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Statistical properties of the heat transport in a model of rotating Benard convection
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Using a previously devised model equation [Z. Phys. B 92, 243 (1993)],we study pattern formation in
rotating Benard convection. We focus on the statistical properties of the heat transport in the regime
where the roll solutions exhibit a Kiippers-Lortz type instability. Due to this instability, spatially disor-
dered patterns emerge. For these patterns we derive a stochastic differential equation for a quantity re-
lated to the heat transport. The corresponding stationary probability distribution accurately approxi-
mates the one obtained from a numerical evaluation of the model equation.

PACS number(s): 47.27.Te, 47.20.—k, 47.27.Cn

I. INTRODUCTION

One of the most extensively studied systems in the field
of pattern formation in nonequilibrium systems is
Rayleigh-Benard thermal convection in a Auid layer heat-
ed from below. However, many geophysical and astro-
physical convection problems combine thermally induced
buoyancy as well as coriolis forces induced by rotation.
Therefore Rayleigh-Benard convection in Auid layers ro-
tating about a vertical axis is a hydrodynamical system of
significant importance. Recently, it is under investigation
due to the existence of interesting nonvariational aspects
of pattern formation as a result of the Kuppers-Lortz in-
stability [1]. Above a critical rotation rate, convection
rolls lose their stability with respect to rolls inclined at an
angle of about 60' in the sense of rotation. The new rolls
undergo the same instability, so that there is no stable
steady-state pattern. As a result, spatially disordered pat-
terns arise already close to the onset of convection.

The patterns generated by the Kiipper-Lortz instability
have been theoretically described by Busse and Heikes [2]
using amplitude equations for three rolls including an an-
gle of 60'. This model contains an attracting heteroclinic
cycle connecting three fixed points corresponding to the
three different roll solutions. Recently, Tu and Cross [3]
have performed numerical investigations of an extension
of these amplitude equations, where a spatial variation of
the amplitudes has been introduced. Since the patterns
that are found in experiments consist of rolls with more
than three different directions, we have focused on a
theoretical description using rotational invariant model
equations, which are extensions of the Swift-Hohenberg
equation [4].

At large rotation rates, one observes disordered pat-
terns consisting of patches of differently orientated con-
vection rolls separately showing the behavior characteris-
tic of the Kuppers-Lortz instability [2]. Similar types of
patterns can be calculated by the model equation devised
in [5]. It is evident that these disordered patterns need a
statistical description. The purpose of the present paper
is to develop, starting from our model equation (1), a sta-
tistical theory for the total heat transport across the lay-
er. The heat transport is usually expressed in terms of

the Nusselt number. The Nusselt number is a spatial
average. By applying mean-field-type arguments to the
evolution equation of a quantity that is directly related to
the Nusselt number, we shall derive a nonlinear stochas-
tic differential equation for this quantity. We show that
the distribution function obtained from the correspond-
ing Fokker-Planck equation accurately fits the one calcu-
lated from the direct numerical evaluation of the model
equation. The paper is organized as follows. In Sec. II
we specify the model equation, the expression of the
Nusselt number, and consider the various instabilities of
the family of roll solutions. Then we describe some pat-
tern forming processes in circular geometries. Section III
is devoted to an analysis of the heat transport in the
Kuppers-Lortz unstable regime.

The ai'.i of the present paper is the statistical treatment
of pattern generated by the evolution equation (1).
Therefore, we do not consider the quantitative compar-
ison between our theoretical results and experiments.
Rather, we want tc point out that a similar statistical
analysis can be applied to experimentally obtained data of
the Nusselt number.

