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We consider a two-dimensional lattice model to describe the opening of a crack in hydraulic
fracturing. In particular, we consider that the material only breaks under tension and the fluid has
no pressure drop inside the crack. For the case in which the material is completely homogeneous (no
disorder), we present results for pressure and elastic energy as a function of time and compare our
findings with some analytic results from continuum fracture mechanics. Then we investigate fracture
processes in strongly heterogeneous cohesive environments. We determine the cumulative probability
distribution for breaking events of a given energetical magnitude (acoustic emission). Further, we
estimate the probabilty distribution of emission free time intervals. Finally, we determine the fractal

dimension(s) of the cracks.

PACS number(s): 05.70.—a, 46.30.—i, 91.60.—x

I. INTRODUCTION

Hydraulic fracturing is widely used in soil mechanics to
improve the permeability of reservoirs either in oil recov-
ery or of geothermal wells [1]. Water, an incompressible
fluid, is in general, pushed under high pressure deep into
the ground by injecting it into a borehole. The fluid pen-
etrates into the solid, opening long cracks. In order to
optimize this rather costly procedure, it is crucial to get
some deeper understanding of how the fracturing occurs.

In the field it is unfortunately very difficult to obtain
direct information about the evolution of the crack in the
ground. In present engineering, essentially two types of
measurements can be performed: On one hand one can
monitor the pressure fluctuations at the injection pump
and on the other hand one can register acoustic emission
signals on the surface. In two-dimensional Hele-Shaw
cells, some controlled laboratory experiments have been
performed [2] by injecting water or air into the center of
the cell. The resulting cracks display a ramified struc-
ture which for high enough pressures is fractal with a
dimension of 1.4-1.5.

Using a triangular network of springs and radially
stretching the network on the outer boundary into the
six directions of a hexagon, the breaking of a material
from a central hole was investigated by several authors
[3]. They observed fractal cracks having a dimension that
depended very much on the type of applied displacements
(shear, uniaxial, radial). A stability analysis [4] of the
boundary of a circular hole with internal pressure has,
however, shown that this case differs considerably from
that of a stretched membrane due to the nonlinear depen-
dence of the growth velocity of the crack surface arising
from the threshold in cohesion force that must be over-
come to break the material.

We have introduced a model [5] in which the imposed
load represents a pressure that acts along the entire (in-
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ner) surface of the crack in a direction perpendicular to
the surface (von Neumann boundary value problem). In
this way, the point of application of the imposed load
varies during the growth of the crack, a situation that
describes the case of hydraulic fracturing more realisti-
cally than previous spring models. It also turned out
to be more efficient to use a beam model instead of
springs. This model had, however, two drawbacks: On
one hand the pressure was kept fixed while in real applica-
tions it is usually easier to sustain a fixed injection rate.
On the other hand, the heterogeneities of the medium
were “annealed,” i.e., changing in time while the disor-
der in breaking strength or stiffness in real soils is usu-
ally “quenched,” i.e., constant on the time scales of the
breaking process.

In the present paper we present a model with constant
injection rate in which the variations of pressure can be
measured and in which the cohesion force is a time in-
dependent random variable. We investigate the strong
pressure fluctuations and measure the energy release as a
function of the statistical distribution of cohesion forces.

II. THE MODEL

In the following we will outline the model employed.
First we give a brief description of the basic elastic equa-
tions and an explanation of how to incorporate heteroge-
neous cohesion properties into the fracture model. After
this we explain in detail the boundary conditions used.
Finally we present the breaking rules we employed which
contain the physics of the breaking process considered.

We consider the beam model (as defined on p. 232 of
Ref. [6]) on a two-dimensional square lattice of linear size
L. Each of the lattice sites ¢ carries three real variables:
the two translational displacements z; and y; and a rota-
tional angle ¢;. Neighboring sites are rigidly connected
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by elastic beams of length [. The beams all have the
same cross section and the same elastic behavior, gov-
erned by three material dependent constants a = I/(F A),
b = 1/(GA), and ¢ = I3/(EI), where E and G are the
Young and shear moduli, A the cross section of the beam,
and I the moment of inertia for flexion. We used for all
simulations the values a = 1.0, b = 0.0017, and ¢ = 8.6.
When a site is rotated (¢; # 0) the beams bend accord-
ingly, always forming tangentially 90° angles with each
other. In this way local momenta are taken into account.
For a horizontal beam between sites 7 and 7 one has the
longitudinal force acting at site j, F; = a(z; — z;); the
shear force, S; = B(y; —y;)+ %l(goi—l—(pj); and the flexural
torque at site j, M; = %l(yi —y; +lp;) + 612(pi — ¢;),
using a = 1/a, = 1/(b+ ¢/12), and § = B(b/c+ 1/3).
The corresponding equations for vertical beams are sim-
ilar. In mechanical equilibrium the sum over all internal
and external forces (torques) acting on site j must vanish,
giving rise in the continuum to the Cosserat equations.
We do not consider here inertial or bulk forces such as
for gravity.

