

is the matrix inverse of g
' .

The erst step of the calculational procedure is then
complete: for the equations of irrotational, incompressi-
ble liow (Cauchy-Riemann conditions), the appropriate
nonuanishing components of the metric tensor are
identified. We are then left with a line element (or metric
tensor) given by

ds =a (dP +dg ), (B5)

a 0
20 a (B6)

Let 3 =lna. Then

1 im mk gmlB B
I'kl = —g™kl 2 By

l
By

k

~, l ~ik + ~,k ~il ~,k ~1k

Bgkl

By
(B7)

(B8)

where the indices following commas denote derivatives.
Now the Ricci tensor is given by

1 0= —(A „+A ~~)
bc

(B9)

where a =a(P, f). Of course, (Bl) immediately implies
(B5) due to conformality of a complex analytic transfor-
mation; one needs virtually no calculation. In the ap-
proach taken here, liow equations such as (Bl) are inter
preted as geometric constraints (on the metric function)
Note that in his papers Bj@rgum calculated correctly the
nonvanishing components of the metric tensor. He never
ensured, however, that the curvature was zero. Applying
this spirit to the current problem, Bjgrgum would have
halted at this point.

Now we calculate the Ricci tensor given the metric
function (B4):

ds2=dzdz = d 8'd 8',dz dz
(B10)

where z=x+iy, so that (8 IBWBW)ln[(dzI
d W)(dz/d W) ]=0. The above 2 corresponds to
ln(dz /d W).

The actual choice for lna must be determined by the
boundary conditions of an actual two-dimensional Aow
problem. For Row past an obstacle, we wish to map (part
of) the real axis of the variable W=P+ig to the bound-
ary of the obstacle. The upper half plane is then mapped
to the exterior of the obstacle in the upper half plane.
Once a(P, g) is determined, then we may try to calculate
the Cartesian variables by means of the eikonal-like equa-
tions

2
Bx Bx

ay
+

a1i

2 2'2
By By

alai

+ =a (P, g) . (Bll)

There is no new result outlined in the approach above; we
merely demonstrate the method, which we use to con-
struct Clebsch functions in this paper, to a more familiar
problem.

An example of such a 2D Aow is symmetrical Aow past
a unit disk with unit speed far downstream. We need a
function mapping (part of) the real line to the boundary
of a unit disc. This is well known: z=x +iy =e''"' '
= ( W+ +W —4) /2. We then calculate a
=~dz/dW~ =

—,'~1+W/+W —4~ . So ds =a (dP
+dg ), where P, g are the real and imaginary parts of W.

For symmetrical Aow past a plate of width 4 aligned
perpendicular to the Aow along the x direction, we
have z =+W —4 and we calculate a = ~dz/dW~
=(P +g )/')I(P +P 4) +16/ . F—or both the plate
and the disk, there is a singularity in a when /=2 and

Conversely given the function a (where InA is
harmonic in P, P), then one may use (Bl 1) to reconstruct
the boundary. Also note that since the streamlines corre-
spond to contours of constant g, then roughly the func-
tion g plays the role of an energy for a one degree of free-
dom Hamiltonian system, whereas the function P plays
the role of a phase (or time) variable.

As is well known, the harmonic functions are precisely
those functions which serve as nice coordinates of or-
thogonal coordinate systems in two dimensions. They
are the "isothermal parameters" [36] of the plane. In a
similar sense, the (Clebsch) functions we solve for in this
paper are also the good coordinates for the problem at
hand: the building blocks of the complex Trkalian Oows.

Now we may express the functions p and 1ij in terms of
the Cartesian variables if and only if the Ricci tensor van-
ishes identically. Thus we need the function lna to be
harmonic with respect to the functions P and P. Actually
this is quite obvious since
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