II. MODEL EQUATION

Close to instability, pattern formation in a nonequili-
brium system can be described by defining a suitable or-
der parameter and deriving the corresponding order pa-
rameter equation, which governs its temporal evolution
[6,7]. Since the nonlinear terms of this order parameter
equation turn out to be rather complicated, a model
equation has been devised that contains the main in-
gredients of the pattern forming process in rotating
Benard convection [5,8,9]:

P(x, t) =L ( b, )g(x, t)+ 2/, (x, t)b g(x, t)

+V/(x, t) Vg, (x, t)

+Tage, [Vg( t)xX VQ, ( t)x],

g, (x, t)= [Vg(x, t) ] —P(x, t)b f(x, t),
L(b, ) =E—(1+6,)
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The first control parameter labeled with c. denotes the re-
duced Rayleigh number E=(R —R, )/R, . The second
control parameter Ta is called the Taylor number, which
is proportional to the rotation frequency 0:

2Ad

where d is the thickness of the Quid layer and v is the ki-
nematic viscosity. The proportionality parameter P de-
pends on the vertical boundary conditions of the system;
in the case of stress-free boundary conditions one gets

1 6k'(vr'+ k')'z~'+z7r'+ k,' 47r'(Ta)'+ (4~')'

where k, describes the critical wave number. We refer
the reader to [5] for details.

In general, a derivation of the order parameter equa-
tion from the basic equations leads to nonlinear terms,
which turn out to be nonlocal in space. However, for the
purposes of the present paper, it will be sufficient to use
Eq. (1), which stems from a suitable approximation of
these nonlocal nonlinear interaction terms. Here, as ex-
plained in [5], we consider stress-free and ideally heat
conductive boundary conditions.

The order parameter g(x, r) describes the contribution
of the unstable modes to the temperature field in a hor-
izontal plane inside the Quid layer. Using the
simplifications leading from the order parameter equation
to the model equation [5], the deviation of the tempera-
ture field from the linear temperature profile of the purely
heat conductive state is given by

8(r, t) =1(j(x,t)sin
d

+g, (x, t)sin
2&z

d

The model equation (1) has the following family of roll
solutions:

g&(x, t) =22 (k)sin(kx +go),

z(kz) e —(1—k )

8k'

These roll solutions become unstable due to two types of
linear instabilities. Long scale instabilities modulate the
direction and the wavelength of the rolls on a spatial
scale that is large compared to the thickness of the rolls.
The other kind of instability is a cross roll instability by
which rolls become unstable with respect to differently
orientated rolls. The occurrence of the Kiipper-Lortz in-
stability in a rotating system with high Prandtl number
arises if all roll solutions are unstable with respect to this
cross roll instability.

The stability analysis for the roll solutions of the basic
hydrodynamic equations and arbitrary Prandtl numbers
has been performed by Clever and Busse [10]. For a de-
tailed stability analysis of the model equation (1) we refer
the reader to [5]. Figure 1 shows the resulting stability
diagrams for different Taylor numbers. The shaded re-
gions denote the existence of stable roll solutions. These
regions shrink to zero if the Taylor number is increased
above the critical one (PTa, =2&2).

An experimentally accessible quantity is the total heat
transport, which is represented in a dimensionless form
by the Nusselt number Nu [11]. This number is defined
as the ratio of the total heat Aux and the conductive heat
Aux [12]
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(total heat Aux in convective regime)Nu=
(heat Aux in conductive regime)

The brackets ( ), z denote the mean value in the hor-
izontal plane at z =h. The temperature T(r, t) is given
by the linear temperature profile of the conductive state
and the deviation O(r, t):

T(r, t)=T, 0 Pz+I3—de(r, t) .

Using the above representation of 8(r, t) (4) we obtain the
following expression for the Nusselt number:

f d xP, ( xt)
Nu= 1 —2~ (8)

A straight roll pattern with a wave vector k has a Nusselt
number Nu(k)=1+2mk ~P~ . The integration of Eq. (1)
leads to a time signal of the Nusselt number (8). In the
following we shall focus on the dynamical as well as the
statistical properties of this number.

III. PATTERN FORMATION IN A CIRCULAR REGION

The present section aims at presenting patterns that
can be calculated by the model equation (1) in a circular
vessel in order to show that the main characteristics of
the experimentally obtained features [11]are contained in
the evolution equation (1). Thereby, the following bound-
ary conditions have been used:

P(x, t)sv=d, n Vg(x, t)&~=0 .