Before discussing the boundary conditions employed
and their physical motivation it is convenient to describe
how we included heterogeneous cohesion properties in the
fracture model. The concept of local cohesion strength
has been used in a number of papers [7]. One assumes
that a deformed elastic beam connecting sites ¢ and j al-
ways breaks above a certain material specific threshold
force f.2, (“cohesion strength”). If the applied stresses
(forces per beam section) are above this threshold the
beam breaks and is eliminated, i.e., its elastic moduli
are set to zero. Since the cohesional strength for com-
pression is much higher than for tension, we assume [5]
that compressed beams can never break. If all beams
have the same cohesion strength the material is homoge-
neous. Such homogeneous states are usually investigated
in continuum fracture mechanics using the concept of
the solid’s free surface energy. In the next section we
will present some results for equal cohesion thresholds.
More realistic, however, is the case in which the breaking
thresholds are distributed randomly according to some
probability density function, i.e., following a power law,
p(fcoh) ~ f;oh with fcoh € [O, fma:z:] and 7 > —1. Nega’
tive exponents r are used to describe strong cohesive dis-
order while large positive exponents correspond to weak
disorder. It is convenient to express the normalization
factor and f,,., by the distribution’s expectation value
(feon) and the exponent r. We fixed the average co-
hesion strength for all simulations to be (fe.on) = 0.01
and investigated the fracture processes for the exponents:
r = —0.7, r = —0.5 (strong disorder) and r = +oo (no
disorder).

Boundary conditions must be defined on the external
edges of the lattice and on the internal crack surface.
Concerning the external boundary conditions, all dis-
placements and rotations of the sites on the outer edges
are assumed to be periodic in horizontal and vertical di-
rection so that the lattice is spanned on a torus. Peri-
odic boundary conditions are preferrable to free bound-
ary conditions because we are interested in asymptotic
results for large (infinite) systems. We note that in this

case the system cannot expand globally. The second kind
of boundary conditions concerns the conditions for forces
and torques acting on the inner crack surface. While
in tensile experiments the crack surface(s) are always
stress free, in hydrodynamic fracturing these surfaces are
loaded by a pressure distribution resulting from the in-
vading fluid or gas. In this work we will only consider
a homogeneous (spatially constant) pressure distribution
acting perpendicular along the entire inner crack surface.
However, in contrast to previous simulations [5], here the
pressure has strong fluctuations in time. Instead of keep-
ing the inner pressure constant during the simulation we
consider the case where the fluid flux AV into the crack
is constant in time. Hence, the crack opening volume V,
which corresponds to the total amount of injected incom-
pressible, fluid increases linearly in time ¢,

V(t) = AV, AV = const , (1)

a condition which is close to the situation of industrial
hydraulic fracturing. For completeness we should men-
tion that the above mentioned equivalence between the
crack opening and the injected fluid volume only holds if
there is no other sink of fluid in the system besides the
crack. Although in practice a loss of fluid in soils is quite
common, for the sake of simplicity we do not consider
here this effect.

Through Eq. (1) the crack volume V increases in time.
We will follow the evolution of the crack growth under
the continous increase of loading in the hole. We do this
in an iterative way. At each time step the volume in-
creases by a fixed amount AV and we estimate from the
corresponding elastic solution the stress distribution on
the crack surface. According to the breaking rule cer-
tain beams can break at a given time step depending on
whether or not their stresses are beyond their breaking
thresholds. When no beam breaks we continue with the
next time step. However, if beams break they are simul-
tanously and irreversibly removed from the set of elastic
equations before one proceeds to the next time step. The
simulation stops when a certain maximum volume V,, 4,
is reached. During the simulation we monitor the act-
ing crack pressure, the number of broken beams, and the
elastic energy of the system.

