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Chaos and low-order corrections to classical mechanics or geometrical optics

Bala Sundaram*
Department of Physics and Center for Theoretical Physics, Tezas ASM University, College Station, Tezas 778/8-g2g2

P. W. Milonni
Theoretical Division, los Alamos National Laboratory, Los Alamos, Negro Mezico 875/5

(Received 12 July 1994)

Based on simple first-order quantum corrections to classical equations of motion, which we show
to be closely related to Gaussian wave-packet dynamics (GWD) and a time-dependent variational
principle (TDVP), we deduce that quantum corrections to classical dynamics should typically be-
come most pronounced when the classical system becomes chaotic. The time duration over which
classical dynamics, GWD, or TDVP may provide good approximations is much shorter when the
classical dynamics are chaotic. However, for certain situations involving very short laser pulses,
these approximations can be very accurate. The same concepts are applicable to paraxial wave
optics, which may offer simpler experimental studies of "quantum chaos": the distinction between
classical and "quantum" chaos is in large part the distinction between ray versus wave behavior.

PACS number(s): 05.45.+b, 03.65.Bz

I. INTRODUCTION

In this paper we employ an approximation to Heisen-
berg equations of motion to deduce conditions under
which classical molecular dynamics can provide an ac-
curate description of time-dependent quantum dynamics.
Our approach involves a first-order cumulant approxima-
tion to the Heisenberg equations of motion, and is shown
to give expectation values identical to those obtained by
the method of Gaussian wave-packet dynamics (GWD)
[1] for time-dependent problems. We deduce that all
such methods equivalent to low-order cumulant expan-
sions, including the simplest (zero-order) approximation
of classical dynamics, are applicable over time scales that
become shorter as the degree of sensitivity to initial con-
ditions in the classical theory increases. Similar remarks
apply to methods based on a time-dependent variational
principle (TDVP) [2,3].

Cumulant expansions typically replace an infinite-
dimensional system of equations by a finite number of
equations, the zeroth-order approximation representing
the classical dynamics and, as we shall see, the first-
order approximation being closely related to the method
of Gaussian wave-packet dynamics. Such expansions can
also be employed in paraxial optics to obtain diffractive
corrections to ray propagation, as we show in this pa-
per. In fact, one purpose of this paper is to emphasize
the close relation between classical versus quantum chaos
and ray versus wave chaos. For instance, diffractive cor-
rections to ray propagation can be expected to be most
pronounced when the ray propagation is chaotic, just as
quantum corrections to classical dynamics are typically
most pronounced when the classical system is chaotic.

*Present address: Physics Department, University of Texas,
Austin, Texas 78712.

Wave effects can be expected to suppress the chaos of
ray propagation, just as quantum effects act to suppress
classically chaotic time evolution.

In the following section our approach is described for
the simplest class of system of interest to us that can
exhibit chaos, namely, a one-dimensional nonlinear os-
cillator subject to a time-dependent force. We review a
method. for computing the maximal Lyapunov exponent
for the classical system and compare the equations to
be solved by this method to a first-order cumulant ex-
pansion of the Heisenberg equations of motion for the
quantum system. We deduce in this way an important
result obtained in a difFerent way by Herman and Za-
slavsky [4]: classical dynamics should typically provide
an accurate approximation over shorter time scales when
the corresponding classical system is chaotic than when
it is regular, and in the classically chaotic regime the
"crossover time" is on the order of the inverse of the
maximal Lyapunov exponent. That is, the classical dy-
namics alone provide information as to the importance
of quantum corrections. This is analogous to van Kam-
pen's conclusion, based on a cumulant expansion of the
master equation, that "the macroscopic stability ... de-
termines whether or not the average of the [microscopic
fluctuations] grows with time" [5].

In Secs. III and IV we show the connection of our ap-
proach to GWD and TDVP, respectively. The correlation
between the transition to chaos in the classical dynam-
ics and the breakdown of methods involving truncations
in the cumulant equations or decorrelation is made ex-
plicit in Sec. V through a novel local stability analysis.
Section VI considers three examples and contrasts the
quantum and classical dynamics with the dynamics ob-
tained when only the lowest-order quantum corrections
are retained. Section VII describes the analogy between
these considerations and paraxial optics, and our conclu-
sions are summarized and discussed further in the final
section.
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II. QUANTUM CORRECTIONS AND THE
MAXIMAL LYAPUNOV EXPONENT

We begin with a classical system described by the
Hamiltonian

~g) over which the expectation values (X(t)) and (P(t))
are taken is arbitrary, but the operators bX and bP are
state dependent according to the definition (5). From
the Heisenberg equations of motion X = P/m and P =
—V'(X) + F(t) we have

II = + V(z) —zF(t),
2m

and review, based on this example, a method for com-
puting the largest Lyapunov exponent of a system [6]. In
the Hamilton equations z = p/m and p = —V'(z) + F(t)
we replace z(t) and p(t) by z(t) + e(t) and. p(t) + g(t)
and retain terms only up to first order in the perturba-
tions e(t) and q(t). That is, we consider the system of
equations

z p m )

p = —V'(z) + F(t),

(X) + bX = —((P) + bP),

(P) + hP = —V'((X) + hX) + F(t),

or, using the fact that (bX) = (hP) = 0,

(X) = —(P),

(P) = —(V'((X) + bX)) + F(t)

= —V'((X) ) + F(t) ——V"'((X)) (bX') —"
2

(7)

This system is integrated and along the way we compute

1
y(t) = —ln Qe2 (t) + il2(t),

where we choose the simplest measure of "distance" be-
tween trajectories, i.e. , A&2 + g2. Then

y—:lim y(t),

which turns out to be the largest Lyapunov exponent
of the system, tells us whether the system is chaotic or
regular. Specifically, the system is chaotic if y ) 0 and
regular otherwise. This is a standard definition of chaos
for (deterministic) dynamical systems, and is the one as-
sumed throughout this paper.