The control parameter d parametrizes heating at the la-
teral walls; d=O represents a rigid horizontal boundary
with vanishing sidewall forcing. In this case, the convec-
tive rolls tend to align perpendicularly to the boundary.

For d=O the system already exhibits a complex tem-
poral behavior at small rotation rates below the
Kuppers-Lortz instability (see Fig. 2). This time depen-
dence is due to defects moving along the circular boun-
daries. Figure 2 shows a pattern in a container with as-
pect ratio comparable to an experiment by Zhong, Ecke,
and Steinberg [13]. The pattern at t=180 is character-
ized by the existence of three foci. A defect moves in the
direction opposite to the externally applied rotation. Fig-
ure 3 shows the temporal evolution of the pattern in a
higher aspect ratio system. Here, defects located close to
the boundary are driven to move in the sense of the exter-
nally applied rotation leading to an s-shaped deformation
of the straight roll pattern inside the container. On the
other hand, defects nucleated at the edge between the de-
fect regions and the bulk pattern of nearly parallel rolls
move in the sense opposite to the external rotation. The
motion of the defects as well as the bending of the rolls
lead to a slight decrease of the average heat transport.
When the moving defect is absorbed in the other defect
region a sudden increase of the Nusselt number is ob-
served and a similar process starts again. However, the
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FIG. 2. Temporal evolution
of convection patterns in a low
aspect ratio system for a small
rotation rate. The pattern is
formed by three foci that are lo-
cated at the lateral boundary.
The pattern is drifting very slow-
ly.
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temporal evolution is not time periodic.
The behavior of the patterns above the Kuppers-Lortz

instability, i.e., the reorientation of the direction of the
convective rolls, is dominated by front propagation. As
already mentioned, the defect regions in the circular con-
tainer induce a bending of the rolls leading to an s-shaped
roll pattern. This s-shaped pattern can be viewed as
three di6'erently oriented roll patches separated by two
domain walls. These domain walls start to move, eventu-
ally annihilating each other. A reorientation of the roll
orientation has taken place. The bending of the rolls and
the motion of the domain walls are connected with a de-
crease of the Nusselt number where the annihilation of
the domain walls lead to a sudden increase of the heat

transport. Due to the spatial complexity of the patterns,
this process occurs irregularly in time.

A weak sidewall forcing d&0 leads to convection rolls
aligned parallel to the circular boundary. This can lead
to concentric as well as spiral patterns below the critical
Taylor number tsee Fig. 4(a)]. As an example, we de-
scribe the formation of a spiral pattern. Starting from a
random pattern, we obtain a structure where rolls are, in
some regions, perpendicular or parallel to the lateral
wa11. At the boundaries between parallel and perpendicu-
lar oriented rolls, domain walls form, penetrating nearly
to the center of the cell. Two such domain walls have
formed in the upper region of the pattern at t =11000.
These domain walls start to move in opposite directions,
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FIG. 4. (a) Sequence of the
temporal evolution of the order
parameter field in the case of la-
teral forcing d=0. 1 and a rota-
tion rate below the critical value
for the Kuppers-Lortz instability
Ta, =2.8 (Ta=1.5, v=0. 1). (b)
Same as (a) but with a Taylor
number above the critical one
(Ta =3.0, c=0.1). Here the
spiral pattern is formed. How-
ever, it is destroyed by the
Kuppers-Lortz instability but
reappears again. In the course
of time, a continuous emergence
and destruction of the spiral pat-
tern is observed.
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We have investigated the dynamics of these patterns by
looking at the temporal evolution of the Nusselt number.
The time signal of the Nusselt number shows plateaus
that are related to different possible excited modes in the

periodic vessel. These excited modes are straight convec-
tive rolls with different wavelength. The ordered roll pat-
tern lasts for up to some hundred vertical diffusion times,
whereas the reorientation is completed after 10—50 verti-
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cal diffusion times. This leads to very sharp spikes in the
Nusselt number. The time signal is rather intermittent.
The time between two successive reorientations is a ran-
dom quantity.