In the following we give a more detailed description of
the above steps. Our simulation starts at time ¢t = 1. At
the place into which the incompressible fluid is injected
(center of the lattice) one vertical beam connecting sites
¢ and j is removed from the force and momentum bal-
ance equations, i.e., the beam is broken. Since we want
to simulate the loading of a crack by an injected fluid,
a pair of opposite forces (dipole) of unit strength is ap-
plied at sites 7 and j pointing into the elastic bulk. The
(unit) pressure is then defined as the acting force per
beam length ! (I = 1). Under the influence of the unit
force dipole the lattice becomes distorted. Lattice dis-
tortions are in general characterized by the displacement
field 4(t) = (xi(t),v:(t),lp:i(¢)), which, in turn, is de-
termined from the boundary conditions at time t. In
the following we will denote by o (¢) the displacement
field calculated for a unit pressure P,. In Ref. [5] we de-
scribed how to calculate the crack volume V from given
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crack surface displacements 4. We denote by Vy(t) the
crack volume when computed from w@o(¢). At time ¢t =1
the injected fluid volume V(1) = AV exerts an equilib-
rium pressure P(1) = AV/V,(1) on the crack surface.
This follows from the linearity of the elastic equations.
The elastic solution which corresponds to this equilib-
rium pressure is just @(t) = P(t)to(t). We note that this
simple relation only holds if the acting pressure can be
considered as spatially homogeneous.

We will consider that only beams along the surface
of the inner hole can break. In that way only one sin-
gle crack is generated. At each time step we determine
for all beams on the crack surface the force fi(t) acting
along its axis and only if this f¥(t) is positive, i.e., under
tension, and larger than the breaking threshold fzf’ Ly the
beam is broken, i.e., its elastic constants «, 3,8 are irre-
versibly set to zero. The forces f*(t) must be calculated
from the actual displacements @(¢). Note that at a given
time step t either several beams can break simultaneously
or none break at all. The latter is the case if the stresses
of all crack surface beams are below their thresholds. In
such a situation the crack volume for unit pressure does
not change, Vp(t+1) = V,(t), because the boundary value
problem does not change, i.e., @o(t + 1) = to(t). Hence
it is not necessary to recalculate the equilibrium forces.
If a certain number of beams breaks simultanously, ad-
ditional unit force dipoles have to be applied at their
corresponding neighboring sites ¢ and j, destroying the
previous balance of forces. Then one has to calculate
again the internal equilibrium of forces. This is done in
our case using a conjugate gradient algorithm with a pre-
cision of € = 1071 (see Eq. (47) in Ref. [8]). Because of
the new boundary conditions the elastic solution changes,
ie., @o(t + 1) # Uo(t), and the volume Vy(t + 1) # Vo(¢)
is recalculated from the new crack surface displacements
Uo(t + 1), as described in Ref. [5].

At time t + 1 the crack pressure takes the value P(t +
1) =V (t+1)/Vo(t+1) and the elastic solution matching
Eq. (1) is given by @(t+1) = P(t+1)d@o(t+1). From these
displacements one recalculates the forces fi(t + 1) for
all beams on the (new) crack surface, decides which are
the next beams to be broken, and repeats the procedure
described above.

III. FRACTURE OF HOMOGENEOUS SOLIDS

Although homogeneous cohesive properties in solid
systems are rather the exception than the rule, it is useful
to study them mainly because of their relative simplicity.
Our model should be capable of reproducing some general
features of simple continuum models for hydraulic frac-
turing. First we consider the limiting case of equal break-
ing thresholds (fcon) = f22, = 0.01 for a lattice of linear
size L = 150. The crack volume (total amount of injected
fluid) is increased at a constant rate of AV = 0.05!2 per
time step. The simulations stop when the lattices are bro-
ken into two pieces. As expected, we find the cracks to
have a linear shape. This is due to the fact that the high-
est stress enhancements occur at the two vertical beams
at the tips. Figure 1 shows the time dependence of the
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FIG. 1. Log-log plot of the pressure P inside the crack
versus time ¢ for homogeneous cohesion (r — +o00) of strength
(feorn) = 0.01. Points at subsequent time steps are connected
by straight lines. The dotted line corresponds to a slope of
—1/3 as predicted by continuum mechanics. The linear lattice
size is L = 150.

pressure P inside the crack in a double logarithmic plot.
One can see that on average the pressure drops in time
and has oscillations on short time scales. At the begin-
ning, i.e., for time ¢ = 1, the crack is very small (one
vertical broken beam) and one needs high pressure in or-
der to push the fluid of volume AV into the crack. In
this particular calculation the two vertical beams on the
crack surface are already stressed beyond their cohesion
threshold. At the next time step, t = 2, these two beams
are broken and the pressure drops, because the enlarged
crack can now be opened much more easily than before
(see Fig. 1). The pressure goes down although additional
fluid AV has been added to the crack at this time step.
It is obvious that a large crack experiences a much lower
pressure than a small crack for the same opening volume
because the system in that case is locally more stressed.
If the pressure drops too much (like at time t = 2) the
stresses at the two crack tips fall below their cohesion
value and the crack cannot grow at the next time step.
By injecting more fluid into the crack the pressure in-
creases linearly in time until the cohesion forces can be
overcome again. In Fig. 1 one sees a sequence of this os-
cillating pressure. In the continuum description a smooth
decrease of the breaking pressure in time (volume) is ex-
pected. Using continuum mechanics one can argue that
the smallest pressure necessary to extend the crack at a
given opening volume should behave like P..;; ~ V~1/3
in d = 2 [9]. Such a relationship should only hold for an
elastic infinite plate. Because of Eq. (1) we can identify
crack volume with time up to the factor AV. For com-
parison we have plotted in Fig. 1 a dotted line having a
slope of —1/3. The agreement with our numerical values
is quite acceptable over one decade. For short and long
times we obtain pronounced deviations which originate
from the lattice structure and the finite size of the lattice
and from the external boundary conditions.