In general the value of y, and therefore whether or not
the system is chaotic, will depend on the initial point
(z, p) of the phase space, whereas e(0) and rI(0) can be
given small but arbitrary values without generally affect-
ing the computed value of y [6]. As a practical matter
the computation of y will typically require large values
of the integration time t before convergence is obtained.
Note that e(t) and q(t) represent local perturbations to
the trajectory z(t), p(t); y ) 0 implies an exponential
separation, on average, of initially close trajectories.

Let us now turn to the quantum mechanics of the same
system in the Heisenberg picture. It will be convenient
to write the operators X (t) and P(t) as [7,8]

X(t) = (X(t)) + bX(t),

P(t) = (P(t)) + bP(t).

We refer to bX and bP as "quantum corrections. " Note
that (hX(t)) and (hP(t)), by construction, are identically
zero, and that

[bX(t), bP(t)] = ih (6)

in order that [X(t),P(t)] = ih The initia. l state vector

bX = —'bP,
m

hP = —V"((X))hX ——V'"((X)),bX —(hX )

Note that Eqs. (8) are identical to the first two of the
classical equations (2), except for the quantum correc-
tions involving (bX ). If the quantum corrections are
small in the sense that ~V'"((X)) (bX ), etc. are small
compared with

~

—V'((X)) + F(t), then Eqs. (8) reduce
to the classical form

(X) = —(P)
1

(9)

(P) = —V ((X)) + F(t).
If furthermore we ignore second- and higher-order quan-
tum corrections in (8), then

bX = —bP,1

m

bP = —V"((X))bX.

Now we note that Eqs. (9) and (10) have exactly the
same form as Eqs. (2) determining the (classical) max-
imal Lyapunov exponent, although of course the equa-
tions (10) are operator equations. However, from (10)
we obtain an infinity of c-number equations of which the
erst three are given by

—(bX ) = —(bXbP + bPbX),d 2 1
dt m

(bXhP + h Ph X)—= —(b P ) —2V" ((X)) (bX ), (11)

—(bP ) = —V"((X))(hXhP+ bPbX),

and these equations can be compared with the classical
equations
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1= —(2eg),

—(2eg) = —rt —2V (x)e
d 2 /f

dt m

= -V"(x) (2ert),

which follow from (2). The association

m(bx ),
2&ii ++ (bxhP+ bPbx),
i)' m (8P')

clearly puts (11) and (12) in the same form. Of course
the two sets of equations are not really the same, because
in (12) there are only two dependent variables whereas in
(11) there are three. To restore consistency, one has to
first remember that this apparent discrepancy is a conse-
quence of the noncommutability of X and P. The prop-
erty [A, B] = iC implies

be described locally by a simple quadratic form. The
instantaneous quadratic potential determines our "quan-
tum corrections" to lowest order.

III. QUANTUM CORRECTIONS AND
GAUSSIAN WAVE-PACKET DYNAMICS

leading to

xg —pj m

4 = —v (*~)

v(x) = v(*,) + v'(~, )(x —*,) + -'v" (*,)(x —*,)'
2

It is interesting to relate the "quantum corrections"
construction to the method of GWD. Consider, following
Heller [9], the example

p2H= +V(X) (»)
and expand V(X) about the classical trajectory xq, pq
obtained from

(A')(B') & —((AB+ BA)'+ (C)2), (14)

which together with [8X,hP] = ih leads to (Sx )(bP )—
(1/4) (bxbP+bPbx) 2 = const. In the classical limit, this
reduces to (bX )(bP ) = (1/4)(bxbP + bPbx) which
makes the substitutions (13) consistent.

Suppose, then, that we describe a system classically
and compute its maximal Lyapunov exponent using (2)
or, equivalently, (12). If classical dynamics provide an ac-
curate description of the system, we can anticipate that
the quantum corrections satisfying (11) are small. When
the classical dynamics become chaotic as some param-
eter is varied, however, the quantum corrections might
be expected to grow, based on the similarity of (11) and
(12). This conjecture will be explored in detail later in
this paper.

It is worth noting that Eqs. (11) follow from the
Heisenberg equations of motion with a Hamiltonian ob-
tained by including quantum corrections up to second
order:

pg
Xg —

)m
p~ = —V'(*~),

2 2~~ = ——(~~ —~i) —-v (~~)
m 2
4

o.'r = ——o.'Ro.'r
m

j =is—+ p, x, —F.,m

(21)

when terms up to quadratic in X —xz are retained. Heller

[9] assumes a Gaussian wave packet of the form

g(~ t) ei(~(x x, )'+P, (—x —x, )+P] (20)

where o. = o.R + io.r and p = pR + iver are complex
and (Q~g) = 1. The time-dependent Schrodinger equa-
tion with the (time-dependent) potential (19) provides
the differential equations satisfied by o. , p, xq, and p&..