In order to check whether the different plateaus are re-
lated with roll patterns with different wavelength, we
have calculated some kind of spatial mean value of the
square of the wave vector k according to

f dxg(x, t)b, g(x, t)
(1")=— (10)f dxt( (x, t)

The strong correlation between the jumps in the mean
wave number and the spikes in the Nusselt-number sig-
nal, related to the Kuppers-Lortz change of direction, is
evident (see Fig. 8).

Thus the following picture emerges. The model equa-
tion in a periodic region allows for various roll solutions
differing in wavelength and orientation. All these fixed
points are unstable and the system jumps from fixed point
to fixed point in the course of time.

For higher Taylor numbers, the patterns break up into
small regions consisting of convective rolls of different
orientations [see Fig. 5(b)]. Each region shows the reori-
entation of the roll direction characteristic of the
Kuppers-Lortz instability. However, the shape of the re-
gions vary by front propagation [see Fig. 5(b)]. By an in-
crease of the Taylor number, the size of the patches of
equal roll orientation shrinks. The patterns become rath-
er cellular, exhibiting regions with rectangular or even
hexagonal cells. The spatial disorganization of the pat-
terns may be seen in a quantitative fashion by calculating
the spatial correlation function

C( ~x
—x'~ ) = lim —f dt g(x, t)P(x', t) .

T

T~oo T 0

This function exhibits a rapid decay for high Taylor num-

(The second expression can be obtained by a partial in-
tegration. ) Using the model equation (1), we can derive
the following evolution equation:

b(t)= — fdxg(x, t)bg(x, t)

=2mb(t)+4 f bg(1 b+. ) gdx
1

—4 f Q, (bg) dx+4 f P, AVE. VPdx

—4Ta f b,ge3 [V/XV/, ]dx .
1

(13)

bers (see Fig. 6). the correlation length decreases with in-
creasing Taylor number.

The transition to these irregular patterns is also evi-
dent from the temporal behavior of the Nusselt number.
The intermittent behavior ceases to exist. At high Taylor
numbers, the Nusselt number fluctuates around a mean
value.

V. STATISTICAL PROPERTIES
OF THE "NUSSELT NUMBER"

The Nusselt number characterizing the global heat
transport across the Quid layer is a quantity of consider-
able theoretical as well as practical interest. In the case
of the disordered patterns arising at high Taylor numbers
(Ta ) 2 Ta, ), it is a fluctuating quantity.

In order to use the following theory, the aspect ratio of
the system has to be bigger than the corresponding spa-
tial correlation length to ensure that there are patches of
different orientated rolls. Therefore it is tempting to con-
sider its statistical properties.

The Nusselt number is related to the following quanti-
ty (8):

b = f dxP, (x, t)= —2 fdxg(x, t)hg(x, t) . (12)
1 I
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Then we can rewrite the integrals as follows

f bge3. [V/XV/, ]dx= f g, e3 [VbfXV (15)

For the followin ig, it is important to remind
that for a roll soluti (5) hu ion ) the field ~~~ (x t i

(1) F h o f 1ore, or rolls with wave num
th t t (1+6)g
f 1 f 11

is small. Since the at

form the approximations
o ro s, it is therefore oss'e possible to per-

f g, dx=b

1
Q, [&Q( 1+& )g Vg V(—1+b )t( d x

1=b [bg(1+5, )]trj Vg V(1—+b, )Pdx

=2b 6 1+6, dx,

1 1
g, e3 [VAQXVQ]dx=b f e3 [VbpXV dx=O

f g, [(b,g)' Vb—,g Vg]d x

=f,dx+ f g, [bg(hP+g) Vg V—(bg+f)]dx,
(14)

We may justify these approximations usi
argument whi h, w ic is essentially a mean-

ma ions using the following

ment. To this end
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g

b =2eb 4b2+—bF (t)+f t (17)
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'
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follows:
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1F t =8 bg(x, t)(1+6,)f(x, t)dx,

1f (t) =4 f b,g(—x, t)(1+6)'g( t)d
(18)
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In order to check whether our approximations leading
to the stochastic equation for the quantity b are justified,
we have calculated the time series of b (t) as well as F(t)
and f (t) from the numerical treatment of the model
equation. Then we can compare the time series of b(t)
obtained from the integration of the stochastic equation
(17) inserting the calculated time series of F(t) and f (t)
Figure 8 shows a comparison of both indicating the accu-
racy of the above approximations.