It is interesting to consider the temporal evolution of
the stored elastic energy U. We have calculated the time
dependent energy directly by summing up the elastic
energies of all nonbroken beams in the system at ev-
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FIG. 2. Log-log plot of the stored lattice energy U ver-
sus time ¢ for homogeneous cohesion (r — +00) of strength
(feon) = 0.01. Points at subsequent time steps are connected
by straight lines. The dotted line is a guide to the eye of slope
2/3 as predicted by the continuum theory. The lattice size is
L = 150.

ery time step. In Fig. 2 we show in a log-log plot the
time dependence of the elastic energy. Again we see
an oscillating behavior as discussed above for the pres-
sure. Breaking events as, for example, at time ¢t = 1
and t = 3 decrease the elastic energy while the elas-
tic energy is increased by pushing fluid into the crack.
Globally, the elastic energy must increase because the
system becomes more compressed in time. We find that
the peak energies scale in time as a power law over two
and a half decades with an exponent close to 2/3; see Fig.
2. This exponent can be understood by calculating the
work W_,;; = fOV P..it(V') dV’' done by the external
forces in order to inject the fluid volume V', which yields
U it = Wepse < V2/3. This agrees well with our numer-
ical findings. Again finite size effects lead to deviations
from the behavior of an infinite continuum.

IV. CRACKS IN HETEROGENEOUS SOLIDS

In the following we will consider the influence of
strongly heterogeneous cohesive strengths on the hy-
draulic fracturing process. It is well known that frac-
ture processes in disordered solid systems show a rich
phenomenology concerning the crack geometry such as,
for example, crack branching and crack deflection [6].
There exist phenomena, such as the appearence of mi-
crocracks in solids, which cannot be explained by equi-
librium thermodynamics without considering the hetero-
genity of physical properties. Experimental and theoreti-
cal investigations during the last decades have established
that the overwhelming number of fracture phenomena in
solid systems is strongly influenced or even controlled by
inhomogeneities.

We will investigate the statistical properties of break-
ing sequences during hydraulic fracturing and their corre-
lations in space, time, and magnitude. Similar quantities
are frequently considered in the analysis of earthquake
occurrences [10,11] and of acoustic emission (AE) dur-
ing microfracturing of rocks [12] or of technical materials
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[13]. Acoustic emission records for the hydraulic fractur-
ing in geothermal wells have been published for example
in Ref. [14].

In our simulations we have considered threshold dis-
tributions for two different exponents r = —0.7 and
r = —0.5 (see the preceding section for the definition
of the distribution). Figure 3 shows a typical hydraulic
crack pattern grown in a medium with strong disorder
(r = —0.7) on a lattice of linear size L = 150. The
crack consists of 629 broken beams after 1500 time steps.
Apparently, smaller crack branches appear along larger
branches, a geometrical property which is typically ob-
served for self-similar (fractal) structures. We have evalu-
ated the fractal dimension(s) of the hydraulic cracks gen-
erated by considering the relationship between the typi-
cal crack radius R(N) and the number of broken beams
N. For this we calculate the squared radius of gyration
R*(N) = & X;(Fi —70)? with 7o = & 3, 7. Finally, the
radius R(NV) is averaged over a number of independent
configurations in order to obtain results for typical cracks.
In Fig. 4 we show in a log-log plot the number of broken
beams NN versus the typical crack radius R(N) for the two
statistics of the heterogenities characterized by exponents
r = —0.7Tand r = —0.5. We find in both cases power laws
N o« R% with d;y > 1, giving evidence of fractal crack
growth. The exponent dy is called the fractal dimension
of the crack and takes for 7 = —0.7 (¢) and 7 = —0.5 (+)
the values dy = 1.44+0.10, and dy = 1.3940.10, respec-
tively. These values for ds are consistent with the fractal
dimension found in the two-dimensional experiments on
hydraulic fracturing of viscoelastic clays [2]. One detects,
however, from both curves in Fig. 4 a crossover at large
R to a lower slope dy ~ 1.25. It is interesting to note
that the crossover radii R« depend on the width of the
threshold distribution. The cracks for stronger disorder
r = —0.7 show a higher crossover radius R« =~ 18 than
those for r = —0.5 with Ry« = 10. This is qualitatively
in agreement with the observation that broader threshold
distributions have larger homogenization volumes [15]. In
our case, it is, however, likely that the crossover behavior