P2 + V(X) —XF(t)

-+ (P)'+ V((X)) —(X)F(t) + bP' —F(t)bx

+V'((X))bx + —V"((X))bX'—
2

(»)

where E = p~/2m+ V(xq). It follows from (20) that

(X) =2:, ,

(P) =&

(X') = x,'+
4o.r
A2

(P') = p~+

(22)

with [bX, bP] = ih. The first three terms are c num-
bers and do not afFect Heisenberg equations of motion,
and so may be ignored for the purpose of obtaining the
Heisenberg operator equations:

»'+ v'((x)) bx —F(t)bx+ -v"((x))bx2 .
1

Equations (11) for the lowest-order quantum corrections
thus correspond to the approximation in which we fol-
low the classical trajectories in phase space [Eqs. (9)]
while assuming at every instant that the potential can

(bxbP + SPSX) =

so that (bx2) = I/4ni and (6P ) = ~a~ /n~. These
definitions together with (21) result in

—(6X ) = —(6XSP + bPbx),
dt m

—(hxbP+ bPbx) = —('P ) —2(&x')V"(~g), (23)
dt m

—(6P ) = V"(x,)(bxbP+ bP—bX).
dt
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IV. QUANTUM CORRECTIONS AND A
TIME-DEPENDENT VARIATIONAL PRINCIPLE

When all the quantum-correction terms are included,
Eqs. (9) become

(x) = —(p)

(P) = F(t) - ) .—,V'" '((X))(bx")
(24)

In a time-dependent variational approximation the state
of a system is assumed to stay in a general Gaussian
form. In the Heisenberg picture this implies that n-point
expectation values can be expressed in terms of one- and
two-point expectation values. Following Pattanayak and
Schieve [10], we employ the following relations under the
assumption that the system at all times has the form of
a "squeezed coherent state":

(bx -) = (',",)'(bx )-,
(bX'"+') = 0,

(bx') (bP') = —fi' + (bXbP + bPbx—)
'2 1 2 1

4 4

(25)

Then (24) becomes

(x) = —(p),
(26)

(P) = F(t) —), V!'"+'l((X))(bX')",
n=O

Thus the GWD method is analogous to including lowest-
order quantum corrections to the classical evolution, ex-
cept for the parameter p. From (21) it is seen that the
rate of change of pI is governed by the size of n~ which in
turn reflects the importance of the quantum corrections.
So with larger nn, the imaginary part of p grows (or de-
creases) faster and correspondingly adjusts the normal-
ization of the wave packet, as seen from Eq. (20). This
provides a mechanism for retaining the Gaussian form of
the packet which in turn ensures the validity of the (time-
dependent) quadratic form of the potential. In the ex-
treme case where the quantum corrections grow rapidly,
quickly damps away the maximum ainplitude (at x = z, )
of the Gaussian, indicating the possible breakdown of the
GWD approximation to the true dynamics. This is in
contrast to the method of TDVP where the approxima-
tion defines a modified dynamics which may not bear any
resemblance to the true dynamics [10].

dt
(b—XbP+ bPbX) = (—bP ) —2) V! "l

m (n —1) I
n=1

x ((X))(bX2")
h'+ (bXbP + bPbX)'

2m, (bX2)

)- V' '« » (bx )- (28)
(n —I)!2"

n=1

where we have used the ansatz (25).
The time-dependent variational equations for expec-

tation values, Eqs. (26)—(28), have been obtained pre-
viously by Pattanayak and Schieve [10], who show that
they reproduce the results based on the TDVP. Unlike
the original quantum-correction hierarchy of equations,
the TDVP equations form a closed set. For any potential
V(X), they form a finite (four) set of nonlinear equations
and, as such, can exhibit chaos.

By de6ning a new pair of canonical variables p
(bX ) and II = (bxbP + bPbx)/2p, the four relations
(26)—(28) can be recast as a two-dimensional Hamiltonian
flow [10]. The corresponding effective Hamiltonian is

p2 II2 fi .V2" (x)
IIgf f — + + + ) P XF(t)

n=o

(29)

where p = (P) and z—:(X).
Pattanayak and Schieve [10] recently demonstrated

that the "semiquantal" [2,3] dynamics described by
this effective Hamilt onian for expectation values can be
chaotic "even though the system has regular classical be-
havior and the quantum behavior had been assumed reg-
ular. " This is counter to the usual expectation that quan-
tum eBects suppress classical chaos. However, their con-
cluding remarks indicate caution in interpreting the semi-
quantal features as real. Our view of this situation, as
discussed further in what follows, emphasizes the need for
circumspection. We suggest that approximations such as
GWD or TDVP are unreliable precisely when they or the
completely classical equations exhibit features of chaos.
The chaos should in our view be interpreted as symp-
tomatic of the breakdown of the method (like numeri-
cal chaos) rather than as an independent phenomenon.
However, as we shall also see, the generic form of the ef-
fective Hamiltonian (29) does provide some insight into
the quantum suppression of classical hyperbolicity.

V. FAILURE OF LOW-ORDER QUANTUM
CORRECTIONS AT THE TRANSITION

TO CHAOS

—(bx ) = —(bXbP + bPbX) .1
dt m (27)

For (bXbP+ bPbX) we have

and the evolution of (bX2) is fixed by the first of
Eqs. (11): Thus far our discussion has been restricted to either

the lowest-order corrections to the classical evolution or
decorrelating higher corrections as with the TDVP. We
would now like to justify the statement that expansion
schemes fail when the classical dynamics are chaotic.
Working in the "extended" phase space of the modified
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Heisenberg equations provides a compact way to see this
effect.