Furthermore, the temporal correlations of the patterns
decay rapidly and we can consider the white noise limit
of Eq. (17). To this end, we assume the force F(t) F, as-
well as f (t) f to—be Gaussian white noise (cf. Fig. 7).
Both quantities are assumed to have a mean value and to

be 5 correlated in time,

(F(t)) =F, (f (t)) =f,
( [F( T)—F ][F( t ') —F ] ) =Q~~5( t t ')—,

([F(t)—f ][f(t') —f ])=QFf &(t —t'),
( [f(t) —f ][f(t ') —f ] &

=Qff &(t —t ') .

(19)

Thus the dynamical system for the quantity b is a sto-
chastic system that has been studied in the context of an
instability in the presence of multiplicative and additive
noise [15]. The stochastic differential equation then con-
tains the three unknown quantities Q~~, QFf, Qff. How-
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FIG. 8. Time signal of the shifted Nusselt number Nu=Nu —1 (thick line) compared to the one obtained from the integration of
Eq. (17) (thin line). The lower signal shows the mean value (k ) as defined in Eq. (8). (a) Ta=5.0, e=0.2, aspect ratio I =6. The
spatial correlation length exceeds the periodicity length of the fluid layer. Therefore, one observes a rather coherent behavior. The
Nusselt number shows an intermittent temporal behavior. The different plateau values are related to a shift in the average absolute
value of the wave vector. The corresponding patterns are roll patterns differing in the wavelength of the rolls. (b) Same as (a) but
with aspect ratio I =9. {c) Same as {a) but with aspect ratio I =13. (d) Ta=8.0, v=0. 1, I =9. The Nusselt number fluctuates
around a certain mean value.
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ever, since we have evaluated the correlation functions
(19) from the numerical integration of the model equa-
tion, we can determine the noise strength Qff in the fol-
lowing way (similar expressions hold for QFF, QFf )

Qff =2f dt'([f (t) —f ][f(t') f ]) . — (20)

Since we want to interpret the quantities as Gaussian
white noise forces, we can determine the distribution of
the quantity b by solving the corresponding Fokker-
Planck equation (Fig. 9). Therefore we introduce a devia-
tion b (t) from the temporal mean value bz that is
equivalent with the stationary solution of Eq. (17) with
vanishing noise strengths QF~, QFf Qff ~0,

2e+F++(2e+F) +16f 21

10 5 . ~T
~
MT~ T ( T T T T

t
M, ~T | i i t

t
l 1 T

FIG. 9. Temporal auto- and cross-correlation functions of
the lluctuating force versus ~ ((F(t+T )F(t)), (f(t+r)f (t) 1,

and (F(t +r)f (t)) ). F(t) is the multiplicative and f (t) the ad-
ditive noise term.

FIG. 11. Histograms of Nu —1 (solid line) and b (dotted line)
compared to the probability function (24 bold line) for the noise
strength parameters QFF, Q+1, and Q1f, which have been calcu-
lated from the corresponding correlation functions (cf. Fig. 9).

In an analogous way, we introduce noise forces
F(t)=F(t) Fand f—(t)=f (t) f to obtain —from (17) the
following stochastic difFerential equation:

b(t)= yb(t) 4b—(t)+b—(t)F(t)+G(t),

y=+(2e+F) +16f
G(t)=boF(t)+f(t) .

(22)

a. ) 2x10

Z. OOI

1.50I.
1.00'
a.5oI

In the following we shall skip the tilde. But we have to
keep in mind that now all time dependent quantities have
a vanishing mean value (Fig. 10).