FIG. 3. Typical hydraulic crack for strong disorder,
r = —0.7 and (fcon) = 0.01, on a lattice of size L = 150.
The crack consists of 629 broken beams after 1500 time steps
using a volume increment AV = 0.05. The injection point
is the center of the lattice. We have used periodic boundary
conditions in vertical and horizontal directions.
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FIG. 4. Log-log plot of the number N of broken beams ver-
sus the radius of gyration R(N) for two different distributions
of breaking thresholds: (¢) r = —0.7, averages over 60 cracks,
fractal dimension dy = 1.44 £+ 0.10; (+) » = —0.5, averages
over 53 cracks, fractal dimension df = 1.39 & 0.10. For all
simulations we have used a mean cohesion value (feon) = 0.01
and a linear lattice size L = 150.

is an effect of the finite size of the lattice. It has been ar-
gued [15,16] that for logarithmically diverging threshold
distributions, i.e., for r = —1, a fracture process essen-
tially reduces to a percolation problem. We note that
this is not necessarily the case here because the breaking
law employed is asymmetric with respect to tension and
compression.

V. BURSTS AND TEMPORAL CORRELATIONS

Since the fractal nature is a fingerprint for infinite-
range correlations in the crack geometry, one can also
ask how the breaking events are correlated in time. To
illustrate this question, we show in Fig. 5 the complete
breaking sequence of the crack displayed in Fig. 3. We
have plotted the number of beams broken between two
consecutive time steps as a function of time. Most strik-
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FIG. 5. Record of the breaking sequence in time corre-
sponding to the crack displayed in Fig. 3. In this plot we have
defined the magnitude m(¢) as the number of simultanously
broken beams at a given unit time interval. The simulation
stopped after 1500 time steps. Note the temporal clustering
of breaking events and the large time intervals of quiescence.

ing is the fact that the breaking process is very discon-
tinuous in time. There are large time intervals in which
no breaking occurs at all. During such time intervals of
quiescence all beams on the crack surface are stressed
below their cohesion thresholds and the acting pressure
increases linearly in time. The second striking fact is that
if a breaking event happens after a period of quiescence it
usually triggers a sequence of consecutive breaking events
(temporal clustering). We will call such sequences bursts.
The bursts themselves are, as one can see in Fig. 5, un-
equally distributed in time. They occur relatively often
for small times and become more rare later. However,
while the bursts are narrow for early time steps they typi-
cally become broader with increasing time. The numbers
of simultanously broken beams per time step also exhibit
particularities. Let us call these numbers the magnitudes
of the breaking events. Broad bursts typically consist
of few events of high magnitude and much more of low
magnitude. Figure 6 shows the magnifications of two
bursts from Fig. 5. The ordinate gives the number of
simultanously broken beams during a time step and the
corresponding “released energies” as well. The definition
of the released energies is given below in Sec. VI. We
see that the peak energy releases do not temporarly co-
incide with the peak numbers of broken beams. In Fig.
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FIG. 6. Magnification of two bursts from Fig. 5, (a) at
time ¢t =~ 650 and (b) at time ¢ ~ 1210. We have plotted
the number m(t) of simultanously broken beams (thick line)
as well as the corresponding released energies §U (thin line)
(compare Sec. VI for the definition of U). The energies have
been scaled by a constant factor.
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FIG. 7. Linear plot of the pressure P inside the crack ver-
sus time t. The pressure was obtained from the simulation
corresponding to Fig. 5.

7 we show the time dependent pressure belonging to the
breaking processes shown in Figs. 5 and 3, respectively.

The reader familar with magnitude records of earth-
quakes or of accoustic emission records from laboratory
experiments will recognize some resemblance to our data.