Let us consider the dynamics in the vicinity of fixed
points of the classical motion. As discussed in the Ap-
pendix. , the extended phase space decouples into sub-
spaces involving corrections of the same order. In the
absence of quantum corrections, a local stability analysis
would describe the local (classical) dynamics. The same
prescription can be applied to the extended phase space
where we first consider only the lowest-order corrections.

The fixed points are now given by

(P) = 0, V'((X)) = 0,

(bXbP+ bPbX) = 0, (bP ) = V"((X))(6X ),
where the first line is readily recognized as the defin-
ing relations for the classical fixed points. However, the
solution for the quantum corrections depends on the cur-
vature V" of the potential, which also defines the char-
acter of the fixed point. For the stable or elliptic situa-
tion, V" ) 0, the coherent state or minimum uncertainty
wave-packet condition for the widths,

(bP')
V/I

Ap ——+Q—V",

while in the space of ((bX ), (hP ), (SXbP+hPbX)) one
gets

Ai ——0, +2/ —V",

where the derivative of the potential is to be evaluated
at the fixed point. The zero exponent merely attests to
the local Hamiltonian nature of the dynamics in the full
five-dimensional space. Including the next higher-order
corrections leads to a further four-dimensional subspace
in which the exponents are now

w, =+&—v, +3v' —v . (34)

As seen from the Appendix, the third order brings in
a five-dimensional subspace which requires, once again,
that one of the exponents be zero in order to preserve a
local Hamiltonian How.

It is clear now that the stability in the extended
phase space is governed entirely by the classical dynamics

is recovered. In the hyperbolic case where V" ( 0, the
only consistent solution is (hX ) = (hP2) = 0. Similarly
it can be shown that to the next order the second-order
corrections are all zero at the fixed point.

The stability of the dynamics in the neighborhood of
the fixed points is reBected in the eigenvalues of the lo-
cal Jacobian or stability matrix. It is clear that within
the quadratic approximation this matrix is block diag-
onal, which means the eigenvalues for each subspace of
corrections can be obtained independently. Expressing
the eigenvalues as exponents, in the ((X), (P)) subspace,
these are

through the curvature of the potential V". Near an el-
liptic fixed point, where the eigenvalues in the ((X), (P))
subspace are purely imaginary, harmonics of the classi-
cal circulation frequency appear in the space of quan-
tum corrections. By contrast, near hyperbolic points,
the subspace of quantum corrections for any order has a
direction in which the corrections grow at a rate which is
a multiple of the classical stretching rate [11]. Further,
higher-order corrections grow at a faster rate than those
of lower order.

Under the approximation of a quadratic potential, the
decoupling of the extended phase space restricts the
growth of any given order of corrections to its own sub-
space. Further, choosing a representation (like a coher-
ent state) where the higher-order corrections are initially
zero ensures that they remain zero for all times. How-
ever, this containment is lifted on including nonquadratic
terms which mix the subspaces. The size of higher-order
corrections is now governed by the lower-order ones as
well which, as seen above, can then grow exponentially
under certain conditions. Once the higher corrections are
nonzero, they grow at a still faster rate. Together, these
lead to the breakdown of methods involving cumulant
expansions whenever the classical dynamics are unstable
or chaotic. It is worth noting that in the elliptic case,
inclusion of nonquadratic terms leads to harmonic gen-
eration in the extended space dynamics. This has long
been a signature of anharmonic classical systems and has
recently been the focus of both quantum-theoretic and
experimental studies [12].

This demonstration provides the basis for the state-
ment that quantum effects become more pronounced.
precisely when the classical dynamics are unstable or
chaotic. The view then evolves that under these con-
ditions, the infinite hierarchy of correlations must be
dealt with. In lieu of confronting this infinite-dimensional
system of first-order differential equations, it is more
economical to resort to a partial differential equation,
namely, the Schrodinger equation.

Knowing the fixed points of the dynamics in the "ex-
tended" phase space also leads to a novel inference, based
simply on the form of the efFective Hamiltonian (29) ob-
tained within the TDVP [10]. This observation is par-
ticularly pertinent when the classical motion is unstable.
First, we note that the contribution h /8p (m = 1 for
simplicity) is common to all systems and results from
the minimum uncertainty condition. Rewriting this term
as l; /2p, where l; = 5/2 is the width of a min-
imum uncertainty packet, makes explicit the similarity
with a centrifugal barrier where l,- is the effective "an-
gular momentum. " So, away from the classical limit, "8-
wave" character is diminished with respect to the ex-
tended space variables.

As we saw earlier, a hyperbolic fixed point in the ex-
tended phase space requires (X ) = (P ) = (bXbP +
bPbX) = 0 which means p = 0. Thus the minimum
uncertainty "centrifugal barrier" softens the hyperbolic
character by screening the unstable fixed point in the
extended phase space dynamics. In contrast, elliptic or
stable fixed points (using minimum uncertainty condi-
tions) require p = g(X2) = gh/2 = v /; which is
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larger than l,. and thus is not afFected by the presence
of the barrier.

As the eR'ective Haniiitonian is valid locally at least
over some time, this behavior is generic to the neighbor-
hood of all unstable and stable fixed points. Given that
classical chaos is the byproduct of local instabilities as-
sociated with hyperbolic fixed points, the inference that
quantum effects (finite h) suppress chaos may be drawn.
In terms of the extended phase space variables, two of
which are classical and the other two quantum, this ar-
gument suggests a microscopic origin to the mechanism
of quantum suppression.