It is convenient to change from the Langevin equation
to the Fokker-Planck description. Using the Stratono-
vich interpretation, the following Fokker-Planck equa-
tion for the distribution function p (b, t) arises:

0.75 0.25 0.50 0.75 1.00 x10

0.50
2.00 . .

1.50.
1.00
0.50

100 200 300 400 500 600 700 x10

w1

2.50
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a.5o

0.50 0.75 1.00 1.25 x10

0.25 0.50 0.75 1.00 x10

FIG. 10. Comparison of the temporal autocorrelations from
the signal of the shifted Nusselt number Nu( t) —1 (solid
line)and b (t) [dotted line, from Eq. (17)] for the control parame-
ters Ta=15, a=0.1.

FIG. 12. Histograms of Nu —1 (thin line) compared to the
probability function (30) for different Taylor numbers. (a)
Ta = 13, (b) Ta = 14, (c) Ta = 15.
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p(b, t)= —
[ y—b —4b + ,'Q—FFb+—,'QFG jp(b, t)a QFF 4m+ 2F +n —1

QFF
(28)

QFF+ b p(b, t)+QFG bp(b, t)"ab'
a2

Bb2
(23)

Since the distribution function depends on two parame-
ters e=e+ —,'F, QFF, the knowledge of two of these mo-

ments determines the distribution function uniquely:

The stationary solution of the Fokker-Planck equation
can be calculated in a straightforward manner by per-
forming the following integral:

4e+2F=8(b ), QFF=8
(b'& —(b)'

(29)

(2Y+ QFF )b QFG
ln[p(b)]= db'

QFFb +2QFG b +QGG

where

(G,F&=(b F+f,F)=b (FF)+(fF),
(G, G) =(boF+f, boF+f )

=bo(FF)+2bo(f F)+(ff ),
QFG bOQFF+ QFf

QGG b OQFF b 0QFf Qff

(25)

p(b, t)= — [(2e+F)b 4b + ,'QF—Fb]jp(b, t)—

The integral (24) can be integrated analytically. Its main
contribution is an exponential function exp( —8/QFFb)
times a polynomial in b. Figure 11 shows the distribution
function p(b) calculated from the Fokker-Planck equa-
tion and the distribution function p (b) as obtained from
the direct numerical evaluation of our model equation (1).

If we consider the case of large Taylor numbers
Ta) 3Ta„it turns out that the quantities QFf Qff as
well as f become much smaller as compared to QFF.
Therefore, we obtain the following Fokker-Planck equa-
tion:

Therefore, an experimentalist could calculate the first two
moments ( b ) and ( b ) of the time series of b; the distri-
bution function should be fitted very well by

p (b) =N exp b [( b) l((b ) —(b) )
—1](b)b

(b'& —(b)'

f (b)=N exp — (b bo)—1
0

(31)

1 2e0—
QFF

—2
4 1

QFF

(30)

Figure 12 shows a comparison of the distribution func-
tion of the Nusselt number and (30) in the numerical ex-
periment with increasing Taylor number; the distribution
approaches a Gaussian for increasing Taylor number (cf.
Fig. 11). In the limiting case E/QFF ~ca, the distribu-
tion function approaches a Gaussian:

02

QQ2
(26)

p(b)=N exp
[(4e+2F/QI;I; ) —1]

QFF
(27)

The moments ( b" ) can be easily calculated:

(bn)
8

4e+ 2F
n +n

QFF

4@+2I
QFF

Then the corresponding stationary distribution function
is given by

Then the quantity b obeys Gaussian statistics as it should
be due to the central limit theorem. The Nusselt number
is essentially a sum over statistically independent contri-
butions of the quantity g, (x, t) if the spatial correlations
of the field P(x, t) decay rapidly.

Summarizing, we have shown for our model equation
that the global heat transport, i.e., the Nusselt number, in
the case of disordered patterns arising due to a Kuppers-
Lortz type instability, can be described by a stochastic
dynamical system, and we were able to determine the sta-
tionary probability distribution.
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