In the following, we will investigate more closely the
temporal clustering of breaking events. We have calcu-
lated the lifetime 7 for each burst as the time that elapses
between the first and the last breaking event of a burst.
Figure 8 shows the (unnormalized) histogram of burst
lifetime in a double logarithmic plot. Small bursts oc-
cur relatively often while larger bursts are less frequent.
The statistics are made over 729 bursts from 60 sam-
ples for r = —0.7 and over 862 bursts from 53 crack
simulations for »r = —0.5. The largest detected burst
has a lifetime of approximately 7 = 140. We note that
for large lifetimes, 7 > 30, the statistic becomes unre-
liable because the occurrences, n(7), become too small,
n(7) < 10. This is also due to the fact that all simulations
were stopped after ¢,,,, = 1500 time steps. In order to
extract more information from the lifetime distribution,
we consider in Fig. 9 the less noisy cumulative proba-
bility distribution p(7) that a given burst has a lifetime

1000 g S
n(r)
1007 4
S g
+
& +
o i+
< Q%
10 | + % i
<& ]
o o% ]
%0900
HH 000 p
L ORPRED O O
1 1

- ~HRBAED O ]
1 10 100 1000

T

FIG. 8. Histogram for the burst lifetime 7 in a double log-
arithmic representation. The occurrences n(7) for bursts of
size T have been calculated for r = —0.7 (¢) and for r = —0.5
(+). The largest detected burst is of size 7 = 140. The simu-
lations have been stopped after tmae- = 1500 time steps.
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shorter than or equal to 7. With an intermediate range
we observe in Fig. 9 that the cummulative probability
p(r) =31, n(@)/ :2‘;' n(z) seems to obey a power law
p(7) o 7177 with n = 0.54 £+ 0.15. Hence, the lifetime
distribution of bursts also follows a power law in this
regime,

n(r) cc 7. (2)

It is remarkable that the two curves in Fig. 9 give
nearly the same exponent 7 although the exponents r
from their threshold distribution are different. This in-
dicates that the underlaying generating mechanism for
the temporal clustering of breaking events might be uni-
versal. In Fig. 9 one also sees strong deviations from the
power law for small (7 < 4) and for large (7 > 30) bursts,
particularly in the case of »r = —0.7. The existence of an
upper cutoff is plausible, because we stopped each crack
growth after t,,o, = 1500 time steps. This artificially
lowers the number of large bursts. The lower cutoff is
quite common in cluster statistics, known as “corrections
to scaling.”

Next we consider the lifetime distribution g(7) of quiet
intervals. This distribution characterizes the arrange-
ment of bursts on the natural time scale ¢ and has at-
tracted interest in seismology because of its possible role
in predicting earthquakes [17]. It has been observed that
if certain regions undergo high magnitude earthquakes
they often show thereafter rather long periods of seismic
quiescence (inactivity). We have investigated this statis-
tic from our hydraulic fracturing calculations. In Fig.
10 we consider in a semilog plot the cumulative prob-
ability Q(7) that two consecutive bursts are separated
by a time interval of quiescence shorter than or equal
to 7. More precisely, we define the width of the inter-
val 7 by the number of breaking free time steps between
two consecutive bursts. For intermediate time scales the
probability follows, as shown in Fig. 10, a logarithmic
dependence, Q(7) o In7. Thus, the probability g(7) of
finding a quiet time interval of width 7 between two ad-
jacent bursts scales in this regime as

q(7) o< —- (3)

0.1 1 I
1 10 100 1000

.

FIG. 9. Log-log plot of the cumulative probability distri-
bution p(7) that a burst selected at random is shorter .
The distribution follows a power law, i.e., p(7) o< 777 with
7 = 0.54 £ 0.15 for intermediate burst lifetimes. Symbols and
parameters as in Fig. 8.
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FIG. 10. Semi-log plot for the cumulative probability Q(7)
of finding between two adjacent bursts an emission (break-
ing) free time interval 7. Note the logarithmic dependence,
Q(7) « InT, i.e., the probability ¢(7) of finding a quiet in-
terval of size 7 scales as q(7) = 8:Q o 1/7. Symbols and
parameters as in Fig. 8.

Interestingly, both distributions n(7) and ¢(7) scale for
intermediate times as power laws, however, with different
exponents.