VI. EXAMPLES

In order to briefly illustrate some of the points made in
the foregoing discussion, we consider two nontrivial ex-
amples: a driven anharmonic oscillator model that does
not exhibit chaos, and a driven Morse oscillator that
does. We will contrast the exact quantum-mechanical
results with both the purely classical dynamics and the
dynamics including only the first-order quantum correc-
tions (QC). First, however, we make a few remarks about
the harmonic oscillator which, though trivial in the sense
that the quantum corrections decouple from the evolu-
tion of the expectation values of X and P, nevertheless
illustrates an important point.

For a harmonic oscillator of frequency ~0 the solution
to the time-dependent Schrodinger equation can be writ-
ten in terms of energy (Fock) eigenstates ln) with expan-
sion coeKcients

C„(t) = C„(O)e
—*"-"

from which the expectation value of any operator can
be determined. For the initial state IK) with C (0) =
b ~, for instance, the expectation values of the position
operator

The classical solution

x(t) = xo sin (a et + 0), T (t) = xo sin (~st + 0),
(40)

A. Driven anharmonic oscillator

Consider now the Hamiltonian

0 = a oata —g(ata)'+ n (ae' '+ ate ' '), (41)

where uo is the natural frequency of the oscillator, y con-
trols the strength of the anharmonicity, 0 is the Rabi fre-
quency which reflects the resonant coupling to the driving
field, and ~ is the frequency of the driving field. a and a~

are the usual annihilation and creation operators. The
energy levels of the undriven system are simply

which does not, of course, contain the zero-point energy,
is in good agreement with the quantum coherent-state re-
sult for large (n), where the contribution from zero-point
energy is negligible. However, to obtain good agreement
with the quantum Fock state results, the classical solu-
tions must be averaged over 0, in contrast to the de-
terministic classical analog for the coherent state. This
exemplifies the usual microcanonical ensemble averaging
employed in classical Monte Carlo methods when one
attempts to mimic a quantum-mechanical energy eigen-
state. The point here is that the Fock state and the
coherent state have diferent classical statistical analogs,
and each analog is equally "close" to its corresponding
quantum state [13]. In fact, in the following examples we

employ diR'erent classical statistical analogs, correspond-
ing to a deterministic classical analog in the case of an
initial coherent state and microcanonical ensemble aver-
aging in the case of an energy eigenstate.

E~ = ACRO —72 g )
'fL = 0, 1) 2, . . . . (42)

(a —a')
( 2m~o )

and its square are given by

(37)

The fact that the unperturbed Hamiltonian is not
bounded from below does not pose any practical difB-
culty provided the excitation probability of states with
E ( 0 is negligible.

Once again we write the full quantum solution iIJ(t)
within the oscillator basis, that is,

@(t) =) C„(t)e '" 'ln) .

For an initial coherent state In) with From the time-dependent Schrodinger equation, the am-
plitudes C (t) evolve according to

C„(t) = —i(nA —n'~) C„(t)

and n = r exp (—io), on the other hand, —iO/n+ 1C„+i(t) —iO~nC„ i(t), (44)

) 1/2

(a(t)) = 2r
I I

sin(coot+ 0),( 2mcuo )
where the detuning A = uo —w. The expectation value
of the number operator is simply

(n(t)) = ) nlC„(t)l'.
n=o
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()
which, writing a(t) = n(t)ee, becomes

a(t) = —i((uo — a t, —~)a(t) + i2~la(t)l'a t —iA -'-'a —ice ' ', (46)

00 10

n(t) = i~8, ——n= —( —&) (t)+ '2&l (t)l' (t) —~ ) (47)

from which

~.1(t) = ln(t)l'. (48)

10

a = —i[a, H] = —i~A-=-'( -X).+'2X". -'~. (49)

To add quantumum corrections to t
w beg' with the Heisenbe eisenber equation of mot' n for a.

l.
1; .I
1 I. '1

I

l

1

1

:I
:I

io

(b)
A

I'l

I

I

I

:1
l

We now }et a = (a)+ha —= n+

, „*,), th th 00 io

n = —x A —y)n+ i2ylnl n —iB+ i2y n*x
~ xlnl *,+i4xn' + 2

x2 ——i2y(n
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X„=2P, ,

i = — + B (1 —e *') g —KA„cos pwQ
—X.. 2

07 SC

(55)

on a space-time grid using a standard method [16]. From
the wave function, the time-dependent expectation value
of E is constructed and compared with its classical coun-
terpart.

On adding the first-order quantum corrections, which
we denote by u = (bX ), v = (hP ), and iv = (hXSP +
bPSX), we get the coupled equations

(X) = 2(P),

(P) =—2
(

—( ) — ( ))+K

(
—(A) 4

—2(A))
B2

d
tL = 2tU

d7

—2(JC) —(X)
)d7- B2

d tLiv=4 v — (2e —e )d7- B2

(56)

P„=—(2/B )(e "—e *
) + Kcos p7,

where the derivative is now with respect to 7-. The energy
is now expressed in units of the dissociation energy D.
As the initial state for the quantum theory is an energy
eigenstate, we follow the usual procedure of considering a
microcanonical ensemble of initial conditions, solving the
equations of motion and then computing the ensemble
averaged energy E.

For the full quantum dynamics, we numerically solve
the Schrodinger equation

d
d7.

—Pd

d7
d

P
d7

—II
d

d7-

= 2P,
2 2 2

(e + ~ —e + )+KcosprB2

= 2II,

+ ~ ( —X+p /2 2
—2X+2p (59)

0.3—I

0.2

These four equations can be integrated starting with the
same initial conditions as for Eqs. (56). Now we are ready
to make a comparison of these four distinct dynamics.

In the choice of parameters, we are assisted by the
knowledge that classical chaos becomes more relevant as
the probability for dissociation increases [15]. Thus we
should contrast the dynamics described by Eqs. (54)—(56)
for cases of large and small dissociation probabilities.

In Fig. 2 we display two cases discussed by Goggin
and Milonni [15]. The first involves strong driving and
the scaled frequency p is tuned away from the n = 0 ~ 1
quantum resonance. The classically computed energy de-
viates after a few cycles from the quantum mechanically
computed energy, while the QC dynamics remain accu-
rate for 10 optical cycles. The TDVP tracks the true
quantum dynamics for a shorter time than the truncated
QC dynamics though it does provide an improvement
over the classical dynamics. This comparison between
the TDVP and QC dynamics holds for the case shown in
Fig. 2(b) with weaker driving field but with the frequency
tuned to the n = 0 ~ 1 resonance. The classical dynam-
ics are more regular in this case and the QC dynamics
once again agree with the quantum dynamics for almost
twice as long as in the case of Fig. 2(a). The implications
of these results are discussed further in Sec. VIII.

which are solved numerically. The initial conditions are
those obtained from the wave functions for the undriven
Morse potential (see [15] for details). To this order the
energy is given by

' "= B'[(P)'+.]+ ( — -"')'
A

A

V

0.1

(b)

+ (2
—2(X') —(2C)

)

The effective Hamiltonian (semiquantal) resulting
from the TDVP also has a nicely closed form for the
Morse potential. Summing over the derivatives of the
potential in (29) and changing to the scaled variables we
have

0.1

I

20
I

60

Iffy ——P + II —Kcos p7 X +—2 2 1
p2

—X p /2+ —2X 2p
B2 )

from which follow the coupled differential equations

(58)

FIG. 2. Comparison of the dimensionless energy (scaled to
the dissociation energy) computed from the quantum (dot-
ted), classical (thin solid), lowest-order QC (dashed), and
TDVP or semiquantal (thick solid) dynamics. Parameter val-
ues are (a) K = 23.7 and p = 45.11; (b) K = 10.0 and
p = 45.73. Time is measured in units of optical cycles 7.
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VII. PARAXIAI OPTICS
IN "QUANTUM-MECHANICAL" FORM

dr 1 p—= —[r, H] = —,
dz i ' k' (67)

Questions of "quantum chaos" can be posed within the
framework of purely classical theory, whenever there is
a ray (trajectory) approximation to fundamentally wave-
like behavior. In this sense the distinction between classi-
cally chaotic behavior and quantum mechanically regular
behavior is more aptly characterized as a distinction be-
tween ray and wave propagation. Quantum corrections
to classical dynamics are then analogous to difFractive
corrections to ray propagation. This section illustrates
this point in the context of purely classical paraxial wave
optics.

Maxwell's equations for media with no net charge or
current imply the equation

V' E+e—E+ V' —V'e E = 0
C2 E

(60)

for the electric field E(r)e ' . If e = 1 and if variations
in e(r) are sufficiently small, the third term on the left
side of Eq. (60) can be ignored and we can work with the
Helmholtz equation

V' E+k n (r)E=O, (61)

E(r) = Ep(r)e'"' (62)

and assume that variations of Ep with respect to z are
small on a scale of a wavelength (2vr/k). This leads to
the well known paraxial wave equation [17]

BEp 22ik = —V'T, Ep —(n —1)Ep,
OZ

(63)

or

. BEp 1
V'~Ep —kni Ep

Oz 2k

for n = 1, i.e. , n —1 = 2(n —1)—:2ni.
Equation (64) has exactly the same form as the time-

dependent Schrodinger equation when the substitutions
t ~ z, 6 ~ 1, m ~ k, and V ~ —knq are made in the
latter. Of course we can cast the paraxial wave equation
(64) in the language of bras, kets, and a linear vector
space of square-integrable functions [18]:

t9 pi—~Ep) = —+ kni(r) ~Ep),Bz 2k

with [r;,p~] = ib,~. We can also define a Hamiltonian

where k = cu/c and n = e, for each scalar component of
the field. In the paraxial approximation we write

dp 1= —[p, H] = —kV'ni .
dz 2

(68)

It follows from these "Heisenberg equations of motion"
that

d r = V'n&,
dz

(69)

ni(r) = n, (x, y) + A(x, y) cos Bz (7o)

and the expansion

Ep(x, y, z) = ) a„(z)G„(x,y)e

which is the paraxial approximation to the ray equation
(d/ds)(ndr/ds) = V'ni, n = 1, for a position vector r of
a point on a ray, with 8 a distance measured along the
ray [19]. In our formulation Eqs. (65)—(67) are equations
of motion for operators in a Hilbert space, and "quan-
tum" corrections are actually difFractive corrections to
ray propagation. The initial state over which the rays
and the difFractive corrections are calculated is ~Ep(0)),
i.e. , Ep(x, y, z = 0).