So far we have considered the lifetime statistics of
bursts and of quiet intervals. Valuable information about
the temporal evolution of hydraulic cracks can be gained
by considering the time correlations between the break-
ing events. A priori it is not obvious which of the break-
ing events are causally connected. In our model the el-
ementary consecutive breaking events define the short-
est accessible time scale. From acoustic emission ex-
periments and seismic records, however, the existence of
background noise is well established. Events are usu-
ally only considered if their magnitude exceeds the back-
ground noise by orders of magnitude [13,18]. The cut-
off of the background noise leads to discrete magnitude-
time sequences. This is similar in our model because the
discrete nature of the beams establishes a lower cutoff
for the possible size of an event. Experimentally, the
variations in emission magnitudes are so strong and the
line-widths are so small that one can consider acoustic
emission “events” as § peaks. We note that in experi-
ments the significant breaking events are already tempo-
ral clusters (bursts). Hence, one can investigate the time
correlations on the scale of a typical line width (burst
lifetimes) or on a larger time scale. First we will investi-
gate the case in which only correlations within the bursts
are considered. We have calculated from all bursts the
probability distribution b(7) of time intervals 7 = |¢; —t;|
between all possible pairs of breaking events belonging to
the same burst. We show in Fig. 11 in a semilogarithmic
plot the distribution of time intervals 7. One clearly sees
an exponentially decreasing probability (two-point corre-
lation) in time, b(7) o exp (—a7). In this plot one does
not find any power-law behavior for small times, 7 < 30,
as one might expect from the power-law scaling of burst
lifetimes; see Eq. (2). In our case, this is due to the
fact that the “large” bursts (7 > 30), having unfavorable
statistics, completely dominate the correlations also for
small 7. This appears to be an additional complication
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FIG. 11. Probability distribution b(7) of finding two break-
ing events being 7 time steps apart and belonging to the same
burst. From the semilog plot one sees exponentially decreas-
ing correlations, b(7) « exp (—at). Symbols and parameters
as in Fig. 8.

resulting from the very broad lifetime distribution n(7)
of bursts, i.e., the small value of the exponent n ~ 0.5.
We can, however, as discussed above, consider the cor-
relations between all breaking events regardless of the
bursts they belong to. This is conveniently done [10] by
calculating the histogram of time intervals 7 between all
possible pairs of breaking events 7 = |t; —t;| from a given
time record. In Fig. 12 we show in a double logarithmic
representation the normalized histogram of these time in-
tervals. We find that the probability g(7) of detecting two
breaking events seperated by a time interval 7 decreases
on intermediate scales (15 < 7 < 130 for r = —0.7) as a
power law,

g(t) x 77", Kk =0.94+0.20. (4)

This corresponds to Omori’s well known law of after-
shocks which was first formulated in 1894 for earthquakes
[19]. It says that the probability of an aftershock follow-
ing a large earthquake decays as 1/7* in time with an
exponent x close to one. Omori’s law has been verified
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FIG. 12. Probability distribution g(7) of finding two break-
ing events to be 7 time steps apart. The distribution fol-
lows, for intermediate time scales, a power law (Omori’s law)
g(7) o< 77* with the value kK = 0.94 & 0.20. Symbols and
parameters are the same as in Fig. 8.
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from earthquake catalogs for aftershocks series ranging
from a few hours to a couple of years after the main event.
The empirical value of the exponent « lies between 1.0
and 1.4 [10]. Although the appearance of earthquakes
and aftershock series depends on quite different under-
lying constraints concerning the rheology and the crack
opening mode than our two-dimensional model, we find
a value for k very close to the empirical one in three di-
mensions. Recently, it has been argued [18] that the value
£ = 1 should hold quite generally for nonlinear fracture
problems, such as earthquakes, independent of the spatial
dimension [20]. Hence, one might expect the basic mech-
anism for burst sequences, or, respectively, aftershocks,
to be universal due to self-organization of rupture. Phys-
ically one might argue that a main breaking event with
high magnitude triggers smaller magnitude events which
in turn create even smaller events ad infinitum if the co-
hesion properties are sufficient heterogeneous. However,
in our case during a single burst the solid undergoes a
quite complicated stress redistribution process until all
microstructural elements (beams) are below their cohe-
sion threshold. When the crack grows into new regions
it may be stopped due to a region with particular high
breaking thresholds. Then the burst terminates. As the
crack becomes longer its critical opening volume neces-
sary to overcome the thresholds increases even more be-
cause larger cracks can be opened more easily than small
cracks. This explains why the intervals of quiescence be-
come longer for larger cracks.

VI. RELEASED ENERGIES, ACOUSTIC
EMISSION

So far we have considered the spatial and temporal cor-
relations of breaking events during hydraulic fracturing.
We have found qualitative and quantitative similarities
to the seismic clustering of earthquakes and to acoustic
emission laboratory experiments. However, we have so
far not discussed the correlations of the magnitudes (in-
tensities) of breaking events. For this the magnitude oc-
currence relationship is of central importance [21]. It has
been found empirically that the cumulative occurrence
H (m) of earthquakes of magnitude larger than m follows
the celebrated Gutenberg-Richter law, H(m) o 107%™
[22]. The b value found in the Gutenberg-Richter law is
often close to one [10]. The magnitudes of seismic events
are defined by the logarithmic wave amplitudes. The en-
ergy release §U is usually considered to be proportional
to the squared amplitude of the earthquake. One typi-
cally obtains a cumulative occurrence-energy relation of
the form H(U) o U %®, expressing the presence of
earthquakes on all energetical scales [11,21]. It has been
shown recently [13] that acoustic emission in the ultra-
sonic frequency range due to microfracturing of synthetic
plaster also exhibits a power law for the cumulative oc-
currences with an exponent close to the one found in the
Gutenberg-Richter law. Similar finding from AE records
have been published earlier for the microfracturing of
rocks [23].