The effective "quantum dynamics" associated with the
paraxial wave equation has been exploited by various au-
thors [20], and optical analogs of harmonic oscillators,
two-level atoms, stabilization, and other "quantum" sys-
tems have been discussed previously [21]. The point of
interest here is that, if the refractive index ni(r) is such
as to give nonlinear equations and chaos in the ray ap-
proximation, then the efFect of difFraction (wave optics)
will be to suppress this chaotic behavior, in complete
analogy to the suppression of classical chaos in quantum
mechanics. We can introduce diffractive corrections"
to ray optics in exact correspondence to the quantum
corrections to classical dynamics; the ray approximation,
or the ray approximation with low-order difFractive cor-
rections, will typically be accurate for short propagation
distances, just as classical dynamics will typically be ad-
equate on short time scales. When the rays propagate
chaotically, however, diffractive effects can be expected
to become important for shorter distances of propaga-
tion than in the case of regular ray propagation, just as
quantum corrections in the case of classical chaos become
important, typically, for shorter times than in the case of
regular classical dynamics.

It is perhaps worth noting that the analogy between
the paraxial wave equation and the time-dependent
Schrodinger equation carries through especially clearly
in the special case of quantum systems in which only a
few energy levels are relevant (e.g. , two-level atoms). In
particular, consider

p 2

H = —+ kn, (r),2k
(66)

where the G (x, y) are the eigenfunctions for the unper-
turbed optical system defined by

in terms of which (65) represents the "time-dependent"
Schrodinger equation. With this Hamiltonian we can also
work in the Heisenberg representation where

2k
V'~~ G„(x,y) —knli i (x, y) G„(x,y) = K„G„(x,y),

(72)
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and the K are the corresponding eigenvalues. Then
Eqs. (70)—(72) imply

.da
Z

dz
= —kcosOz) A„a (z)e ' - " ', (73)

where we have invoked the orthogonality of the eigen-
functions G (x, y) and have defined

dxdyG„*(x, y)A(x, y)G (x, y). (74)

We are assuming that the unperturbed optical system is
lossless, and so defines a Hermitian eigenvalue problem
with a complete orthogonal set of eigenfunctions.

Suppose, for instance, that the mode Gq(x, y) is in-
jected at z = 0 into the system described by Eq. (72).
Then, if 0 = K2 —K1 is significantly different from all
the other K —K1, we are led to the approximation that
only the modes Gq(x, y) and Gz(x, y) are coupled by the
perturbation represented by the second term in Eq. (70).
This "two-level" approximation reduces (73) to the sys-
tem

da1 = inRa2,
dz

da2 = iO~ai,
dz

(75)

where we assume that the "Rabi frequency" O~ =
2 kX12

is real. Then

) I' = co"~&z la2(z) I' = »n' ~Rz (76)

i.e., the two modes exhibit "Rabi oscillations" as they
propagate through the system.

One can envision a large number of other "quantum-
mechanical" effects in the paraxial propagation of light
[22,23]. Such optical analogies include effects associated
with difFerent "quantum" states of, say, the simple har-
monic oscillator. The Hermite-Gaussian modes of a sta-
ble laser resonator, for instance, correspond to eigen-
states of a two-dimensional harmonic oscillator, and if
a linear combination of these modes with expansion co-
efficients of the type (38) could be realized we would have
a coherent state in which the centroid (r(z)) of the trans-
verse field pattern oscillates harmonically, corresponding
to a scanning beam. In fact, a sufFiciently large num-
ber of modes (= 7) were coupled in phase, resulting in
a scanning beam, in experiments conducted many years
ago by Auston [24].

VIII. DISGUSSION

Using a cumulant expansion of the Heisenberg equa-
tions of motion for quantum-mechanical operators, we
have shown how to obtain "quantum corrections" to
purely classical equations of motion. These quantum cor-
rections follow equations of motion that couple them not
only to the classically determined variables, but also to
higher-order quantum corrections, so that the expecta-
tion value of any quantum-mechanical operator can be
obtained at any time t by solving a sufFiciently large num-
ber of coupled first-order ordinary differential equations.

The initial conditions for these differential equations are
determined by expectation values over the initial state of
the system.

By noting the similarity between the coupled equa-
tions for the classical canonical variables, and the quan-
tum corrections up to first order, to the equations deter-
mining the maximal Lyapunov exponent of the classical
system, we have deduced an important conclusion con-
cerning the relative importance of quantum corrections
in classically regular and classically chaotic systems: The
quantum corrections should typically grow much faster
in time when the classical system is chaotic than when
it is regular. In addition, higher-order quantum correc-
tions should grow more rapidly compared with lower-
order ones when the classical system is chaotic than when
it is regular. Since Gaussian wave-packet dynamics have
been shown to be closely related to equations of motion
including quantum corrections through only first order
(Sec. III), one anticipates that this approximation will
not in general be reliable for strongly chaotic systems.
Similarly, results based on a time-dependent variational
principle (Sec. IV) cannot be expected to be reliable in
general when the corresponding classical system exhibits
chaos.

It has been shown that starting from a more general
form for the wave packet, which requires information be-
yond the first two moments, leads to a generalization of
GWD [25]. It would appear reasonable to expect that
this construction is equivalent to including higher-order
quantum corrections in our method.

Purely classical dynamics provide a measure of when
quantum effects are most likely to be important, just
as macroscopic stability properties can determine the
growth of microscopic Huctuations in purely classical sys-
tems [5].

While it is difIicult in general to deduce a precise
"break time" at which classical dynamics are a poor
approximation for chaotic systems, our simple analysis
suggests that this time is roughly on the order of the
inverse of the largest Lyapunov exponent, in agreement
with Berman and Zaslavsky [4].

Our conclusions bode ill for the general reliability of
classical molecular dynamics or simple GWD or TDVP
approximations in classically chaotic systems. However,
it should be borne in mind that there is generally some
time over which these approximations are accurate, if the
classical statistical analog is chosen properly (Sec. VI),
i.e., in such a way that the classical and quantum-
mechanical averages are in close correspondence at t = 0.
The results for the Morse oscillator, for instance, suggest
that, except for extremely intense fields, classical molec-
ular dynamics should make reliable predictions at least
over several cycles of an applied laser field. We therefore
expect that classical approximations, GWD, or TDVP
methods will be very useful in the study of molecular
systems irradiated by femtosecond probe pulses. In fact,
the predictions of classical molecular dynamics have been
found to be a very useful guide in the short-pulse pho-
todissociation dynamics of alkali halides [26].

It should be noted that the simple method of quan-
tum corrections can be useful even in certain situations
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where the system, or part of the system, has no obvious
classical analog. In such situations the "quantum correc-
tions" provide a measure of the accuracy of decorrelation
approximations. Shirley [8], for instance, has employed
essentially just this method in a study of the validity
of the semiclassical approximation in laser theory. In
this case the system consists of a collection of two-level
atoms coupled to the electromagnetic field, and what we
have termed "quantum corrections" account for correc-
tions to the approximation of decorrelating atomic and
Geld variables. In other words, the calculation of quan-
tum corrections can provide a straightforward and very
useful quantitative estimate of "mean Geld" and other
decorrelation procedures.

In this paper we have also emphasized the anal-
ogy between paraxial wave optics and time-dependent
quantum-mechanical phenomena, and in particular that
questions of quantum chaos can be studied within the
context of purely classical paraxial optics. The short-
time validity of classical dynamics or classical dynamics
with low-order quantum corrections is analogous to the
fact that ray-optical propagation or ray-optical propa-
gation with low-order diffractive corrections —can pro-
vide a good approximation for short propagation dis-
tances. Thus, in the context of chaos as well as other
phenomena, Gabor's remark that "quantum mechanics

I

is not a bad preparation for optics" [27] is worth remem-
bering.

Note added in proof G. aussian wave-packet techniques
have recently been extended to obtain agreement with
quantum-mechanical results over time intervals greater
than the "log time. " See, for instance, M. A. Sepulveda,
S. Tomsovic, and E. 3. Heller, Phys. Rev. Lett. 69, 402
(1992).
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APPENDIX: EVOLUTION EQUATIONS FOR
HIGHER-ORDER QUANTUM CORRECTIONS

For the sake of completeness we list the evolution equa-
tions satisfied. by quantum corrections up to fourth order.
Note that we use these only for the stability analysis, in
extended phase space, in the neighborhood of the classi-
cal Gxed points. As a consequence, we display here only
terms up to the first nonquadratic contribution from the
potential (i.e., the triple derivative).

To fourth order in quantum corrections, there are 14
coupled equations:

( ) (P)dt

= —V' — (hX' ) + E(t)
2

(A1)

—(bX ) = (hXhP + hPbX),
dt

—(bP') = V"(bXbP +—bPbX) —V"'(bXbPbx),
dt

(bXhP+ hP—bX) = 2(bP ) —2V" (hX ) —V"'(bX ),dt

—(bX ) = 3(hXbPhX),
dt

dt
—(hP ) = 3V"(bPbXhP—) + V'"

i

—(bX )(hP ) ——(bPbX hP) + h
(2 2 )

~///—„(bXb bX) = 2(bPbXbP) —V"(bX') —,((bX') —(bX')'),
y ///

dt
(bPbXhP) = (—bP') —2V"(hXhPbX) + ((hX')(bXbP + bPhX) —(bX'hP + hPbX')),

2

(A3)

d

dt
—(hX') = 2(bX'bP + bPbX'),
d
dt
—(bP ) = 2V" (bXhP +—hP hX) + 2V"'(hX )(bP ),

dt
(bXsbP + hPbX'—) = —2V"(hX') —3h'+ 6(bPbX'bP) + V"'(bX')(bX'),

dt
—(bXbP'+ bP'bX) = 2(bP4) + 3V" (n' —2(bPbX2b )) + 3V"'(bX')(bPbXbP),

d

dt
—(bPbX'bP) = V"(hX'hP+ bPbX—') + (bP'hX+ bXbP') + V'"(bX')(hXhPbX) .

(A4)
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Note that all derivatives of the potential are evaluated at
(X). It is clear that under the quadratic approximation,
the evolution decouples into closed subspaces involving
variables of the same order. Thus the first three orders
of quantum corrections involve three, four, and five vari-
ables, respectively. This decoupling is especially eKec-
tive in the neighborhood of fixed points of the classical
dynamics where the quadratic approximation is partic-
ularly good. This motivates the local stability analy-
sis used earlier to correlate classical instability with the
growth of quantum corrections. It should be noted that
equations for higher-order corrections were included in

Ref. [28] but truncating those to V"' does not yield (A4).
This is because the relations in Ref. [28] are not entirely
self-consistent.

It might appear that the truncation of the equations
for higher-order moments is somewhat arbitrary, given
the infinity of correlation functions generated. How-
ever, for time-dependent systems, the requirement that
dH/dt = 0 in the absence of the driving term provides a
systematic procedure [29] for deciding which terms need
be retained to preserve energy conservation to a certain
order of corrections (or alternately, derivative of the po-
tential) .
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