In the following, we will discuss some energetical as-
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pects of our model. The thermodynamical description
of crack spreading phenomena in heterogeneous environ-
ments becomes quite complicated and we will calculate
the involved energies exclusively from the mechanical
equilibrium conditions and not from thermodynamical
considerations. In order to determine in our model the
amount of energy released by a given breaking event one
has to calculate the stored elastic energy U(t) at each
time step. This energy is, as already mentioned, deter-
mined prior to breaking from the sum over the energies
of all nonbroken beams. We define the rate of change of
elastic energy as 6U = —90U /0t = —(U(t+ 1) = U(¢t)). If
the rate §U is negative, then the lattice has increased its
elastic energy. We have verified that the overwhelming
majority of breaking events are detectable by the con-
dition U > 0. There are very few events that show a
negative energy flux because the value of U describes the
sum of two effects. First, it describes the lowering of elas-
tic energy due to a breaking event. Second, it describes
the increase of elastic energy due to the added amount
AV of fluid per time step. However, if the cracks and
their corresponding opening volumes become large com-
pared to AV, the fraction of nondetected events becomes
very small. Experimentally the energy dissipation due to
crack growth has at least two contributions. On one hand
the creation of additional crack surface consumes energy.
On the other hand elastic waves are emitted from the
crack tip(s) (acoustic emission). Because we do not con-
sider the full dynamic equations, it is a priori not clear
which fraction of the dissipated energy to assign to the
“acoustic emission.” We propose that, as a first approx-
imation, the AE energy per event is proportional to the
rate of change of elastic energy 6U of the system. We
show in Fig. 13 in a semilog plot the cumulative occur-
rence H(6U) of breaking events of energetical magnitude
larger than 6U. We find an exponential relationship,

H(8U) x exp (—B38U). (5)

The flat tail for large 6U is due to low statistics. This
result is at variance with what is expected from the
Gutenberg-Richter law and AE measurements in labora-
tory experiments. A possible source of this discrepancy
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FIG. 13. Semilogarithmic plot for the cumulative occur-
rence H(6U) that a given breaking event is of energetical mag-
nitude larger than U. We find for the cumulative occurrence
an exponential decay H(6U) « exp (—BdU). Symbols and
parameters as in Fig. 8.
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could be our definition of the released energy: We pro-
posed that the AE be proportional to the total energy
relaxation. It could, however, be that the fraction of en-
ergy emitted acoustically is a more complicated function
of the energy. Other sources of the deviations between
our model and experiments could be the periodic bound-
ary condition and the two dimensionality of the lattice
used in our simulations.

VII. CONCLUSIONS

We have presented a lattice model for hydraulic frac-
ture that takes into account the particular boundary con-
ditions inside the hole and the quenched nature of the
heterogeneities in the rock. We drive the process by in-
creasing the crack volume linearly in time (constant flux).
The pressure fluctuates erratically, similarly to what is
measured at boreholes in the field. The crack shapes are
fractal and the fractal dimension agrees well with mea-
surements performed in Orléans with Hele Shaw cells.
The sequence of breaking events is organized in bursts
that have a lifetime distribution and a distribution of qui-
escence times that are power laws. This indicates that
self-organized criticality [24] takes place. Events inside
a burst seem uncorrelated while long range correlations
between bursts follow Omori’s law for aftershocks. The
distribution of released energies does not follow a power

law within the numerical accuracy of our calculations,
shedding doubts on the simple hypothesis that acoustic
emission signals are simply proportional to the released
potential energy.

This work is still rather preliminary if the full reality
of hydraulic fracturing in oil or geothermal reservoirs is
to be described. Real soils are three dimensional and the
distribution of heterogeneities usually follows a Weibull
distribution with a material dependent exponent. The
pressure of the fluid in the crack is not constant but de-
pends on the distance from the injection site and the
geometry of the crack. The system is nearly infinite in
size and the restrictions in the total volume of the system
as imposed by the periodic boundary conditions are not
realistic. Still many features have been found in this pa-
per that agree with experimental measurements and we
think that including more details into the model, which
is rather straightforward, could help simulate hydraulic
fracturing rather accurately in the future.
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